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Abstract

The Effective Field Theory Approach to Fluid Dynamics

Solomon G. S. O. Endlich

In this thesis we initiate a systematic study of fluid dynamics using the effective field

theory (EFT) program. We consider the canonical quantization of an ordinary fluid in an

attempt to discover if there is some kind of quantum mechanical inconsistency with ordinary

fluids at zero temperature. The system exhibits a number of peculiarities associated with

the vortex degrees of freedom. We also study the dynamics of a nearly incompressible fluid

via (classical) effective field theory. In the kinematical regime corresponding to near incom-

pressibility (small fluid velocities and accelerations), compressional modes are, by definition,

difficult to excite, and can be dealt with perturbatively. We systematically outline the cor-

responding perturbative expansion, which can be thought of as an expansion in the ratio of

fluid velocity and speed of sound. This perturbation theory allows us to compute many inter-

esting quantities associated with sound-flow interactions. Additionally, we also improve on

the so-called vortex filament model, by providing a local field theory describing the dynamics

of vortex-line systems and their interaction with sound, to all orders in perturbation theory.

Next, we develop a cosmological model where primordial inflation is driven by a ‘solid’. The

low energy EFT describing such a system is just a less symmetric version of the action of

a fluid—it lacks the volume preserving diffeomorphism. The symmetry breaking pattern of

this system differs drastically from that of standard inflationary models: time translations

are unbroken. This prevents our model from fitting into the standard effective field theory

description of adiabatic perturbations, with crucial consequences for the dynamics of cosmo-

logical perturbations. And finally, we introduce dissipative effects in the effective field theory

of hydrodynamics. We do this in a model-independent fashion by coupling the long-distance



degrees of freedom explicitly kept in the effective field theory to a generic sector that “lives

in the fluid”, which corresponds physically to the microscopic constituents of the fluid. At

linear order in perturbations, the symmetries, the derivative expansion, and the assumption

that this microscopic sector is thermalized, allow us to characterize the leading dissipative

effects at low frequencies via three parameters only, which correspond to bulk viscosity, shear

viscosity, and—in the presence of a conserved charge—heat conduction. Using our methods

we re-derive the Kubo relations for these transport coefficients.
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Introduction

Hydrodynamics is notoriously hard to solve. This is usually blamed on the non-linear na-

ture of its equations of motion, and we will not quarrel with that. It is instructive how-

ever to ponder what makes hydrodynamics stand out with respect to other non-linear field

theories (general relativity, for instance) where perturbative techniques exist that can be

applied efficiently to a variety of physical situations. Our position is that there are certain

configurations—the vortices—that in general cannot be dealt with consistently in perturba-

tion theory. Struggling with (or in some sense admitting defeat to) these degrees of freedom

introduces a constant source of tension throughout the following thesis.

From the perspective of a naive high energy physicist, fluid dynamics (especially classi-

cally) could be viewed as solved. Certainly the non-relativistic fundamental equations are

well known; most are easily derived countless times in undergraduate textbooks. Yes fluid

dynamics is hard and non-linear. But that is not a fundamental problem. We can obtain

solutions by simply throwing the system on a good enough computer. What could there

possibly be left for the pen-and-paper theorist to investigate? It is a subject over a 100 of

years old that is (oh the humanity!) mostly taught in engineering departments.

Surely this arrogant viewpoint is wrong. The first piece of evidence to the contrary

brought forth is turbulence, the “most important unsolved problem of classical physics” 1.

If we need any more evidence that fluids are an interesting system we can look no further

1Richard Feynman

1
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than the money: you get a million dollars from the Clay Institute if you can prove something

interesting about the Navier-Stokes equations.

The narrative arc of this thesis is formed around how to handle these vorticose degrees

of freedom. Throughout our investigation we will highlight the effective field theory (EFT)

viewpoint. The author and (if he may speak for them) his collaborators feel that this is

a valuable formalism to attack a host of both quantum and classical questions. Not only

does the EFT formalism allow us to utilize the full power of the mathematics developed

in quantum field theory (QFT) which is particularly powerful for handling perturbation

theory and quantum mechanical effects 2. But possibly even more importantly, working in

such a framework allows us to make model independent predictions. That is, in contrast to

kinetic theory or any other explicit model of the microphysics. For instance, the AdS/CFT

correspondence has been used to motivate the so-called “viscosity/entropy bound” [23]. This

conjectured bound is statement claiming that in all fluid systems η/s ≥ 1/4π. Moreover,

in the limit of infinitely strong coupling (like the strongly coupled large N gauge theory

AdS/CFT studies) η/s ∼ 1/4π. Now while the AdS/CFT construction motivates this bound

it certainly can not be used to prove the bound as it is just a particular realization of the

microphysics. The model independence of the EFT construction will allow us to prove—or

at least attempt to prove—statements about all fluid systems. Precisely the kinds of systems

the bound is supposed to apply to. Additionally, different perspectives often suggest different

kinds of questions. We will see an example of this in Chapter 3.

This thesis is organized as follows: In Chapter 1 we construct a relativistic perfect fluid

3 in the effective field theory framework. That is, we identify the degrees of freedom and

2 We probably don’t need to remind the reader that QFT as it stands has been developed over the last

half century by some of the most brilliant minds in physics and mathematics. We are very much “standing

on the shoulder’s of giants” by utilizing these techniques.
3We will find the that keeping the theory relativistic will make its construction and treatment oftentimes

simpler; the non-relativistic limit can then be easily taken at any moment. Given that this is the case, we
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symmetries of our system and construct the most general action consisting of the former

and compatible with the latter. This so called “effective action” will be organized in a

derivative expansion. The leading order term in this action will correspond precisely to usual

perfect fluid dynamics. We extend our formalism to include conserved charges, reproduce

a relativistic extension of Kelvin’s circulation theorem, and discuss the symmetry breaking

pattern and associated goldstone modes.

Chapter 2 asks the question: why do we not see any standard (as opposed to super,

etc.) fluids at zero temperature? In other words, do we not see any such systems in nature

because there is something inconsistent quantum mechanically with the theory? With the

EFT language described in Chapter 1 we are in a position to ask these questions and attempt

to perform a sharp quantitative analysis. In engaging these issues we generate almost as many

questions as we answer, but one thing is clear: the vortex degrees of freedom are at the heart

of all the puzzling issues that we raise.

Ok, so the zero temperature quantum theory is confusing and most possibly inconsistent

at any energy scale. Is there any hope of justifying our, seemingly overzealous, formalism?

Indeed we can. Though in the previous chapters we saw that perturbatively the vortex

degrees of freedom are ill-behaved, in Chapter 3 we can side-step this whole issue by applying

perturbation theory only to degrees of freedom that are under control. By definition, in a

nearly incompressible fluid sound waves are difficult to excite 4. As a result, athough we

have to treat the vorticose flow at the full non-linear level we can deal perturbatively in the

dynamics of the compressional modes where the small expansion parameter is the background

(vorticose) flow velocity over the speed of sound. In Chapter 3 we systematically develop

this construction using our EFT techniques, which as advertised, are ideal for perturbation

theory. Subsequently, we calculate many interesting quantities: the sound generated by

find no reason not to deal with the more general relativistic theory.
4Incompressibility is really a kinematical statement; provided the fluid flow velocity is much smaller than

the speed of sound, v � cs, any kind of fluid behaves as incompressible.
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turbulence, ultra-sound scattering off turbulence, and the non-local potential induced by

phonon exchange between vortex sources 5. In order to correctly interpret this last calculation

we develop an action for vortex lines. In doing so we improve on the so-called vortex filament

model by providing a local field theory that describes the dynamics of vortex-line systems

and their interactions with sound—to all orders in perturbation theory. Of course, it should

be noted that expanding around the incompressible flow limit is not a completely new idea,

and in fact was pioneered over 60 years ago to give birth to the field of aeroacoustics [25] [26].

Naturally, however, we feel that our formalism is more systematic, intuitive, and in the end,

more powerful. We will try to defend these claims in the main body of the text.

Chapter 4 further justifies our effective field theory framework by applying it to early

universe cosmology, in particular, inflation. As mentioned, one of the benefits of the EFT

framework is that generic coupling to other systems (in this case, gravity) is straightforward.

One of the frustrating features of inflationary models is that there are too many of them.

