Desalination by forward osmosis: Identifying performance limiting parameters through module-scale modeling

Akshay Deshmukh a, Ngai Yin Yip a,b,⁎, Shihong Lin a,c, Menachem Elimelech a

a Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
b Department of Earth and Environmental Engineering, Columbia University New York, New York 10027, United States
c Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States

⁎ Corresponding author at: Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027, United States.
E-mail address: nyy2002@columbia.edu (N.Y. Yip).

http://dx.doi.org/10.1016/j.memsci.2015.03.080
0376-7388/© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Seawater desalination accounts for a rapidly increasing portion of global freshwater production [1,2]. Currently, reverse osmosis (RO) and multi-stage flash (MSF) separation are the most extensively employed desalination processes. Despite steady technological advances over the years, MSF remains highly energy intensive and RO still requires a substantial amount of high-grade energy in the form of electricity [3,4]. Recent studies have highlighted the inherent link between water and energy sustainability and emphasized the need to produce water in a manner which minimizes the use of high quality energy resources [4–6]. Emergent technologies such as forward osmosis (FO) and membrane distillation which can utilize low-grade waste energy are, therefore, of increasing importance in desalination [6–12]. FO desalination systems have a wide range of potential water production and purification applications, from hybrid FO–RO schemes for agricultural water that exploit the lower fouling propensity of FO [13], to shale gas water recycling systems that utilize the ability of FO to treat the highly saline waters produced during hydraulic fracturing [14,15].

FO desalination comprises two stages: first, water is extracted from a saline feed stream into a draw solution and, second, the draw solute is separated from the dilute draw stream to recover the extracted water [1]. In the first stage, the saline feed solution is contacted with a high osmotic pressure draw solution in a membrane module. Driven by the chemical potential gradient, water permeates from the feed solution across the semipermeable membrane into the draw solution. In the second stage, product water is separated from the draw stream in a closed cycle, thus regenerating the initial draw solution. Various separation processes may be employed to recover water from the draw stream [8,15–17]. For example, thermolytic draw solutes, such as ammonia–carbon dioxide, may be stripped using low temperature distillation [8].

In order for FO desalination to be cost-effective, membranes need to achieve a high average water flux whilst maintaining an adequate rejection of salts and contaminants [1,7]. Currently, tailored thin-film composite (TFC) membranes, consisting of a thin polyamide active layer on a polysulfone–polyester fabric support layer, have demonstrated consistently high FO performance by providing the optimal
combination of high water permeability, low solute permeability, and low support layer resistance to water transport [18–21]. Novel membranes, based on materials ranging from carbon nanotubes to graphene to aquaporin proteins, could potentially achieve greater water permeabilities and solute rejections, and are the subject of active research [22–26]. Innovative fabrication techniques are also being investigated in attempts to further lower the mass transport resistance of FO membrane support layers and enhance productivity [20,27–31].

Previous studies have investigated the trade-off between water and solute permeability of the membrane active layer [32,33] and the effect of morphology and microstructure on concentration polarization within the membrane support layer [28,34–38]. These studies concentrate on the theoretical and mechanistic understanding of the mass transport phenomena in FO and thus offer limited perspectives on overall FO system performance. At present, the advantages of improving membrane properties (water permeability and solute rejection of the active layer and mass transport resistance of the support layer) at module level have not been quantitatively analyzed. Module-scale modeling enables the determination of system-level performance parameters, including water recovery, solute leakage, and membrane area. In addition, incorporating the effects of local flow rate and concentration variations is imperative when assessing the impact of concentration polarization, which is exponentially dependent on the local water flux [39]. Therefore, module-scale FO analyses provide important practical insights on the economic viability of the process and can guide the design and implementation of FO desalination plants. In addition, understanding the potential benefits of advances in membrane technology on FO module performance will be integral in steering future membrane development.

The objective of this study is to model a module-scale forward osmosis unit operation and examine the effects of key membrane transport parameters on performance. First, we consider the thermodynamic limits of water recovery for both co- and counter-current flow in an FO process. Second, we introduce mass transport across a differential FO membrane element and discuss the performance limiting phenomena. We then develop a module-scale process model to simulate an FO membrane unit and examine the contributions of active layer, support layer, and boundary layer mass transport resistances to the membrane area required to achieve a specified water recovery. Lastly, we investigate the effects of different operating conditions, specifically, feed and draw flow rates and concentrations, on the membrane area requirement. The findings of this study can serve to guide the design and development of forward osmosis systems by identifying the parameters that offer the largest potential improvements in process performance.

