COMMENT

Mark H. Anders, Nicholas Christie-Blick, Stewart Wills
Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964-8000

Coogan and DeCelles (1996) provided a welcome addition to the debate on the Sevier Desert reflection. The evidence and arguments presented on the nature of this subsurface feature merit particular scrutiny, as they bear directly on a first-order issue in tectonics: the mechanical paradox of low-angle normal faults. Field geologists have argued that in some cases such faults must have moved at dips of 20° or less; tectonophysicists maintain that such interpretations are inconsistent with our present knowledge of rock mechanics, and seismologists have yet to record a single earthquake that can be related unequivocally to slip on a low-angle normal fault. If, as Coogan and DeCelles (1996) and others have argued, the seismically imaged Sevier Desert reflection of west-central Utah is a rooted detachment fault with as much as 39 km of top-to-the-west slip, the seismic-reflection geometry effectively requires normal-sense slip on a surface dipping 11°. We believe, however, that geometry can also support alternative interpretations.

As Coogan and DeCelles recognized, a key to the distinction between detachment and nondetachment interpretations is the geometric relation at the western margin of the basin, between east-tilted Proterozoic and Paleozoic rocks of the Cricket Mountains block and overlying Tertiary sediments of the Sevier Desert basin. Eastward fanning of Tertiary strata above this block would be consistent with gradual tilting above a rooted detachment fault (as inferred by Coogan and DeCelles, 1996); in contrast, the absence of fanning of significant stratal dip in Tertiary sediments would be consistent with a combination of alternative basin-forming mechanisms, including regional subsidence, offset along high-angle normal faults, and the development of erosional topography at the margin of the late Mesozoic–early Tertiary orogen. Our own analysis of regional seismic data within the basin suggests that in this critical area the evidence is at best equivocal, but that it tends to support the second view. We do not believe that the Cricket Mountains block was appreciably tilted during sedimentation in the Sevier Desert basin.

Central to the interpretation of Coogan and DeCelles (1996) is reflection geometry evident in profile GSI 25 in the vicinity of the Gulf Oil Gronning #1 well, and specifically a panel of reflections that between 1.4 s and 1.7 s two-way travel time dip between 16° and 17° to the east and appear to terminate downward against the inferred detachment fault (Fig. 1a, location shown in their Fig. 1). If the reflections were primary, similar geometry might be expected on other profiles in the same area. Curiously, however, the dipping reflections are virtually absent on profile Pan Canadian 1 (Fig. 1b), which directly crosses the Gronning #1 well and intersects GSI 25 at about 50° (location shown in Fig. 1 of Coogan and DeCelles, 1996). We examined the recovered core from near the bottom of the Gronning #1 well (between 2107 m and 2448 m) and found that dips in cross-stratified sandstone range from 3° to 14°, with no discernible downhole trend; dips in siltstone range from 5° to 8° (average, 6°), markedly less than the 16°–17° dip estimated by Coogan and DeCelles. Although no vertical deviation data are available for the well, we note that in profile Pan Canadian 1, reflections at the same level in the vicinity of the Gronning #1 well dip gently eastward at about 4° (A in Fig. 1b, assuming a 3180 m/s average velocity and correcting for apparent dip to the same azimuth as GSI 25), consistent with the estimate obtained from the core. We suggest, therefore, that the dipping reflections may not be primary, but may instead be multiples related to dense, layered basalts higher in the succession (0.7 to 0.9 s two-way travel time at the Gronning #1 well). The prominent reflection at A in Figure 1b can be traced westward to its intersection with a reflection that dips at about 25° east (labeled B in Fig. 1), and which Von Tish et al. (1985) erroneously interpreted as Oligocene due to a mis-correlation with the Gronning #1 well (Anders et al., 1995). In marked contrast to the stratal fanning inferred by Coogan and DeCelles, this low-angle onlapping geometry can be seen on all appropriately oriented seismic sections in the southern part of the basin (where no tilted basalts are present higher in the succession). We suggest that the onlap surface is the unconformable base of the Tertiary basin.