This was remedied in some sense with the introduction of the so-called effective field theory

of inflation (EFTI) [47]. The logic behind it can be briefly summarized by the following: In

order for inflation to end there has to be some kind of ”clock”, therefore the background

matter field has some kind of time dependence 6. The Goldstone mode associated with this

spontaneous breaking of time-translations can be shown to be the adiabatic perturbations of

interest in inflationary cosmology. And so, this symmetry breaking pattern puts non-trivial

constraints on the possible interactions between the adiabatic modes. Strikingly, it seems

that the EFTI encompasses the core dynamics of all inflationary models. This logic is, in

fact, not watertight. Indeed, as we will show in the main text, we can instead spontaneously

5This last quantity we actually calculate to next-to-leading-order. Although surely challenging to confirm

experimentally, this “in principle” calculation would be extremely difficult in the standard formulation of the

theory. Thus we use this as a demonstration of the perturbative power of our methods.
6 For instance, in the case of standard slow-roll inflation this is just given by the value of the field as it

slowly “rolls” down the nearly flat potential.
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break spacial-translations, and use the metric scale factor as a clock. Incorporating the

necessary symmetries in order to have a homogeneous and isotropic universe we recover

the effective field theory of a solid 7. In our language a solid is simply a less symmetric

fluid: both solids and fluids are described by the same degrees of freedom but solids lack the

internal volume preserving diffeomorphism which defines the fluid.8 Throughout the chapter

we will compute quantities of interest in observational cosmology whose behavior is, to our

knowledge, strikingly different from the standard paradigm.

Finally, we will approach a topic which we will have danced around for some time now

but neglected to address head on: how to incorporate dissipative effects in our effective

field theory framework? Though it is true that we can often neglect these effects as they

enter as higher derivative corrections, in order to approach many other subjects of great

interest in the field of fluid dynamics viscosity plays a central role. For instance, boundary

effects, shock waves and, most importantly, turbulence. As a more personal motivation

we feel that our formalism’s model independence and easy inclusion of quantum mechanical

effects gives it the potential of playing a pivotal roll in settling the so-called entropy viscosity

bound [74] [23]. In Chapter 5 we attempt to perform this construction and are only partially

successful. We are able to incorporate in the EFT language dissipative effects at first order in

the Goldstones but not to the full non-linear order. We accomplish this by coupling our fluid

degrees of freedom to some hidden sector which “lives in the fluid”. By being agnostic about

the exact details of these hidden degrees of freedom except for the symmetries imposed by

our physical system we will find that at low frequencies and momenta (i.e. to leading order

in the derivative expansion) these degrees of freedom will introduce effects characterized by

7Many friends recommended that we should maybe use the word “jelly” instead of solid to emphasize its

homogeneous and isotropic nature. We are dealing with a solid without any sort of lattice structure; it has

SO(3) rotational invariance, as opposed to some discrete subgroup. Nevertheless we will stick with the word

“solid” for not better reason than because “jelly inflation” sounds weird.
8In fact, we will show that one can’t use a fluid to generate inflation.
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three parameters only: corresponding to bulk and shear viscosity, and in the presence of a

conserved charge, heat conduction. In essence, we re-derive the famous Kubo relations for

these quantities. So while our motivating questions regarding dissipation and fluids remain

unsolved, we view this construction and the non-trivial constraints it has on our system as

a solid step in the right direction.

We take a step back and examine our progress (or lack thereof) in the Outlook and

include in the Appendix many laborious technical results necessary to support the claims

throughout the main text.

But before we delve into the successful formulation of perturbative techniques for fluid

dynamics (or the understanding of precisely why some fail), it is worth making a few com-

ments on the literature. The study of fluid dynamics is vast and we would be foolish to

claim the ability to present any comprehensive report, or for that matter, understanding,

of what a great many brilliant minds have contributed and are contributing to the subject.

However, there are a few names that are worth mentioning, even if only to betray the seeds

of interest and motivation of this author and his collaborators.

People have thought about fluid dynamics for some serious time. Although a Lagrangian

description of relativistic fluids has been around for quite a while [8] [9] as far as the author’s

knowledge is concerned the first people to highlight the EFT point of view in fluid dynamics

were [10]. In some sense this thesis is owed to them. There is also a constellation of work

which not only motivates the investigation of fluids more seriously but also demonstrates

(even for classical quantities) the power of EFT theory methods. There really are three

distinct camps here. There are the high energy and nuclear theorists thinking about strongly

coupled systems, AdS/CFT, and cosmological issues with influential papers like [23,74], and

[47]. Then there are the high energy theorists using EFT methods to compute gravitational

wave obervables in the black hole inspiral problem to great accuracy [30] and the whole

industry that has arisen out of this work. Lastly, there are the classic (sometimes relativistic)
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fluid dynamicists, for instance [42], [40], [41], [11], [34], and [25]. All have left their imprint

on our work, and we would be nowhere without their guidance.

The results contained in this thesis are, unless otherwise noted explicitly, reported in

several papers written by the author and coauthors Alberto Nicolis, Rafael A. Porto, Riccardo

Rattazzi, and Junpu Wang. Chapter 2 follows [1], Chapter 3 follows [2] and [3], Chapter

4 follows [4] and Chapter 5 follows [5]. Figures 3.1, 3.2, and 3.6 by Max Cohen, with

acknowledgement and thanks to Gene H. LePere.

Other work by the author: For unity of the concepts and formalism reported in this

thesis, the author has omitted his other work published during his time as a PhD candidate

under the wing of Professor Alberto Nicolis. The following is a brief outline of this work. The

author has spent some time considering modified gravity theories, culminated in two papers.

The first paper was work done in collaboration with K. Hinterbichler, L. Hui, A. Nicolis,

and J. Wang [6] . The main thrust of the work is an investigation into the possibility of

stable solitonic solutions in scalar theories with derivative interactions 9. Of particular focus

are the so-called Galileon theories. The author and his colleagues show that these theories

do not possess such solutions and as a by-product extend the proof to a different class of

derivatively coupled theories including our fluid effective theory. The second paper, done

in collaboration with J. Wang, considers the classical stability of the Galileon field in the

presence of non-relativistic sources [7]. It introduces the concept of absolute stability of a

theory: if one can show that a field at a single point—infinity, for instance—in spacetime

is stable, then stability of the field over the rest of spacetime is guaranteed for any positive

energy source configuration. Amazingly the Dvali-Gabadadze-Porrati (DGP) model and

previously studied spherically symmetric solutions of the Galileon are stable in this manner.

9By stable solitonic solutions we mean a static non-trivial solution of the field equations with finite total

energy.
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These results suggest that the whole Galileon model is stable in this way. The paper finds,

however, that this is not the case. In fact, the DGP model is a unique point in the parameter

space of Galileon theories. This implies that general solutions for general Galileon models

may not be stable. Further investigation into these unstable solutions may prove fruitful.

Notations and Conventions: Unless otherwise stated, we work in natural units where

~ = c = kB = 1. The signature of the metric tensor is taken to be (−,+,+,+).



Chapter 1

Fluid Dynamics in a Field Theory

Language

1.1 The classical theory

To begin with, let us review how classical hydrodynamics can be cast into a field theoretical

language. Our first task will be identifying the relevant low energy degrees of freedom

associated with our system. With these in hand, we will next determine the symmetries

imposed on the action consisting of these same degrees of freedom. We can now construct

the most general action consisting of the former invariant under the later. Generically, an

action that is constructed this way will contain an infinite tower of terms organized by powers

of derivatives. However, at low enough frequencies (small time derivatives) and momenta

(small spacial derivatives) there is a leading order contribution to this derivative expansion.

For instance, from the perspective of effective field theory general relativity is precisely such

a construction. When considering a metric gµν (the degrees of freedom) whose action is

invariant under general covariance the leading order low energy term would just be the

usual Einstein-Hilbert action while higher order terms in the derivative expansion would

9
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correspond to a tower of gauge invariant quantities like R2, RµνR
µν , etc.

The construction of an action that generates the correct dynamics for relativistic fluids is

not particularly new, and in fact is reviewed in the text book [8] and was in essence written

down a little over a hundred years ago by [9]. The action as constructed then was more

of a concise packaging to then generate the relevant equations of motion. However, in the

path integral formulation of quantum field theory the action plays a crucial role and once we

have such an action for the system we are interested in studying we can bring to bear the

mathematical power of quantum field theory, even when computing classical observables.

For remainder of this document we will adopt the notation of [10] which is consistent

with that of the articles written by the author and his peers.

1.1.1 The degrees of freedom

For a barotropic fluid we can parameterize the fluid’s configuration space by giving at time

t the comoving (‘Lagrangian’) coordinates φI of each fluid element, as a function of the

physical (‘Eulerian’) position ~x occupied by that fluid element:

φI = φI(t, ~x) , I = 1, 2, 3 . (1.1)

In simpler language, in order to keep track of our fluid each “droplets” making up the fluid

is label by three scalars. And for a given time t and a particular position ~x the three scalar

functions φ1(t, ~x), φ2(t, ~x), and φ3(t, ~x) will give us the particular label of the fluid element

at that point in space-time.