2. Upper limit of water recovery

An FO module consists of a low concentration feed stream and a high concentration draw stream separated by a semi-permeable membrane, commonly in a spiral-wound or tubular/hollow fiber configuration [40]. Driven by the osmotic pressure gradient, water permeates across the membrane from the feed stream to the draw stream [41]. Similarly, draw solutes are transported down a concentration gradient from the draw stream to the feed stream, while feed solutes permeate into the draw stream. The primary objective of an FO process is to recover water from the feed stream into the draw stream. Fig. 1 shows schematics of two configurations of an FO process: co-current and counter-current.

Fig. 1. Schematic of a FO module operating in (a) co-current and (b) counter-current mode. Water permeates from the feed-side to the draw-side with a local flux of \(J_w \). The permeation flow rate, \(\Delta Q \), is the integral of \(J_w \) across the membrane area of the entire module. Draw solute leaks from the draw-side to the feed-side with a molar flux of \(f_c^D \). Feed solute permeates from the feed-side to the draw-side with a molar flux of \(f_c^F \). The net solute flux comprising \(f_c^D \) and \(f_c^F \) from the draw-side to the feed-side is \(J_c \).

The volumetric flow rate and molar concentration of the streams are denoted by \(Q \) and \(c \), respectively.

solute concentrations above 1.5 M [42]. However, in this study the feed and draw concentrations at the membrane-solution interface range from 0.6 M to 1.4 M. In this region, errors in the van't Hoff approximation are under 3% [43] (OLI Systems, Morris Plains, NJ). In addition, we neglect hydraulic pressure drop along the membrane module, as these are in small comparison to the osmotic pressure differences across the membrane. By applying these assumptions, two streams are in equilibrium with each other when they have the same concentration. Thin-film composite (TFC) polyamide membranes governed by solution-diffusion were utilized in the membrane modules for all model analysis. Other module-scale effects, such as configuration of the membrane elements, are not considered in this investigation.

We define the water recovery, \(R \), and the feed flow rate fraction, \(\phi \), in terms of the volumetric rate of water permeation across the membrane, \(\Delta Q \), and the initial feed and draw flow rates, \(Q_{f0} \) and \(Q_{D0} \), respectively:

\[
R = \frac{\Delta Q}{Q_{f0}}
\]

(1)

\[
\phi = \frac{Q_{f0}}{Q_{f0} + Q_{D0}}
\]

(2)

Recovery, \(R \), is the fraction of water extracted from the saline feed and is, thus, an important performance parameter in desalination processes.

Water flux across the membrane, \(J_w \), is proportional to the osmotic pressure difference and can be expressed using the membrane water permeability coefficient, \(A \), and feed and draw concentrations at the membrane-solution interface, \(c_{F,m} \) and \(c_{D,m} \), respectively [40]:

\[
J_w = A(x_{D,m} - x_{F,m}) = \nu A R_g T (c_{D,m} - c_{F,m})
\]

(3)

Because concentrations \(c_{F,m} \) and \(c_{D,m} \) vary along the length of the membrane module, \(J_w \) denotes the local water flux. Similarly, the local net solute flux, \(J_c \), is expressed using the membrane solute permeability coefficient, \(B \) [38,44]:

\[
J_c = B(c_{D,m} - c_{F,m})
\]

(4)

Since both the draw and feed solutes are NaCl, \(J_c \) represents an aggregate of the reverse solute flux (RSF) of draw solute into the
feed stream, \(j_{fl}^{w} \), and the forward flux of feed solute into the draw stream, \(j_{fl}^{cD} \) (i.e., \(j_{fl}^{cD} = j_{fl}^{w} - j_{fl}^{cF} \)) [44].

The integrals of \(j_{fl}^{w} \) and \(j_{fl}^{cD} \) with respect to the membrane area over the entire module yield \(\Delta Q \) and \(\Delta N_i \), the net molar leakage rate of solute:

\[
\Delta Q = \int_0^{A_m} j_{fl}^{w} \, dA_m = \nu AR_g T \int_0^{A_m} (c_{D,m} - c_{F,m}) \, dA_m
\]

\[
\Delta N_i = \int_0^{A_m} j_{fl}^{cD} \, dA_m = B \int_0^{A_m} (c_{D,m} - c_{F,m}) \, dA_m
\]

where \(A_m \) is the area of the membrane surface. From Eqs. (5) and (6) we note that the molar leakage rate of solute is directly proportional to the rate of water permeation across a membrane module [45]. Using this proportionality relation with Eq. (1) we can express \(\Delta N_i \) in terms of the water recovery:

\[
\frac{\Delta N_i}{R_{Q^{fl}}} = \frac{B}{\nu AR_g T}
\]

To determine the theoretical upper bound of water recovery in FO, we consider the limiting scenario in which the exiting feed and draw streams are in thermodynamic equilibrium (i.e. equal osmotic pressures or, in our case, equal salt concentrations) with adjacent streams, which may be entering (counter-current, Fig. 1(b) or exiting co-current, Fig. 1(a)) the module [41]. This modeling condition implicitly assumes a module with sufficient membrane area across which water and solute mass transfer can proceed to equilibrium. We define solute leakage (SL) as the cumulative permeation of solute across the entire membrane module. Using Eq. (7) to account for net SL (i.e. reverse minus forward solute permeation), we determine the dependence of the maximum water recovery on \(\phi \) and \(c_{D0} \) for co-and counter-current flow.