The existence of high-angle normal faults that appear to sole or terminate downward into the Sevier Desert reflection and evidence for stratal thickening toward such faults are indeed consistent with the presence of a rooted detachment fault that was active during sedimentation (Coogan and DeCelles, 1996). However, the same geometry is also consistent with the widespread presence within the basin of lacustrine evaporites as much as 1.5 km thick (Argonaut Energy Federal #1 well; Mitchell, 1979; Gary Mitchell, personal comm., 1997). Salt structures associated with prominent velocity pull-ups, and illustrated in Figure 2a of Coogan and DeCelles (1996), are prima facie evidence for salt mobility.

Coogan and DeCelles adroitly summarize the circumstantial evidence for a detachment at the Paleozoic–Tertiary contact, but we do not believe that they pay sufficient attention to data from the contact itself. No evidence for deformation has yet been found at this surface in any industry well in the basin (Anders and Christie-Blick, 1994). This includes the 10-m-thick unit at the Paleozoic–Tertiary contact in the Argonaut Federal #1 well (Mitchell, 1979), which Coogan and DeCelles characterize as a “possible fault breccia.” We have examined samples, and concur with Mitchell’s (1979) conclusion that it is a depositional conglomerate.

REFERENCES CITED


Figure 1. Seismic reflection section GSI 25 (a) and Pan Canadian I (b), modified from Mitchell and McDonald (1987). Gulf Oil Gronning #1 well (bold vertical line), shown in both figures, bottoms in the Tertiary at 2458 m. Reflection A is one of a series of reflections that onlaps reflection B.
basalt starting at twice the traveltime of the top basalt reflection. The multiples
cut the steeply east-dipping reflections that tie the Oligocene level in the Gulf
well, which further corroborates that the east-dipping reflections are primary.
Our examination of acquisition parameters and multiple characteristics
demonstrates that the alternative seismic interpretation offered by Anders et al.
is technically unfounded. In addition, their regional tectonic model is not sup-
ported by either their current study of core from the Gulf well or the original
study of Anders and Christie-Blick (1994), both of which yield only equivocal
results. The combination of alternative basin-forming mechanisms that they
propose—regional subsidence, block faulting, salt diapirism, and thrust belt
paleotopography—are in direct conflict with the regional geology. These
mechanisms cannot explain the uplift of the basement and east flank of the
Sevier Desert coincident with Miocene basin subsidence and deposition
(Allmendinger and Royse, 1995; Linn and Walker, 1995), and the removal of
the regional structural and topographic culmination that occupied the Sevier
Desert area at the end of Mesozoic—early Tertiary thrusting (DeCelles et al.,
1995). Regional reconstructions by Allmendinger et al. (1986) and Royse
(1993) demonstrate that the coupled mechanisms of low angle normal fault-
ing along the Sevier Desert detachment and isostatic uplift of the detachment
growth satisfy these constraints.

The apparent mechanical paradox of low-angle normal faults appears to
form the basis of Anders et al.’s disregard of evidence for such faults. The lack
of unequivocal earthquake data that they cite is specious, as there are two possi-
bile fault plane solutions for any event, and improved analytical methods recently
resolved low-angle normal slip events (Rietbrock et al., 1996). A paradox would
exist for the general case where the upper crust behaves as an isotropic Mohr-
Coulomb material subject to a simple horizontal extensional stress state. How-
ever, the Sevier Desert is certainly a special case. Prior to extension, the Sevier
Desert region was underlain by a series of west-dipping thrust planes in Protero-
zoic and Paleozoic sedimentary rocks that were rooted westward to a midcrustal
basement culmination (DeCelles et al., 1995). As a result, other factors such as
preexisting anisotropy and isostatically induced flexural stresses (Spencer
and Chase, 1989) contributed to low-angle extensional slip along what had been
the margin of a topographically high region of crustal thickening.