Of course this description is completely equivalent to the inverse one, whereby one gives

~x as a function of the comoving coordinates (the labels φI) and of time, and at some point

throughout this work we will in fact use this parametrization. However, we find working with

the comoving coordinates to be a more convenient starting point to construct the theory.

It is particularly convenient because it identifies the fluid’s macroscopic degrees of freedom

with three scalar functions of spacetime coordinates, i.e. with three scalar fields: this way
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keeping track of Poincaré invariance is straigthforward, and so is coupling the fluid to other

systems, like gravity for instance. Moreover, as we will see in a moment, hydrodynamics

follows straightforwardly via standard effective field theory (EFT) logic once we identify the

correct internal symmetries.

1.1.2 The symmetries

Before proceeding, it is worth stressing that we will be dealing with a fully relativistic theory,

even though most laboratory fluids are highly non-relativistic. For these one could impose

Galilean invariance rather than Poincaré invariance, but this would not simplify the analysis

we are going to carry out, conceptually or algebraically. We thus see no reason why not to

keep track of relativistic effects and just neglect them when appropriate.

We now come to the symmetries. The spacetime ones are of course the Poincaré group,

under which our φI ’s transform as scalars. As for the internal ones, we have a huge re-

dundancy in choosing the fluid’s comoving coordinates. This is not a symmetry—it is the

standard arbitrariness one has in parameterizing a Lagrangian system’s configuration space.

To make any progress, we should make an explicit choice. A particularly convenient one is

the following: At some given reference pressure we demand that for the homogeneous and

static fluid configuration—the fluid’s ‘ground state’—the comoving coordinates be aligned

with the physical ones:

φI = xI . (1.2)

It is then clear that homogeneity and isotropy for the physical properties of such a state

cannot emerge unless the dynamics are invariant under internal translations and rotations:

φI → φI + aI (1.3)

φI → OI
J φ

J , (1.4)

where O is an SO(3) matrix. So far, we have not specified what distinguishes a fluid from
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an isotropic solid (a ‘jelly’). It is an additional symmetry—the invariance under volume-

preserving diffeomorphisms—

φI → ξI(φJ) , det
∂ξI

∂φJ
= 1 . (1.5)

This should not be confused with a trivial relabeling of the comoving coordinates, which we

already got rid of. Rather, it corresponds to an invariance of the dynamics under physically

moving fluid elements around without compressing or dilating the fluid anywhere. If we

were to do so in a solid, we would feel transverse stresses trying to pull all volume elements

back to their rest position. In a fluid, on the other hand, we only feel reaction forces against

compression or dilation.

Invariance under shifts (eq. (1.3)) forces each field φI to be acted upon by at least one-

derivative. At low momenta/low frequencies, the most relevant terms are those with the

fewest derivatives. Therefore, the lowest order low-energy Lagrangian will involve exactly

one derivative acting on each φI . Poincaré invariance then forces the Lagrangian to depend

on the matrix

BIJ = ∂µφ
I ∂µφJ (1.6)

only. Internal rotations (eq. (1.4)) force us to focus on SO(3) invariant functions of BIJ , and

the volume preserving diffeomorphisms (eq. (1.5)) select the determinant among these. We

thus have that the most generic low-energy Lagrangian compatible with all the symmetries

is [10] 1

S =

∫
d4xF (b) , b ≡

√
detBIJ , (1.7)

where F is a generic function. Why we choose to use the square root of the determinant and

not just the determinant itself will become clear in a moment.

1It is interesting to consider what effects higher order terms in the derivative expansion correspond to.

In particular, it is worth noting that in the next-to-leading-order terms must be be completely dissipative

as discussed nicely in [11], and [12].
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It is straightforward to check that the action (1.7) describes the dynamics of a perfect

fluid. The stress energy tensor is

Tµν = −F ′(b) bB−1
IJ ∂µφ

I∂νφ
J + ηµνF (b) (1.8)

which matches the standard form Tµν = (ρ+ p)uµuν + p ηµν upon the identifications [10]

ρ = −F (b) , p = F (b)− F ′(b) b , uµ =
1

6 b
εµαβγεIJK ∂αφ

I∂βφ
J∂γφ

K . (1.9)

In particular, we see that both ρ and p depend just on the degree of compression b, or

equivalently, p depends on ρ only—we confirm that our fluid is ‘barotropic’. Different choices

for F (b) thus correspond to different equations of state p(ρ), and once the equation of state

is given, F (b) is uniquely determined.

Another fundamental object is the vector

Jµ ≡ 1
6
εµαβγεIJK∂αφ

I∂βφ
J∂γφ

K . (1.10)

It is identically conserved,

∂µJ
µ = 0 (1.11)

as a result of its ε-tensor structure, and is related to b and the fluid’s four-velocity uµ via

b2 = −JµJµ , uµ =
1

b
Jµ . (1.12)

Notice that ρ, p, Jµ and uµ are all invariant under our internal symmetries, eqs. (1.3–1.5),

and so is Tµν . In fact, uµ is invariant under generic internal diffs, with no volume-preserving

restriction. What matters for characterizing the fluid flow is just that comoving coordinates

do not change along it. Such a requirement is clearly preserved by generic diffeomorphisms

of the comoving coordinates.

Since we have the correct stress-energy tensor for a fluid, we also have the correct hydro-

dynamical equations, which follow from stress-energy conservation.
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1.2 Kelvin’s Theorem

As is well known symmetries correspond to conserved quantities. The question is, what con-

served quantities do the huge internal symmetry group of volume preserving diffeomorphisms

given by (1.5) correspond to? As it turns out this symmetry generates and infinite set of

conserved charges, each one corresponding to a line integral around a loop moving through

the fluid. In the non-relativistic limit we will recover the usual

Γ =

∮
C

d~x · ~v = constant , (1.13)

where ~v is the velocity of the flow and the
∮
C
dxi indicates an integral over a closed material

contour, that is, an integral over closed loop traveling with the fluid flow. In non-relativistic

fluid dynamics the “charge” above is usually called the circulation. This is Kelvin’s circula-

tion theorem. We reproduce the analysis found in [8] in what follows; the reader interested

in a more geometrical proof can find one in [10].

Following Noether’s theorem type logic let’s look at infinitesimal expressions of our sym-

metry. A general diffeormorphism can be expressed as

φI → φI + ε ξI(φJ) (1.14)

where ε is infinitesimal and ξI is suitably well behaved, however, in order that this be a

volume preserving diffeomorphisms to first order in ε we have the further requirement that

∂ξI

∂φJ
= 0 . (1.15)

Now, as our Lagrangian is invariant under such an internal transformation we have, to first

order in ε,

L(∂µφ
I + ε∂µξ

I)− L(∂µφ
I) = ε

∂L
∂ (∂µφI)

∂µξ
I = 0 , (1.16)

where L(∂µφ
I) = F

(
b
(
∂µφ

I
))

is simply our fluid Lagrangian. Now, note that the equations

of motion for our fluid system (as the Lagrangian is only a function of ∂µφ
I) is given simply
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by

∂µ

(
∂L

∂ (∂µφI)

)
= 0 . (1.17)

We can rewrite (1.16) in such a way that we can utilize these equations of motion. Pulling

out the derivative (1.16) becomes

ε∂µJ
µ
ξ − εξa

(
∂µ

(
∂L

∂ (∂µφI)

))
= 0 , (1.18)

where

Jµξ =
∂L

∂ (∂µφI)
ξI . (1.19)

We can see immediately that when the equations of motion are satisfied there is a conserved

current Jµξ and in particular, there is a conserved charge

Qξ =

∫
d3x J0

ξ (t, ~x) (1.20)

for each possible choice of ξI(φJ) which satisfies (1.15). This is perfectly fine as it is, but

there is a particular set of choices of ξI that will take the above expression and put it into a

more aesthetically appealing (and familiar form).

Our symmetry tells us that we can take our comoving elements and reorganize them

with no penalty provided we do this in a volume preserving fashion. The simplest example

of such a rearranging would be to take a closed loop in the comoving space of the fluid and

shift all the fluid elements along this loop while leaving the rest of the fluid untouched. Let’s

construct a ξI that does exactly this and see what charge it corresponds to.