2.1. Co-current flow

In co-current flow, the feed and draw streams exit the module on the same end. By setting the exit concentrations of both streams to be equal and performing a mass balance on water and salt, the maximum attainable water recovery can be expressed in terms of the initial concentrations, feed flow rate fraction, and membrane water and solute permeability coefficients with Eqs. (1), (2), and (7):

\[
R_{DLR} = \frac{(1 - \phi)c_{D0} - c_{F0}}{\varphi c_{D0} + (1 - \phi)c_{D0} + (B/\nu AR_g T)}
\]

2.2. Counter-current flow

In counter-current flow, the feed and draw streams run in an anti-parallel manner, with the draw exit being adjacent to the draw entrance and vice versa. This configuration yields two possible equilibrium conditions = equal concentrations at the feed or draw inlet of the membrane module. We define \(\phi^* \) as the critical feed flow rate fraction that satisfies both conditions simultaneously and \(R^* \) as the corresponding critical recovery. Evaluating this critical flow rate fraction using water and solute mass balance yields:

\[
\phi^* = \frac{c_{D0} + (B/\nu AR_g T)}{c_{D0} + c_{F0} + (2B/\nu AR_g T)}
\]

When the feed flow rate fraction is smaller than the critical value, i.e. \(\phi < \phi^* \), the concentration of the feed stream increases along the module to equal the draw inlet concentration, while the concentration of the draw stream does not fully decrease to that of the feed inlet. This is defined as the feed limiting regime (FLR) and the maximum attainable recovery, \(R_{FLR} \), is equal to the critical recovery, \(R^* \), which is given by:

\[
R^* = R_{DLR} = \frac{c_{D0} - c_{F0}}{c_{D0} + c_{F0} + (2B/\nu AR_g T)}
\]

Conversely, the draw limiting regime (DLR) occurs when the feed flow rate fraction is greater than the critical value, i.e. \(\phi > \phi^* \). In this case, the concentration of the draw stream decreases to equal the feed inlet concentration, while the concentration of the feed stream does not increase to that of the draw inlet. The maximum attainable recovery in DLR is:

\[
R_{DLR} = \frac{(1 - \phi)c_{D0} - c_{F0}}{\varphi c_{D0} + (B/\nu AR_g T)}
\]

2.3. Effect of solute permeation on water recovery

The transport of water and salts through current polymeric membranes is described by the solution-diffusion mechanism [46]. Consequently, polymeric membranes are constrained by an intrinsic trade-off between permeability and selectivity. In this study, the permeability-selectivity correlation for TFC polyamide membranes [32,33] is used to calculate the dependence of the solute permeability coefficient, \(B \), on the water permeability coefficient, \(A \):

\[
B = \gamma A^3
\]

where constant \(\gamma = 0.0133 \) L2 m-4 h2 s-2 Pa-1 is experimentally determined in our previous study [33]. Note that the denominators of Eqs. (8), (10), and (11) contain the term \(B/(\nu AR_g T) \), which has dimensions of concentration. This term represents the reduction in osmotic driving force due to net SL to the feed side, which consequently leads to a decrease in water recovery. Currently, thin-film composite polyamide membranes offer the best combination of high water permeability and high solute rejection [19]. Using the representative concentrations and typical TFC membrane properties presented in Table 1, the term is calculated to be two orders of magnitude smaller than the feed inlet concentration (0.6 M NaCl to simulate seawater). Therefore, we expect the effects of SL on the water recovery of a module-scale FO system to be small when high-selectivity polyamide membranes are employed. Nonetheless,