REFERENCES CITED


Phanerozoic tectonics of the Basin and Range—Colorado Plateau transition from COCORP data and geologic:


DeCelles, P. G., Lawton, T. F., and Mitra, G., 1995, Thrust timing, growth of structural culminations, and

Linn, J. K., and Walker, J. D., 1995, Preliminary report of fission-track data from the Pavant and Canyon Range
thrust sheets and synorogenic conglomerates, Sevier orogenic belt, central Utah: Geological Society of
America Abstracts with Programs, v. 27, no. 4, p. 43.

Mitchell, G. C., and McDonald, R. E., 1987, Subsurface Tertiary strata, origin, depositional model, and hydro-
carbon exploration potential of the Sevier Desert basin, west central Utah: Utah Geological Association
Publication 16, p. 533–556.

Rietbrock, A., Tiberi, C., Schobaum, F., and Lyon-Caen, H., 1996, Seismic slip on a low angle normal fault from
the Gulf of Corinth: Evidence from high-resolution cluster analysis of microearthquakes: Geophysical


Spencer, J. E., and Chase, C. G., 1989, Role of crustal flexure in the initiation of low-angle normal faults and
implications for structural evolution of the Basin and Range province: Journal of Geophysical Research,
v. 94, p. 1765–1775.

University Press, 860 p.

*Correspondence address: 1950 Glen Ayre Drive, Lakewood, Colorado 80215.

REFERENCES CITED


Phanerozoic tectonics of the Basin and Range—Colorado Plateau transition from COCORP data and geologic:


DeCelles, P. G., Lawton, T. F., and Mitra, G., 1995, Thrust timing, growth of structural culminations, and

Linn, J. K., and Walker, J. D., 1995, Preliminary report of fission-track data from the Pavant and Canyon Range
thrust sheets and synorogenic conglomerates, Sevier orogenic belt, central Utah: Geological Society of
America Abstracts with Programs, v. 27, no. 4, p. 43.

Mitchell, G. C., and McDonald, R. E., 1987, Subsurface Tertiary strata, origin, depositional model, and hydro-
carbon exploration potential of the Sevier Desert basin, west central Utah: Utah Geological Association
Publication 16, p. 533–556.

Rietbrock, A., Tiberi, C., Schobaum, F., and Lyon-Caen, H., 1996, Seismic slip on a low angle normal fault from
the Gulf of Corinth: Evidence from high-resolution cluster analysis of microearthquakes: Geophysical


Spencer, J. E., and Chase, C. G., 1989, Role of crustal flexure in the initiation of low-angle normal faults and
implications for structural evolution of the Basin and Range province: Journal of Geophysical Research,
v. 94, p. 1765–1775.

University Press, 860 p.

Dome-and-keel provinces formed during Paleoproterozoic orogenic collapse—Core complexes, diapirs,
or neither?: Examples from the Quadrilátero Ferrifero and the Penokean orogen: Comment and Reply

Daniel Holm
Department of Geology, Kent State University, Kent, Ohio 44242

David Schneider
Department of Earth and Environmental Sciences, Lehigh University,
Bethlehem, Pennsylvania 18015

Daniel Lux
Department of Geological Sciences, University of Maine, Orono, Maine 04469

GEOLOGY, May 1998 475

Marshak et al. (1997) have reinterpreted some classic Paleoproterozoic
dome-and-keel structures as features formed during episodes of late to post-
collisional crustal thinning. This proposed origin provides a new and provoca-
tive explanation for features historically considered to have formed under
compression. One of the examples used by Marshak et al. (1997) in support of
their model is the Republic trough of the southern Lake Superior region. According
to their model, vertical rise of the gneiss domes of the southern Lake Superior
region caused metamorphism of the mantling metasedimentary rocks. Thermo-
chronologic data obtained by us from the region suggests that, for the most part,