Let a particular loop in comoving space (a loop which moves with the fluid flow in

Eulerian space) be given by

φI = ΩI(τ) for 0 ≤ τ ≤ 1 with ΩI(0) = ΩI(1) . (1.21)

As promised can now choose ξI(φJ) in order to move the comoving coordinates on the loop

along the loop

ξI(φJ) = −
∫ 1

0

dτ
dΩI

dτ
δ3(φJ − ΩJ(τ)) . (1.22)
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First of all, we can directly confirm that this function is divergence free, i.e. obeys (1.15) as:

∂ξI

∂φI
= −

∫ 1

0

dτ
dΩI

dτ

∂

∂φI
δ3(φJ − ΩJ(τ)) (1.23)

= −
∫ 1

0

dτ
d

dτ
δ3(φJ − ΩJ(τ)) (1.24)

= −(δ3(φI − ΩI(1))− δ3(φI − ΩI(0)) = 0 . (1.25)

And so, for this particular choice of ξI , the conserved quantity associated with it is given

by

Qloop = −
∫ 1

0

dτ

∫
d3x

∂L
∂ (∂0φI)

dΩI

dτ
δ3(φJ − ΩJ(τ)) . (1.26)

We can massage this quantity by expressing the identity matrix δIJ as (∂φI/∂xi)(∂xi/∂φJ)

and by changing the variables of integration to d3φ at the price of a Jacobian; we can then

integrate over the delta function. After some simple reorganization, our conserved quantity

thus becomes

Qloop = −
∫
dxi

∣∣∣∣∂x∂φ
∣∣∣∣ (∂iφI) ∂L

∂ (∂0φI)

∣∣∣∣
~x(Ω(τ))

, (1.27)

where the |∂x/∂φ| denotes the determinant of the Jacobian. Note that we have now manip-

ulated the charge such that the integral over dxi is over the material curve moving with the

fluid flow. Inserting L = F (b) into the above expression we can take the derivative directly.

After some algebra one can show that

− (∂µφ
I)

∂L
∂ (∂νφI)

= −F ′(b) b
(
uνuµ + δνµ

)
. (1.28)

As for the determinant, it is easily evaluated as (bu0)−1. Putting everything together we

have

Qloop =

∮
dxi (−F ′(b))ui . (1.29)

This is the relativistic version of Kelvin’s circulation theorem. In the non-relativistic limit

the density is much much greater than the pressure, and therefore F (b) ∼ b and we have, as

promised, the expression given in (1.13).
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1.3 Inclusion of a conserved charge and thermodynamic

relations

This formalism can be straightforwardly extended to accommodate a conserved charge car-

ried by the fluid, like e.g. baryon number [12, 13]. One first introduces a new scalar field

ψ(~x, t) that shifts under the U(1) symmetry transformation associated with the charge:

ψ → ψ + a , a = const . (1.30)

Then, in order to describe an ordinary charge-carrying fluid—as opposed to a superfluid2—

one promotes such a symmetry to a φI-dependent shift symmetry:

ψ → ψ + a
(
φI
)
. (1.31)

This guarantees that the Noether current associated with the U(1) transformation (1.30)

aligns with the fluid’s four velocity,

jµ = nuµ , (1.32)

as befits an ordinary fluid at lowest order in the derivative expansion. The lowest order (in

the derivative expansion) action should now read

S =

∫
d4xF (b, y) , (1.33)

where b is the same as above, and y is defined as

y ≡ uµ ∂µψ . (1.34)

The stress-energy tensor and the charge current follow straightforwardly from the action.

They are

Tµν =
(
Fyy − Fbb

)
B−1
IJ ∂µφ

I ∂νφ
J +

(
F − Fyy

)
ηµν (1.35)

jµ = Fyu
µ , (1.36)

2See [14] for the effective field theory construction of a finite temperature superfluid.
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where F ’s subscripts denote differentiation.

Equating T µν and jµ above with the standard forms they take for a perfect fluid, and

using the thermodynamic identities

ρ+ p = T s+ µn and dρ = T ds+ µ dn , (1.37)

yields the following “dictionary” between field theory variables and hydrodynamical ones [12]:

ρ = Fyy − F (1.38)

p = F − Fbb (1.39)

s = b , T = −Fb (1.40)

n = Fy , µ = y (1.41)

and uµ is still given by (1.9). Once again, we see that the function F (b, y) is related to the

equation of state: for instance, from the first, third, and fourth lines of the above we have

F (s, µ) = n(s, µ)µ− ρ(s, µ) . (1.42)

It is interesting to note that the field theory language selects entropy density and chemical

potential as the natural pair of thermodynamic variables to work with.

1.4 Expanding around an equilibrium background

The classical ground state of the fluid—the equilibrium configuration at a given pressure or

density—is given by eq. (1.2).3 This spontaneously breaks all of our spacetime and internal

symmetries, except for the diagonal combinations of internal shifts and spacial translations,

and of internal rotations and spacial ones. As a result, there are gapless Goldstone bosons—

the phonons—of which only the longitudinal one propagates. Indeed, we can study the

3See Appendix 6.1 for an analysis of the symmetry breaking pattern, Goldstone bosons, and propagating

degrees of freedom associated with the fluctuations about the equilibrium configuration of a perfect fluid

with a conserved charge.
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propagation of small perturbations of the ground state by splitting φI = xI + πI and ex-

panding the action at second order in the π’s. We get [10]

S2 =

∫
d4x (−Fbb)

[
1
2
~̇π 2 − 1

2
c2
s

(
~∇ · ~π

)2]
(1.43)

where we defined the coefficient c2
s as

c2
s =

Fbbb

Fb
(1.44)

where the function F , its derivatives and b are all evaluated at the background value of

b = 1. We have also stopped differentiating between internal indices and spacial ones, since

they transform in the same way under the unbroken combination of internal rotations and

spacial ones. In other words, from now on we should think of ~π as a spacial vector field.

We see from the quadratic action for ~π that only its longitudinal component has a gradient

energy. The corresponding free solutions are plane waves propagating with speed cs—the

speed of sound. From the expressions for ρ and p as a function of b, eq. (1.9), one realizes

that c2
s = dp/dρ

∣∣
b=b0

, thus making contact with the usual expression for the sound speed a

fluid. For a non-relativistc fluid c2
s � 1, whereas for an ultra-relativistic one c2

s ' 1/3. We

will not commit to either case, but instead leave c2
s as a generic parameter.

The transverse excitations do not have a gradient energy and as a consequence obey a

free particle-like equation of motion, whose general solution is linear in time:

~πT = ~∇×
(
~a(~x) +~b(~x) · t

)
, (1.45)

where ~a and ~b are arbitrary vector functions. This is the linearized limit of a vortex in

constant rotation. For this reason we will refer to the transverse excitations as ‘vortices’.

Their lack of gradient energy is, of course, a direct consequence of the volume-preserving

internal diff invariance, eq. (1.5), and is at the origin of all the peculiarities we are going

to unveil in the following chapters. Notice, however, that our diff-invariance is not a local

symmetry, and as a consequence the configurations spanned by it—the vortices—are not
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gauge-modes, but real dynamical degrees of freedom. For instance, they have non-vanishing

conjugate momenta; they just do not feature wave solutions.



Chapter 2

The Quantum Mechanics of Perfect

Fluids

2.1 Motivation

Empirically, all fluids we know of undergo a phase transition when we lower the temperature.

Either they freeze, or they transform into more exotic systems, like super-fluids or Fermi liq-

uids. Why are there no ordinary fluids at zero temperature? For weakly coupled systems we

have a microscopic understanding of the low-temperature macroscopic behavior at finite den-

sity [15] (we also understand why such systems at high temperatures exhibit hydrodynamic

behavior.) However for strongly coupled ones, such as the so-called non-Fermi liquids, we

don’t. Of course a strongly coupled system could look like anything at long-distances—there

is no in-principle preference for the ordinary fluid dynamics. Nevertheless, classical hydro-

dynamics is so common in nature at high temperatures, and as we have seen in the previous

chapter, it can be defined purely in terms of low-energy degrees of freedom and symmetries

like an ordinary QFT, that it is natural to ask whether there exist strongly-coupled quantum

systems that at zero temperature and finite density do behave like ordinary fluids.

21
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It is tempting to conjecture that we know of no such systems simply because the cor-

responding quantum effective field theory would be inconsistent. As usual, the advantage

of this viewpoint is that, as long as we allow for the most generic local dynamics involving

all long-distance degrees of freedom and compatible with the symmetries, we are allowed to

be completely agnostic about the microphysics yielding such macroscopic dynamics. Fur-

ther motivation to investigate the consistency of the ordinary-fluid effective theory comes

from the recent interest in the so-called holographic liquids at low temperatures. There,

one deals with strongly coupled systems at finite density via a dual description in terms

of classical gravity, which can be thought of as providing the microphysics behind these

liquid-like states. Characterizing the long-distance dynamics of such systems is non-trivial

however (see e.g. [16] and references therein). Our approach allows us to make progress on

the (perhaps modest) question: can some of these low-temperature, finite-density systems

behave like ordinary fluids? Partial indication that the answer may be ‘yes’ comes from

the results of [17], but [16] argues that these cannot be consistently interpreted as a sign of

hydrodynamic behavior.