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Representative feed and draw solution concentrations for FO desalination, typical transport parameters for technologically available semi-permeable TFC polyamide membranes, and mass transfer coefficient in feed-membrane boundary layer.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Typical value</td>
</tr>
<tr>
<td>Feed stream inlet solute concentration, (c_{D0}) (* osmotic pressure)</td>
<td>0.60 M (29.7 bar)</td>
</tr>
<tr>
<td>Draw stream inlet solute concentration, (c_{F0}) (* osmotic pressure)</td>
<td>3.00 M (148.7 bar)</td>
</tr>
<tr>
<td>Membrane water permeability coefficient, (A) [64]</td>
<td>2.00 L m-2 h-1 bar-1 (5.56 x 10^-6 µm s^-1 Pa^-1)</td>
</tr>
<tr>
<td>Membrane solute permeability coefficient, (B) [64]</td>
<td>0.106 L m-2 h-1 (0.0294 µm s^-1)</td>
</tr>
<tr>
<td>Membrane structural parameter, (S) [65]</td>
<td>400 µm</td>
</tr>
<tr>
<td>Feed-side mass transfer coefficient, (k_F) [54]</td>
<td>100 L m-3 h-1 (278 µm s^-1)</td>
</tr>
</tbody>
</table>

* The osmotic pressures are approximated using the van’t Hoff equation.
because the leakage of draw solute will incur material replenishment cost, added steps to counter the accumulation of feed solute in the draw side, and possibly the additional treatment of feed stream, SL is still anticipated to be an important phenomenon in actual operation and is discussed later in Section 4.4.

Fig. 2 shows the dependence of the maximum attainable water recovery on the feed flow rate fraction for co- and counter-current flow (black and red lines, respectively) as detailed in Eqs. (8), (10), and (11). It is immediately evident that running an FO system in counter-current mode allows a higher water recovery relative to running in co-current mode, for $0 < \phi < 1$. The superior performance of counter-current operation is the consequence of maintaining a higher average driving force (i.e. osmotic pressure difference) along the module. It is for this reason that separation processes are commonly operated in counter-current mode [47]. Because of the clear advantage in achievable recovery, only counter-current configurations are modeled in subsequent sections.

For counter-current flow, there are two distinct regimes on either side of the critical feed flow rate fraction ($\phi^* = 0.83$ for $c_{D0} = 0.6$ M and $c_{D0} = 3.0$ M). In the FLR (i.e. $\phi < \phi^*$), water recovery remains constant at its maximum value, $R_{\phi, FLR} = 0.80$ for $c_{D0} = 3.0$ M (i.e. Eq. (10) is independent of ϕ). This is because the draw stream has sufficient capacity to continue extracting water from the feed stream until the feed concentration increases to that of the draw inlet. In contrast, water recovery in the DLR (i.e. $\phi > \phi^*$) drops rapidly as the feed flow rate fraction is increased, as reflected by the $(1 - \phi) / \phi$ term in Eq. (11). In this region, the flow rate of the draw stream is insufficient and its concentration decreases to that of the feed inlet.

Changing the draw inlet concentration affects both the maximum recovery possible and the critical feed flow rate fraction, Eqs. (9), (10), and (11). Decreasing the draw inlet concentration in counter-current flow, from $c_{D0} = 3.0$ to 1.2 M, decreases both the maximum attainable water recovery, $R_{\phi, FLR} = 0.8$ to 0.5, and the critical feed flow rate fraction, $\phi^* = 0.83$ to 0.67 (Fig. 2, dotted lines). Therefore, employing a higher draw inlet concentration allows a greater recovery to be achieved, and R^* is obtained over a larger range of draw flow rates.

3. Element-scale analysis: performance limiting phenomena in FO

The driving force for water flux in FO is the osmotic pressure difference across the active layer of the membrane, $\Delta \pi_{m} = \pi_{D,m} - \pi_{F,m}$. Eq. (3). Due to concentration polarization (CP) and RSF, the osmotic pressure difference across the active layer, $\Delta \pi_{m}$, is lower than the osmotic pressure difference between the bulk feed and draw streams, $\Delta \pi_{D} = \pi_{D,b} - \pi_{F,b}$. The effects of CP and RSF on the steady-state water and salt fluxes are quantified by modeling the convective and diffusive transport of species across the membrane support layer, active layer, and the adjacent boundary layer [48]. A schematic of the osmotic pressure profile is shown in Fig. 3.

Concentrative external concentration polarization (ECP) occurs on the feed-side, at the solution-membrane interface, and is characterized by a mass transfer coefficient, k_F [48]. Its reciprocal, $1 / k_F$, represents the resistance of the diffusive boundary layer to solute transport. The feed-side mass transfer coefficient is dependent on the hydrodynamics of the flow in the feed channel and varies with the feed-side flow rate [49,50]. The relationship between the mass transfer coefficient and flow rate is typically expressed via semi-empirical Sherwood–Reynolds–Schmidt number correlations [49,51]. In this study a constant mass transfer coefficient is used rather than assuming a particular channel and spacer geometry and using the corresponding Sherwood–Reynolds–Schmidt correlation. The mass transfer coefficient can be improved by increasing the cross-flow velocity or enhancing spacer design in the feed channel and thus inducing greater mixing near the membrane surface [50,52].