Without committing to any models for the microphysics, we will argue that: (i) the

effective theory of an ordinary fluid is not consistent; (ii) the effective theory of an ordinary

fluid might be consistent after all; (iii) there is no guarantee that such effective theory be

unitary at low energies. Clearly, the matter deserves further study.

Before starting our quantitative analysis which substantiates these claims, we conclude

this introductory section with a few qualifications. First, we will only consider fluids at zero

temperature. Thus, our results cannot be readily exported to the finite-temperature case.

Indeed we know that at high temperatures ordinary fluids abound in the real world (hence

the ‘ordinary’), and they exhibit no funny quantum effects at long distances like those we

are going to discuss. In these cases we expect quantum effects to be overwhelmed by thermal

ones. It would be interesting to validate this expectation quantitatively—a task which we
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leave for future work.

Second, we are going to neglect dissipative effects throughout this chapter. We feel we

are justified in considering perfect fluids only because, as discussed in Chapter 5, dissipa-

tive effects in hydrodynamics, like for instance those parameterized by viscosity and heat

conduction, are associated with higher derivative corrections to the perfect fluid dynamics.

Therefore in the far infrared, that is for processes taking place on sufficiently long length

scales, they can be safely ignored. Moreover, one may expect that the actual coefficients

weighing these higher derivative corrections approach zero when the temperature is taken

to zero. For instance in [16] it is argued that a finite viscosity at zero temperature is incom-

patible with hydrodynamic behavior. So, it is conceivable that by working at low enough

temperatures and at long enough distances, one can make dissipation doubly negligible.

Third, a crucial role in our analysis will be played by vortices. Precisely the existence of

‘light’ vortices is what distinguishes an ordinary fluid from a superfluid at the classical level.

As long as one concentrates on the compressional modes—the sound waves—both systems

obey hydrodynamics [15], and this holds at the non-linear, relativistic level as well [10].

However in a superfluid the velocity field is irrotational, which implies that any vortex-like

configuration will be singular at the center of the vortex, along a line, with the curl of the

velocity field behaving like a delta-function peaked on this line. This means that from the

viewpoint of the long distance/low energy effective field theory, the vortices are really UV-

degrees of freedom, with finite energy per unit length (which is in fact mildly IR-divergent.)

So, for instance, one cannot form vortices by scattering phonons of very low energies—there

is a gap, and as long as one works below the gap, the vortex degrees of freedom can be

ignored 1. On the other hand, in ordinary fluids, one can build vortex configurations that

are arbitrarily mild, that is, that involve arbitrarily low momenta only. As a consequence,

there is no gap in the energy one can store in a vortex. Vortices in an ordinary fluid are

1A close relative of the superfluid vortex is the roton excitation, which is also gapped, and which can

then also be neglected in the far infrared.
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low-energy degrees of freedom, and they belong in the low-energy/long distance effective field

theory together with the sound waves. In fact, we will see that, in a sense to be made precise

below, the vanishing of the vortex gap is stronger than that of the sound wave gap—vortices

are ‘more massless’ than sound waves. This will be the origin of all the quantum-mechanical

peculiarities we will discuss, which are therefore absent for a superfluid.

2.2 The naive effective theory

The structure of the quadratic Lagrangian (1.43) already signals that, upon canonical quan-

tization, we might be facing a strong-coupling problem for the vortices. The reason is the

following: Consider first as a toy model a quantum-mechanical oscillator with some anhar-

monic corrections to the potential. In perturbation theory, one first solves the harmonic

problem, thus getting the standard oscillator spectrum, and then treats the anharmonicities

as small corrections. The approximation is justified for those states whose wavefunctions

are localized in a region where the potential is dominated by its quadratic approximation.

So, for perturbation theory to be applicable in this case, one needs at least the ground state

to have a localized enough wave-function (highly excited states will always be outside the

regime of validity of perturbation theory.) Of course, what localizes the ground state is the

curvature of the harmonic potential—the oscillator’s frequency. For the system to be ‘weakly

coupled’, one thus needs a steep enough quadratic potential. If we now move on to field the-

ory, the role of the quadratic potential is usually played—in the absence of mass terms—by

the gradient energy. For a given spatial momentum ~k, the gradient energy gives a potential

∝ k2|ϕk|2. The vacuum wavefunction is thus localized about ϕk = 0, and cannot probe large

field values where interactions may become important. In the absence of a gradient energy,

on the other hand, each mode’s vacuum wavefunction is totally delocalized in the quadratic

approximation, and its dynamics are completely determined by the interactions. We thus

reach the conclusion that a (massless) field theory without gradient energies is prone to
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strong coupling, at all scales.

There is a number of caveats in applying the above logic to our case. The first is that the

absence of gradient energy may be an accidental feature of the lowest order in the derivative

expansion. This is the case, for instance, for the ghost condensate [18], where gradient

energy starts at the four-derivative order, Egrad ∝
(
∇2π

)2
. In the absence of quadratic

terms with fewer spatial derivatives, such a term cannot be relegated to the class of higher-

dimension operators, because it is marginal by definition—together with the kinetic energy

Ekin ∝ π̇2 it determines how things behave under rescalings. In this case then, there is a

well defined perturbative expansion. But this way out is not available to our vortices: the

absence of gradient energy for them is enforced by a symmetry, which also forbids higher

spatial-derivative quadratic terms. In the absence of time-dependence, exciting vortices

costs nothing: we can deform the ground state φI = xI in the ‘transverse’ direction via

eq. (1.5) and pay no energy price, and this extends to non-linear order as well. The second

caveat, more relevant for us, is that the above quantum oscillator toy model assumes that

the anharmonic interactions are of the potential form—only in this case delocalization of

the wavefunction necessarily leads to strong coupling, because having access to large values

of q entails having access to large interactions. But in our case, by construction, we only

have derivative interactions, and moreover the very same symmetry that forbids the vortex

gradient energy is also going to forbid many interactions involving vortices. In particular,

as we will see more concretely in the following, all vortex interactions that do not involve

at least two time derivatives are forbidden. Therefore the connection between wavefunction

delocalization and strong-coupling is less obvious in our case.

To settle the question, we should probe the theory by computing some physical quantity

and check whether the perturbative expansion holds. The ideal candidates are usually S-

matrix elements, but here we face a complication. The longitudinal phonon has standard

wave solutions, which upon canonical quantization, get mapped onto standard free-particle
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states. The transverse phonons, in contrast, do not behave as waves, and as a consequence

there are no quantum asymptotic states associated with them. The classical field ~πT behaves

like a collection of infinitely many free particles rather than infinitely many oscillators. Upon

quantization, its Hilbert space is not made up of standard Fock states. Without asymptotic

states there is no S-matrix.

A possible alternative, is to compute instead local n-point functions in real space, and

to check whether perturbation theory holds for them. They may be as physical as the S-

matrix: they characterize the physical interaction among local sources that couple to our

fluid. We do not need asymptotic states to set up such a question. For instance, we can

define the theory and the associated correlation functions via the path-integral formulation.

Another possibility, which we will choose, is to give the theory asymptotic states for the

vortex degrees of freedom by deforming it in the IR. We can add to the classical action a

term that is compatible with all the symmetries except for the volume-preserving diffs,

∆S = Fb(1)

∫
d4x 1

2
c2
T B

II , c2
T � c2

s (2.1)

and whose only effect, once expanded about the ground state, is to introduce a small gradient

energy for the transverse Goldstones 2 :

S2 →
∫
d4x (−Fb(1))

[
1
2
~̇π 2 − 1

2
c2
s

(
~∇ · ~πL

)2 − 1
2
c2
T

(
∇iπ

j
T ∇iπ

j
T

)]
. (2.3)

We thus have wave solutions, propagating with speed cT , for the ‘vortices’ in the deformed

theory—we promoted the vortices to real transverse phonons. Essentially, we are deforming

the fluid into a solid/jelly that is stiff under compressional stresses but very soft under

2More precisely, the expansion of BII is

BII = −~̇π 2 + 2 ~∇ · ~π +
(
∇iπj ∇iπj

)
. (2.2)

The linear term is a total derivative, and can thus be neglected. The other terms, on top of giving the

transverse phonons a gradient energy, correct the kinetic and gradient energies already present in (1.43).

However in the limit c2T � c2s < 1 these corrections are also negligible.
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transverse ones. The original theory is recovered in the cT → 0 limit, with a qualification

of course. With this cT deformation we are perturbing drastically the far infrared of the

theory. We are adding asymptotic states, and we are going from not having an S-matrix

to having one. So from this viewpoint the fluid limit is obviously discontinuous. However,

we expect more local quantities like n-point functions to be continuous in this limit. The

situation should be similar to having a fairly narrow unstable particle: strictly speaking it

is not an asymptotic state, yet for processes happening at time- and distance-scales much

shorter than the particle’s lifetime, we can treat it as an asymptotic state and associate an

S-matrix to it. For instance, for scattering processes faster than ∼ 10 minutes, neutrons

behave like asymptotic states.

So, concretely, here is our program. We will consider scattering and decay processes in

the cT -deformed theory. In particular, for simplicity we will stick to processes that involve

at most four external legs. Thus to carry out calculations at tree-level, we need to expand

the action up to quartic order in the ~π field; this is done in the Appendix, and the result

is reported below. By construction, interactions involve one derivative per field. For finite

cT , the theory is a standard derivatively coupled theory, and thus strongly-coupled in the

UV. The strong coupling scale will depend on all parameters of the theory; however, we are

interested in the cT -dependence, since eventually we will be taking cT to zero while keeping

everything else fixed. If the strong coupling energy scale slides to zero in this limit, or

equivalently, if cross sections and decay rates at fixed momentum or energy blow up in this

limit, the theory is strongly-coupled at all scales, and thus inconsistent. Notice that we are

trying to ascertain the consistency of the theory by computing something—the S-matrix—

that loses its meaning in the limit we are interested in. Still at finite cT we expect that

the strong-coupling scale for the S-matrix be related to a similar strong-coupling scale for

n-point functions—that is, that for the latter perturbation theory break down at a distance-

scale given by the strong-coupling scale inferred from the S-matrix. Thus, even though the
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S-matrix does not exist in the cT → 0 limit, the formal fact that it appears to be strongly

coupled at all scales is probably signaling that real-space n-point functions cannot be reliably

computed in the fluid theory, at any distance scales.

A final point before we begin the program outlined above. The analysis throughout this

chapter representing the work performed in the [1] was completed before we had a thermody-

namic understanding of our fluid system as given by section 1.3. With our new understanding

we should be concerned about the action presented in (1.43) and the associated deformed

action (2.3). As stated, we are explicitly looking at the T=0 field theory but, from section

1.3, we know that T = 0⇒ Fb = 0 and so our action is trivial! In order to have a non-trivial

quadratic Lagrangian we need a conserved charge. This is, naturally, obvious in hindsight.

When we dial the temperature down on a fluid without a conserved charge (like a fluid of

photons) the fluid actually vanishes! So despite the fact that the following discussion centers

around the F (b) Lagrangian we will argue in the conclusions of this chapter that we can in

fact trust, at least qualitatively, the following analysis for the more appropriate F (b, y) case

as well.

2.2.1 Expanding the Lagrangian—Interactions

It is convenient to rewrite the original Lagrangian (1.7) as

L = −w0f
(
b) (2.4)

where w0 = −Fb(1) = (ρ+ p)b=1 is the ground-state’s enthalpy density, and f is normalized

accordingly, so that f ′(1) = 1. With this new notation the speed of sound (1.44) is simply

c2
s = f ′′(1)/f ′(1) = f ′′(1). Note that the derivatives here are with respect to b. Also, we will

use ∂π to denote the matrix with entries (∂π)ij = ∂iπj, and the brackets [ . . . ] to denote the
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trace of the matrix within. Then, up to fourth order the action is (see Appendix 6.2)

L → w0

{
1
2
~̇π2 − 1

2
c2
s[∂π]2 − 1

2
c2
T [∂πT∂π]

+ 1
2
c2
s[∂π][∂π2]− 1

6

(
3c2
s + f3

)
[∂π]3 + 1

2
(1 + c2

s) [∂π]~̇π2 − ~̇π · ∂π · ~̇π

− c2
s[∂π] det ∂π − 1

8
c2
s[∂π

2]2 + 1
4

(
c2
s + f3

)
[∂π2][∂π]2 − 1

24

(
3c2
s + 6f3 + f4

)
[∂π]4

+ ~̇π · ∂π2 · ~̇π − (1 + c2
s)[∂π] ~̇π · ∂π · ~̇π + 1

2
|∂πT · ~̇π|2

+ 1
4

(
(1 + 3c2

s + f3) [∂π]2 − (1 + c2
s) [∂π2]

)
~̇π2 + 1

8
(1− c2

s) ~̇π
4
}
. (2.5)

The first line is the free part of the Lagrangian, including the cT -deformation. The second

line collects the trilinear interactions, whereas the third and fourth lines collect the quartic

ones. f3 and f4 stand for f ′′′(1) and f ′′′′(1), respectively. Finally, notice that via the suffix T

we indicate the transpose of a matrix, rather than the transverse part of ~π as we did above.

At this order we have four free parameters: c2
s, c

2
T , f3, and f4. The dimensionful overall

factor of w0 just gives us some reference units—we could use units in which it is one. For

c2
T , we know that we want c2

T � c2
s. As to c2

s, it will be much smaller than one for a non-

relativistic fluid, and of order one (1/3) for an ultra-relativistic one. In the former case we

expect f3 and f4 to be naturally of order c2
s, or smaller. If they were larger, b = 1 would be

a special point for the shape of f(b), since by going to, say, b = 2, the second derivative of

f , which controls c2
s, would undergo a relative change of more than order one. Likewise, in

the ultra-relativistic case, for the same reason we probably want f3 and f4 of order one, or

smaller. That is, if we assume that b = 1 is a fairly generic point for f , f3 and f4 have to

be at most of order c2
s.

3 On the other hand it may be possible to have a fluid with some

3This is what happens for instance for the constant (i.e., b-independent) c2s Lagrangian

L = −w0

(
b
)1+c2s , (2.6)

which corresponds to the simple equation of state p = c2sρ. Notice however that such a simple case, besides

being extensively considered by cosmologists, is not preferred in any sense over more generic equations of

state—with the exception of the ultra-relativistic case, where the linear equation of state p = 1/3 ρ follows
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feature in the equation of state, where f ′′ is small but higher derivatives of f are large. In

the following we will make no assumptions about these couplings, since even carefully chosen

values for them do not lead to drastic simplifications for our computations. Similarly, the

non-relativistic case c2
s � 1 is only slightly simpler that the fully relativistic one, and we

thus see no reason why not to investigate the latter.

2.2.2 Sound-wave strong-coupling scale

As a warmup, we estimate the strong-coupling scale for longitudinal phonon scatterings

by ignoring the vortices, both as external states as well as internal lines. We assume for

simplicity that f3 and f4 are of their ‘natural’ size, c2
s. We also assume that there are no

cancellations among the various interactions. So, schematically the structure of the action

is

Ssound ∼
∫
d3x dtw0

[
(π̇2 − c2

s ∂
2π2) + c2

s ∂
3π3 + c2

s ∂
4π4
]
, (2.7)

where ∂ stands for a typical spatial derivative, and for the interactions we used π̇ ∼ cs ∂π,

valid for not terribly off-shell phonons. Now, to estimate the size of the amplitude at a given

energy or momentum, we can proceed as follows. First, we redefine the time variable

t→ t/cs , (2.8)

to get a relativistic-looking kinetic term:

Ssound ∼
∫
d3x dt/csw0

[
c2
s(π̇

2 − ∂2π2) + c2
s ∂

3π3 + c2
s ∂

4π4
]

(2.9)

∼ w0cs

∫
d4x

[
(π̇2 − ∂2π2) + ∂3π3 + ∂4π4

]
. (2.10)

Then, we notice that cs has factored out of the action, and that combined with w0 it gives

the only energy/momentum scale in the action: M4 ≡ w0cs. The rest has standard rela-

tivistic scaling (without Lorentz-invariant contractions though), which means that we can

from scale-invariance.
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apply standard relativistic amplitude estimates. All interactions inside the integral have

unit coefficient; the typical 2 → 2 dimensionless amplitude is thus k4, combined with the

appropriate powers of M to match dimensionality

interaction strength ∼ k4

w0cs
∼ E4

w0c5
s

, (2.11)

where E is the typical energy in units of the original time variable (notice that spatial coor-

dinates are untouched, so there is no such ambiguity for k.) The strong-coupling momentum

and energy are thus

k∗ = (w0cs)
1/4 , E∗ = cs k∗ , (2.12)

respectively.

The above estimate yields the correct strong-coupling scale for longitudinal phonons. We

could do the same for the vortex sector, at finite cT . However as we will see, for the vortex

interactions there are cancellations that are not manifest in eq. (2.5) and that would impair

this simple estimate.