On the draw side, dilutive internal concentration polarization (ICP) occurs inside the support layer. ICP is characterized by the structural parameter, δ, of the support layer and the diffusivity, $D_{}\phi$, of the draw solute in water. The structural parameter, $\delta = t_{m} / \tau_{m}$, is a membrane property which incorporates the thickness, t_{m}, tortuosity, τ, and porosity, ε, of the support layer and represents an effective diffusive length scale within the support [53]. A thick, low porosity, and highly tortuous support layer hinders the diffusion of solutes from the bulk solution to the active-support layer interface, thus diminishing the accessible draw solution osmotic driving force. Dilutive ECP also occurs on the draw-side of the membrane; however, its impact is small relative to ICP and its effects are assimilated into the structural parameter [48].

RSF lowers the osmotic driving force by increasing the solute concentration, and hence osmotic pressure, on the feed-side of the active layer whilst reducing $c_{D,m}$ [45,54,55]. The magnitude of the RSF is characterized by the solute permeability coefficient, B, of the membrane. The extent to which RSF reduces the water flux depends on the degree of feed-side ECP. If k_F is high (i.e., extensive mixing), leaked draw solute will readily diffuse from the active layer-feed solution interface into the bulk feed stream and the detrimental effects of RSF will be slight. If there is little mixing and k_F is low, RSF will noticeably exacerbate the feed-side ECP concentration gradient causing a substantial reduction in the local water flux.
Using steady-state film theory, the local water flux across a differential membrane element incorporating the effects of ECP, ICP, and net solute flux is given by [48]:

\[
J_w = \frac{A[T_{s_i b} \exp(-J_w S/D) - T_{s_i d} \exp(J_w/k_f)]}{1 + (B/J_w)[\exp(J_w/k_f) - \exp(-J_w S/D)]}
\]

(13)

The terms \(\exp(-J_w S/D)\) and \(\exp(J_w/k_f)\) are the CP moduli of dilutive ICP and concentrative ECP, respectively. The term \((B/J_w)[\exp(J_w/k_f) - \exp(-J_w S/D)]\) in the denominator of Eq. (13) represents the reduction in water flux due to the net effect of solute permeation. Similarly, the net solute flux, \(J_s = J_s^0 - J_s^\infty\), is given by [45,48]:

\[
J_s = \frac{B[C_{s_i b} \exp(-J_w S/D) - C_{s_i d} \exp(J_w/k_f)]}{1 + (B/J_w)[\exp(J_w/k_f) - \exp(-J_w S/D)]}
\]

(14)

4. Module-scale analysis

Membrane area is a key parameter in the design of engineered osmotic systems [9]. Membrane modules are approximately 30% of the capital expenditure and 10% of the operational expenditure of current reverse osmosis desalination systems [56]. Consequently, developing membrane modules that can achieve a large water recovery using a smaller membrane area is vital to the cost effectiveness of FO desalination. In addition, the area footprint of a desalination plant is advantageously reduced with a smaller membrane area requirement. In this section, we examine the effects of various membrane transport properties and operating parameters on the minimum membrane area required to obtain a specified water recovery.

4.1. Concentration and flow rate profiles in an counter-current FO module

In Section 2, we analyzed mass transfer across an infinite membrane area to calculate the maximum water recovery achievable in an FO module. In Section 3, we considered mass transfer across an infinitesimal membrane area whilst accounting for the transport-limiting phenomena. In this section, we examine mass transfer across a finite membrane area to analyze the impact of various membrane transport parameters on the membrane area required to achieve a specified water recovery, to simulate the full-scale unit operation of FO desalination. This approach simultaneously accounts for the variations in osmotic driving force along an FO module and the mass transport limitations across an FO membrane. In these analyses, the feed and draw concentrations are 0.6 M and 3.0 M NaCl, respectively (Table 1).

Two governing equations determine the flow rates and concentrations in a counter-current FO module: a volumetric balance on water, Eq. (15), and a molar balance on salt, Eq. (16):

\[
\frac{dQ_f}{dA_m} = \frac{dQ_D}{dA_m} = -J_w
\]

(15)

\[
\frac{d(Q_f C_f)}{dA_m} = \frac{d(Q_D C_D)}{dA_m} = J_s
\]

(16)

where \(A_m\) denotes membrane area in the direction of the feed stream.