2.2.3 Hunting for all factors of c

When we start computing amplitudes and physical quantities like cross sections and decay

rates, we have to be careful about extra factors of cs and of cT besides those appearing

explicitly in the various interaction terms. For instance, we just saw that the longitudinal

phonon interaction strength is of order k4/(w0cs), whereas the Lagrangian interaction terms

are proportional to c2
s. In hindsight, this result just follows from dimensional analysis, once

we keep separate units for space and time (we can still set ~ = 1 though). The quartic

interactions involve four powers of momentum. The interaction strength is thus k4 divided

by whatever combination of w0 and cs has the same units as k4. Of course, we have an

ambiguity as to the units of w0—is it a mass- or energy-density? We can easily resolve this

ambiguity by looking at the kinetic term. By construction our πI have units of length; the
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action is dimensionless (for ~ = 1); w0 is thus a mass density, and w0c
2
s an energy density:

[ρ0c
2
s] = Ek3 = csk

4. The dimensionless combination therefore is csk
4/(ρ0c

2
s) = k4/(ρ0cs), as

expected.

So, a possible strategy to get all the factors of cs right in amplitudes, cross sections, and

rates, is to use the standard relativistic formulae, and then insert suitable powers of cs to

match dimensions. Essentially this is equivalent to redefining the time variable as we did

above, to end up with a relativistic kinetic term with cs = 1. However this strategy is going

to fail once we include vortices/transverse phonons in our processes: with two different prop-

agation speeds cs and cT for longitudinal and transverse polarizations, dimensional analysis

does not suffice. Equivalently, by redefining the time variable we can cast only one of the

two kinetic terms in relativistic form.

In Appendix 6.3 and 6.4 we will therefore briefly review the standard relativistic formulae

and derive the modifications needed to apply them to our case with c 6= 1. We adopt this

somewhat cumbersome action plan, rather than going through some standard condensed

matter textbook and trying to dig up the relevant non-relativistc formulae, for no other

reason than we are more familiar with the relativistic Feynman rules and related formulae—

and we assume that the reader is also. The bottom line is pleasantly surprising: We can

use the standard relativistic Feynman rules and formulae for infinitesimal cross-sections and

rates, with no modifications, even when we start considering different fields with different

speeds. By ‘standard relativistic rules and formulae’ we mean those associated with the

so-called relativistic normalization of single-particle states, as derived for instance in Peskin-

Shroeder [19].

As to the overall factor of w0 in (2.5), it is straightforwardly kept track of. Either by

inserting for each Feynman diagram a w0 for each vertex, a 1/w0 for each internal line, and

a 1/
√
w0 for each external line, or most simply by setting it to one and retrieving it at the

end of the computation via dimensional analysis.
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2.3 Simple processes – the vortex strong coupling

We compute, to tree level, a number of simple processes in order of increasing number of

vortices on the external legs. For scattering processes, for simplicity we will only consider

initial states with zero total momentum. Given that Lorentz boosts are spontaneously broken

and that we have a preferred reference frame, this is a non-trivial choice—we are setting

some kinematic invariants to zero. With an abuse of language, we will refer to this choice

as “working in the center of mass (CM) frame.” For the decay of a single finite energy

excitation, on the other hand, this choice is not an option, of course. We will use the

formulae for amplitudes, cross sections and rates found in the Appendix. But, as commented

on before, the good news is that these formulae look just like the usual relativistic ones that

we are used to dealing with. So, except for the additional factors of cs and cT coming from

the external states’ dispersion relations and from the internal lines’ propagators, everything

goes through just as usual: each external line carries a polarization-vector factor (times

1/
√
w0), each incoming or outgoing time-derivative contributes a ∓iω, each incoming or

outgoing spacial-gradient contributes a ±i~k, and so on. From eq. (2.5), we immediately get

the Feynman propagator:

〈TπI(x)πJ(y)〉 → 1

w0

· iP IJ
L

ω2 − c2
sp

2 + iε
+

1

w0

· iP IJ
T

ω2 − c2
Tp

2 + iε
, (2.13)

where PL and PT are the longitudinal and transverse projectors, respectively.

We will not content ourselves with amplitudes. Rather, we will compute physical, mea-

surable quantities like cross sections and decay rates. The reason is that amplitudes depend

crucially on the normalization chosen for the single-particle states. For instance going from

the so-called relativistic normalization to the non-relativistic one, would move some factors

of cs and cT from the amplitudes to the phase-space elements, in such a way as to keep cross-

sections and rates unaffected. Ascertaining the strong-coupling of the theory in the cT → 0

limit at the level of amplitudes requires a derivation of partial waves, a la Jacob-Wick, being
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careful about the factors of cs and cT . Although we have also derived our results using that

method, we found it simpler to present them by focussing on cross-sections and decay rates.

A final remark about external vortices. When we take the cT → 0 limit we have to decide

whether we are going to keep their momenta or their energies fixed. The first choice is the

more conservative, since it corresponds to taking their energies to zero, thus weakening any

possible strong-coupling phenomenon we are going to encounter. It is also the only consistent

one, since the alternative one would send the vortex momenta to infinity, outside the regime

of validity of any effective theory. In the following we parameterize everything in terms of

momenta rather than energies, so that taking the cT → 0 limit is straightforward. Notice

also that only if we keep the vortex momenta fixed is our deformed theory with small cT close

to the fluid one with cT = 0: in the Lagrangian c2
T weighs the gradient energy, so that by

sending cT to zero while keeping the momenta fixed one is in fact sending the magnitude of

that Lagrangian term to zero. Related to this, it is somewhat tricky to deal with processes

that include longitudinal phonons in the initial state but no longitudinal phonon in the

final state: the initial longitudinal phonons’ finite energy should be divided among the final

vortices, thus making their momenta diverge for cT → 0. In other words, one cannot send

cT to zero and keep all momenta fixed. We will see an example of this below, in the decay of

a longitudinal phonon into two transverse vortices. We postpone a discussion of the related

subtleties until then.

We will use ~p ’s to denote the momenta of the longitudinal modes, and ~k’s and ε̂’s to denote

the momenta and polarizations of the transverse modes. Our ε̂’s are real, thus corresponding

to linear polarizations, and normalized to one (hence the ‘hat’.) For longitudinal phonons

the polarization vector is p̂, of course. For all the processes we will just compute the leading

contribution in the limit cT/cs � 1, for which we hope to learn something about the original

fluid (cT = 0).
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2.3.1 Longitudinal 2→ 2 scattering

This is the simplest of the scattering processes. To tree level, the only relevant diagrams are:

We designate, here and for the rest of the chapter, the solid lines as longitudinal excitations

and the curly lines as the transverse excitations. Time flows to the right.

When done in the center of mass frame, the only kinematic variables are the momentum

of the longitudinal phonons p and the scattering angle θ. To tree level, the total amplitude

is given by

iMLL→LL = −ip
4c2
s

w0

[
f4/c

2
s − 2f 2

3 /c
4
s + 3c2

s + 2f3 + c4
s + 2(1− 3c2

s) cos2 θ
]

(2.14)

Remarkably, the graphs with transverse propagators do not contribute to the amplitude,

even individually. The infinitesimal cross section is

dσ =
1

c6
s

|MLL→LL|2

64π2(2p)2
dΩ , (2.15)

where we made use of the phase space element computed in the Appendix (eq. (6.37)). We

can easily calculate the total cross section. The final particles are identical, so we over-count

when we integrate over all final phase space. To counteract this we simply include a 1/2

symmetry factor. To all orders in cs the total cross-section is

σLL→LL =
1

256π

1

p2

(
p4

w0cs

)2 [
2α2 +

4αβ

3
+

2β2

5

]
∼ 1

p2

(
p4

w0cs

)2

(2.16)

where α ≡ (f4/c
2
s − 2f 2

3 /c
4
s + 3c2

s + 2f3 + c4
s) = O(1) +O(c2

s) +O(c4
s) (assuming f3, f4 ∼ c2

s)

and β ≡ 2(1− 3c2
s).
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This result matches our dimensional estimate of the strong coupling scale for longitudinal

phonons in eq. (2.12): the cross-section (2.16) is the geometric cross-sectional area for wave-

packets of wavelength 1/p, times the square of the dimensionless interaction strength we

estimated in sect. 2.2.2. We have strong coupling when σ becomes of order 1/p2—in such

a case the two wave-packets have an O(1) probability of interacting—in agreement with

sect. 2.2.2.