Module-scale flow rate, concentration, and flux profiles are numerically determined by solving the mass conservation equations, Eqs. (15) and (16), in conjunction with the water and salt flux equations, Eqs. (13) and (14). Numerical solutions are obtained by dividing the membrane area into finite elements across which the implicit water and solute flux equations are solved. An iterative approach is employed using Python (Python Software Foundation, DE) to solve counter-current systems by estimating and then adjusting the exiting draw stream flow rate (refer to Supplementary material for details on modeling methodology). Fig. 4 shows the flow rate fractions (red) and concentrations (black) of the feed stream (dashed, entering from the left) and draw stream (solid, entering from the right) along a representative counter-current FO module. The membrane and transport properties are as described in Table 1. The local water flux (blue) along the membrane module is also shown. With initial \(\phi = 0.8\) and \(c_{f,0} = 3.0\) M NaCl, a recovery of \(R = 0.35\) was achieved with 0.025 m² of membrane area per 1.00 L h⁻¹ of feed flow (0.6 M NaCl to simulate seawater).

4.2. Effect of membrane properties on membrane area requirement

Fig. 5 shows a contour plot of the membrane area required to obtain a recovery of 0.5, as a function of membrane properties. The feed flow rate fraction is 0.8, \(c_{f,0} = 3.0\) M, and \(c_{f,0} = 0.6\) M. The membrane water permeability coefficient, \(A\), and structural parameter, \(S\), are represented on the bottom horizontal axis and vertical axis, respectively, while the solute permeability coefficient, \(B\), calculated using the permeability-selectivity trade-off, Eq. (12), is indicated on the top horizontal axis. Membrane area, \(A_m\), is normalized by the inlet feed flow rate, \(Q_{f,0}\), to ensure that the trends observed are scalable. The black lines denote the values of the water permeability coefficient, \(A\), that yield the minimum membrane area (solid line) and 110% of the minimum membrane area (dashed line) area, given a specified structural parameter, \(S\).

For typical TFC membrane parameters, Fig. 5 shows that lowering the structural parameter yields a much greater decrease in normalized membrane area than increasing the water permeability coefficient. For instance, doubling the water permeability coefficient from 2.0 to 4.0 L m⁻² h⁻¹ bar⁻¹ (5.56 × 10⁻⁶ to 11.1 × 10⁻⁶ μm s⁻¹ Pa⁻¹) gives a 5.4% decrease in the membrane area, while quintupling \(A\) from 2.0 to 10.0 L m⁻² h⁻¹ bar⁻¹ (27.8 × 10⁻⁶ μm s⁻¹ Pa⁻¹) generates only a modest 10% membrane area saving. On the other hand, a 25%
reduction of the structural parameter of a state-of-the-art TFC membrane (from 400 to 300 μm) yields a sizable 20% reduction in membrane area, and halving S from 400 to 200 μm yields a substantially larger decrease of 40%. In addition, the black curves in Fig. 5 demonstrate that although a high water permeability coefficient is required to minimize the membrane area at a specified structural parameter, e.g. A = 0.16 L m⁻² h⁻¹ bar⁻¹ (17.1 × 10⁻⁶ μm s⁻¹ Pa⁻¹) for S = 400 μm, 110% of this minimum area can be realized with a far lower permeability coefficient, A = 1.59 L m⁻² h⁻¹ bar⁻¹ (4.42 × 10⁻⁶ μm s⁻¹ Pa⁻¹) in this example. This trend is prevalent across the entire range of structural parameters displayed.

Due to the intrinsic permeability-selectivity trade-off, increasing the water permeability coefficient rapidly increases the salt permeability coefficient, B > A², as shown in Eq. (12). As the water and salt permeability increased for a specific structural parameter in Fig. 5 (i.e., going horizontally left to right), the normalized membrane area decreases, plateaus and then increases gently, rather than precipitously. This reinforces the earlier discussion in Section 2 that reverse solute permeation does not significantly impact water permeation (and, hence, membrane area) when the feed is relatively saline, cF,j = 0.6 M. For saline feed solutions, the solute concentration at the feed-membrane interface is not significantly elevated by RSF. However, as the draw solute leaks across to the feed side and accumulates along the membrane module, the bulk osmotic driving force is lowered. The gradual increase in membrane area requirement as the permeability coefficients are increased beyond the solid black line is chiefly attributed to the increased build-up of leaked draw solute in the feed side and its depletion from the draw side.

To assess how the relative impact of internal and external concentration polarization varies with water recovery, simulations were performed assuming ECP and/or ICP were absent (i.e., kF→∞, S = 0). Fig. 6 shows the minimum normalized membrane area as a function of water recovery. The red slice represents the hypothetical minimum area requirement for a membrane module without ECP or ICP, the green slice represents the additional area required due to ECP (without ICP), and the blue slice represents the additional area required due to ICP. Water and solute permeability coefficients as well as the support layer structural parameter are as presented in Table 1.

Fig. 5. Contour plot of the normalized membrane area, A, required to obtain a recovery of R = 0.5 with a feed flow rate fraction of φ = 0.8, as a function of membrane water permeability coefficient, A, and structural parameter, S. The feed-side mass transfer coefficient is kF = 100 L m⁻² h⁻¹ (278 μm s⁻¹), and the solute permeability, B, is calculated using the permeability-selectivity correlation, Eq. (12), and indicated on the top horizontal axis. The solid black line represents the locus of A values that minimize A00/R for a specified S value, while the dotted black line denote A values that yield 110% of the minimum A00/R. The black dot represents the properties of the membrane presented in Table 1: A = 2.00 L m⁻² h⁻¹ bar⁻¹ (5.56 × 10⁻⁶ μm s⁻¹ Pa⁻¹) and S = 400 μm.

Fig. 6. Dependence of the normalized minimum membrane area on water recovery. The membrane area has been normalized using the inlet feed stream flow rate. The red baseline slice represents the area for a membrane module with no CP. The green and blue slices represent the additional membrane area required due to the effects of ECP and ICP respectively. A feed flow rate fraction of φ = 0.8 is used along with the membrane and transport properties presented in Table 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6 clearly demonstrates the dominant contribution of ICP to the normalized membrane area across a range of water recoveries. Over the range of R examined, ECP doubled the hypothetical membrane area requirement, while ICP caused a drastic tenfold increase of A00. Thus, Fig. 6 illustrates that ICP in the support layer provides the principal resistance to mass transfer in typical FO operation, irrespective of the required water recovery.

4.3. Membrane area requirement can be most effectively reduced by improving structural parameter

Enhancing the hydrodynamic mixing on the feed side, for example by increasing the cross-flow velocity or improving spacer design, can suppress the detrimental effects of ECP [13,17] and lower the required membrane area. Recent studies have also suggested that creating micrometer-scale channels on the membrane surface may reduce ECP by increasing surface turbulence [57]. However, these beneficial membrane area reductions will likely be achieved at the expense of additional pumping energy cost.

Increasing the membrane water permeability coefficient can reduce the membrane area requirement, but will cause a quadratic increase in the molar rate of net SL, i.e. ΔNf ∝ A², Eq. (7). Therefore in the earlier example for Fig. 5, the 5.4% saving in membrane area made possible by a 2-fold increase in the membrane permeability coefficient (from 2.0 to 4.0 L m⁻² h⁻¹ bar⁻¹) will come at the expense of a 4-fold increase in the rate of net SL. The disadvantageous outcomes of a higher solute leakage on module-scale operation is further examined in the following section.

Rather than targeting more permeable, but inevitably less selective, membranes, the development efforts of FO membranes should strategically focus on lessening the adverse effects of ICP. Both Figs. 5 and 6 strongly indicate that reducing the structural parameter offers the greatest improvements in process performance, comprehensively eclipsing benefits gained from increasing the water permeability coefficient or feed-side mass transfer coefficient. Novel membranes (employing materials such as aligned nanotubes, graphene, and aquaporin proteins) promising higher water permeabilities will likely only offer limited membrane area savings in FO desalination unless the support layer structural parameter is also radically improved. Reductions in the structural parameter may be achieved by reducing the thickness and tortuosity, increasing the
porosity and hydrophilicity of the membrane support [5,21,58], or developing novel support layers [28,31].

4.4. Solute leakage across more permeable, less selective membranes outweighs benefits of membrane area reduction

The rate of solute leakage discussed thus far is the cumulative molar rate, ΔN_s, encompassing forward and reverse SL. Forward SL permits salts and contaminants from the feed stream to advance into the second stage of FO desalination. Additional separations or purges will then be required to regulate the accumulation of feed solutes in the closed-loop second desalination stage. Similarly, high reverse SL rates could severely limit process viability, particularly if the draw solute is expensive or hazardous [45,59]. Post-treatment of the feed stream will be required to recover or remove the draw solute, thus introducing additional energetic and economic costs.

For an FO module, operating at a water recovery of $R = 0.5$, with membrane properties as described in Table 1, doubling the water permeability coefficient, A, from 2.00 to 4.00 $\text{L m}^{-2} \text{h}^{-1} \text{bar}^{-1}$ (5.56×10^{-6} to $11.1 \times 10^{-6} \mu \text{m s}^{-1} \text{Pa}^{-1}$) triggers a 7.2-fold increase in forward SL (from 7.21 to 51.7 mols of solute leaked per cubic meter of water recovered) and a 6.8-fold increase in reverse SL (from 8.29 to 56.0 mol m$^{-3}$). This considerable deleterious increase in forward and reverse SL is accompanied only by a mere 5.4% saving in membrane area provided by the enhanced water permeability. In comparison, halving the structural parameter, S, from 400 to 200 m offers a 40.4% saving in membrane area in addition to 35.6% and 31.7% decreases in forward and reverse SL, respectively. Thus, for typical polymeric membranes with A values in the region of 2.0 $\text{L m}^{-2} \text{h}^{-1} \text{bar}^{-1}$ (Table 1), increasing water permeability will likely have a detrimental impact on overall FO performance due to the greater trade-off in reduced membrane selectivity. Here, innovative membranes (e.g., aligned nanotubes, graphene, and aquaporin proteins) that potentially offer better permeability-selectivity over the conventional polyamide thin-film composite can reduce the forward and reverse solute leakage while maintaining water recovery.

4.5. Lower feed flow rate fraction and higher inlet draw concentration reduce minimum area requirement

To study the effect of operating conditions on membrane area requirement, the module-scale analysis was carried out for water recovery of 0.5 (typical recovery rate of seawater RO desalination plants [60,61]). Fig. 7 illustrates the dependence of the minimum membrane area required for $R = 0.5$ on two operational parameters: feed flow rate fraction and inlet draw concentration. The feed solution is 0.6 M NaCl to simulate seawater. Reducing the feed flow rate fraction and increasing the inlet draw concentration both reduce the minimum required membrane area. This result is consistent with the earlier findings on the maximum achievable recovery of the thermodynamic analysis in Section 2.

Raising the inlet draw concentration increases the osmotic driving force along the FO module, thereby raising the average water flux. Lowering the feed flow rate fraction decreases the decline in the osmotic driving force along the FO module, again raising the average water flux. Because a greater water flux is maintained along the membrane module, less membrane area is required to achieve the target water recovery. Hence, operating FO desalination with a relatively larger flow rate of highly concentrated draw solution is favorable for reducing the membrane area requirement. However, these methods of reducing the membrane area may be limited in their scope and effectiveness depending on the nature of the draw solution and the overall desalination process. For example, increases in the draw solution concentration may be restricted by the solubility of the draw solute [59].

5. Concluding remarks

In this study, we model and evaluate the impact of membrane properties on the performance of FO desalination at the module-scale. The model incorporated the permeability-selectivity trade-off and quantified the thermodynamic limits of water recovery for co- and counter-current flow. We showed that solute permeability does not have a significant effect on water recovery and higher recoveries are achievable in counter- than co-current configuration. The model also allows for the optimization of membrane properties. Here, the rate of solute leakage discussed thus far is the cumulative molar rate, ΔN_s, encompassing forward and reverse SL. Forward SL permits salts and contaminants from the feed stream to advance into the second stage of FO desalination. Additional separations or purges will then be required to regulate the accumulation of feed solutes in the closed-loop second desalination stage. Similarly, high reverse SL rates could severely limit process viability, particularly if the draw solute is expensive or hazardous [45,59]. Post-treatment of the feed stream will be required to recover or remove the draw solute, thus introducing additional energetic and economic costs.

For an FO module, operating at a water recovery of $R = 0.5$, with membrane properties as described in Table 1, doubling the water permeability coefficient, A, from 2.00 to 4.00 $\text{L m}^{-2} \text{h}^{-1} \text{bar}^{-1}$ (5.56×10^{-6} to $11.1 \times 10^{-6} \mu \text{m s}^{-1} \text{Pa}^{-1}$) triggers a 7.2-fold increase in forward SL (from 7.21 to 51.7 mols of solute leaked per cubic meter of water recovered) and a 6.8-fold increase in reverse SL (from 8.29 to 56.0 mol m$^{-3}$). This considerable deleterious increase in forward and reverse SL is accompanied only by a mere 5.4% saving in membrane area provided by the enhanced water permeability. In comparison, halving the structural parameter, S, from 400 to 200 m offers a 40.4% saving in membrane area in addition to 35.6% and 31.7% decreases in forward and reverse SL, respectively. Thus, for typical polymeric membranes with A values in the region of 2.0 $\text{L m}^{-2} \text{h}^{-1} \text{bar}^{-1}$ (Table 1), increasing water permeability will likely have a detrimental impact on overall FO performance due to the greater trade-off in reduced membrane selectivity. Here, innovative membranes (e.g., aligned nanotubes, graphene, and aquaporin proteins) that potentially offer better permeability-selectivity over the conventional polyamide thin-film composite can reduce the forward and reverse solute leakage while maintaining water recovery.