2.3.2 Longitudinal decay and vorticity production

In addition to scattering cross sections, we can also calculate the decay rate of a longitudinal

phonon into a longitudinal phonon and a transverse one. This is kinematically allowed thanks

to the difference in propagation speeds between longitudinal and transverse excitations. To

tree level, we simply have one diagram, the longitudinal-longitudinal-transverse vertex:

Imposing the kinematical constraints coming from momentum and energy conservation, ex-

panding in cT/cs, and keeping only to first order in this parameter, we can write the amplitude

as

iML→LT =
−4cT cs p

3

√
w0

(ε̂ · p̂) sin θ/2 (cos θ − c2
s) (2.17)

where θ is the angle between the outgoing longitudinal mode and the decaying one (with θ = 0

corresponding to forward decay.) If the vortex is polarized orthogonally to the scattering

plane the decay amplitude vanishes because of parity conservation, whereas for parallel

polarization it further simplifies to

iML→LT‖ =
−2cT cs p

3

√
w0

sin θ (cos θ − c2
s) (2.18)
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Notice the fairly featureless angular dependence, which combined with a similarly feature-

less phase space (eq. (6.40)) yields the surprising result that with an order-one relative

probability the longitudinal phonon will recoil backwards, i.e. with θ > π/2, by emitting a

high-momentum forward vortex. Moreover, the unusual kinematical constraints associated

with the cT � cs hierarchy force the vortex to be emitted always in the forward half-space,

and at an obtuse angle relative to the final longitudinal phonon.

The physical quantity that we want to calculate is the decay rate Γ, given by (6.21). Using

the infinitesimal phase space for a two-particle final state with non-zero total momentum

and cT � cs, given by (6.40), summing over possible transverse polarizations and integrating

over the solid angle we get:

ΓL→LT =
cT
cs

p5

w0

4

315π
(5− 6c2

s + 21c4
s) (2.19)

which, as we can see, smoothly goes to zero as cT → 0.

In the same way we can study the decay L → TT of a longitudinal phonon into two

vortices. Notice that the decay kinematics in the cT/cs � 1 limit implies k1 ' −k2 and

2|k1| ' |p|cs/cT � |p|. That is approximately two back-to-back vortices, carrying each half

the energy and with momentum scaled up by a factor ∼ cs/cT with respect to the initial

state phonon. We find the amplitude

iML→TT =
c2
s p

3

4
√
w0

[
ε̂1 · ε̂2(1 + 2 cos θ2) + p̂ · ε̂1p̂ · ε̂2

]
(2.20)

where ε̂i represent the polarizations of the two vortices and cos θ = p̂ · k̂1. For the decay rate

we have thus roughly

ΓL→TT ∼
p5c3

s

w0c3
T

(2.21)

corresponding to a ‘quality factor’ ΓL→TT/ω ∼ p4c2
s/w0c

3
T . A phonon with momentum

p∗ ∼ (w0cs)
1/4(cT/cs)

3/4 (2.22)

has a width comparable to energy. We can thus identify p∗ as a strong interaction scale

for longitudinal phonons. Notice that this scale is parametrically smaller than the naive
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estimate in eq. (2.12). This fact is largely a consequence of the peculiar kinematics of the

decay L → TT , where starting from an initial quantum of momentum p, the final state

quanta have a much higher momentum scale k ∼ pcs/cT . This higher scale is naturally

associated with a stronger interaction strength. The fact that starting with soft quanta

one can probe much shorter distances due to the large final state momentum also suggests

more care with the use of the notion of effective field theory. We will elaborate briefly

on this in sect. 2.5. Notice also that the corresponding vortex momentum strong scale is

instead k∗ ∼ p∗cs/cT ∼ (w0cT )1/4(cs/cT )1/2. The computation of TT → TT scattering in

the next section will show that the vortex momentum cut off is actually ∼ (w0cT )1/4, which

is parametrically smaller. Then, within the resulting smaller range of validy of the effective

field theory, the process L→ TT remains weakly coupled.

The results just derived display one general property of amplitudes involving vortices:

they are accompanied by at least one power of the vortex energy. 4 That property directly

follows from invariance under volume preserving diffeormorphisms and can be made evident

by chosing a suitable field parametrization. In a neightbourhood of ~φ = ~x the most general

field configuration can indeed be written implicitly as

~φ(x, t) = ~g(~y, t) ~y = ~x+ ~πL(~x, t) (2.23)

where ~πL ≡ ~∇ψ(~x, t) is a longitudinal perturbation while ~g(~y, t) is a volume-preserving

diffeormorphism generated by “exponentiating” a transverse vector field ~πT (~y, t) (~∇y · ~πT =

0). That is

~g(~y, t) = lim
N→∞

[(
e+

~πT
N

)
◦ · · · ◦

(
e+

~πT
N

)]
(~y, t) = ~y + ~πT (~y, t) +O(π2

T ) (2.24)

where e(~y) = ~y is the identity function and ◦ represent function composition. Our procedure

to define a finite transformation ~g starting from the infinitesimal one ~y + ~πT is just the

4In the case of the L → LT decay this also corresponds to a significant suppression of the amplitude,

given the parametrically suppressed value of the vortex energy in that process. In the case of L → TT the

energy of L and T modes is instead comparable.
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standard exponential map of Lie groups. In the end, eq. (2.23) is a three dimensional (in

field space) family of field configurations that for πT,L → 0 reduces to the most general one

~x+~πL+~πT . It follows that in a neighbourhood of the identity, eq. (2.23) is a faithful (one to

one) parametrization, acceptable to perform perturbation theory. Now a time independent

~πT (~y, t) ≡ ~πT (~y, 0) is just a symmetry tranformation of the action in the limit cT = 0.

Therefore, apart from the O(c2
T ) kinetic perturbation, πT enters the lagrangian with at least

one time derivative, and therefore amplitudes have the corresponding suppression. Notice

that in the computation of L → LT , where we used the simple parametrization ~φ = ~x + ~π,

that result arose via a non trivial cancellation of different terms in the amplitude.

As a further check of the above general property of amplitudes involving transverse modes,

consider the process LL→ LT . The relevant Feynman diagrams are

The amplitude vanishes if the vortex is polarized orthogonally to the scattering plane,

whereas for parallel polarization it is

iMLL→LT‖ = −4ip4cscT
w0

cot θ
[
3− f3/c

2
s − 2c2

s − f3 + 3c4
s − 2(3− c2

s) cos2 θ
]

+O(c2
T ) , (2.25)

again vanishing, as expected, as cT → 0 with p fixed. This result corresponds to a cross-

section scaling as cT ,

σLL→LT ∼
cT
cs

1

p2

(
p4

w0cs

)2

. (2.26)

The results just derived deserve one additional comment. For a classical inviscid fluid, we

know that if we start with zero vorticity everywhere in space, we cannot produce any. How-
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ever this is not because of some global charge conservation, but, more prosaically, because

the source of vorticity is proportional to vorticity itself. 5 For a non-relativistic fluid:

~̇Ω = −
(
~v · ~∇

)
~Ω +

(
~Ω · ~∇

)
~v − ~Ω

(
~∇ · ~v

)
. (2.27)

This is similar to, say, a scalar field theory with two fields, φ and χ, with mutual interactions

of the form φ2χ2. In the χ e.o.m., the source term is proportional to χ itself,

δL
δχ
⊃ φ2χ , (2.28)

which means that χ = 0 is a perfectly good classical solution no matter what φ does. On the

other hand, we know that this fact does not survive quantum mechanically. Two φ quanta

in the initial state can annihilate in a φ2χ2 vertex to yield two χ quanta in the final state.

However this way one will never produce a single χ quantum if this is not already present

in the initial state. Coming back to our fluid, it is suggestive to interpret our results above

in light of this analogy. We expect that the classical non-generation of vorticity will not

survive at the quantum-mechanical level. Vortex excitations will be generically produced in

scattering and decay processes, even if there are no vortices in the initial state. However,

the production of a single vortex quantum should be prohibited, being immune from the

aforementioned ‘φ2χ2 effect’. Indeed consistently with this expectation, at fixed phonon

momentum p, we found the single vortex amplitude Eq. (2.17) vanishes for cT → 0, while

the two vortex amplitude Eq. (2.20) does not.

2.3.3 Longitudinal and transverse scattering

Another interaction we can consider is the scattering of a longitudinal excitation and a

transverse excitation. The tree level diagrams are given schematically by:

5In fact, associated with the invariance under volume-preserving diffs there are infinitely many conserved

local currents and global charges [10]. Eq. (2.27) is a consequence of these infinitely many conservation laws,

but it does not take the form of a simple conservation law for vorticity itself.
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Besides the usual scattering angle, there are also the additional degrees of freedom associated

with the polarization of the transverse modes. The amplitude is

iMLT→LT = −i2cscTp
4

w0

[
(p̂ · p̂′)− c2

s

]
(ε̂1 · p̂′)(ε̂2 · p̂) +O(c2

T ) (2.29)

Note that M∝ cT , consistent with the general argument presented in the previous section.

It should also be noted that there is explicitly no dependence on f4 and f3. This result can

be easily understood using the field parametrization discussed in the previous section. The

terms proportional to f4 and f3 only depend on the longitudinal field πL. Then f4 obviously

does not contribute to LT → LT while f3 can only contribute via the second diagram in the

upper line in the figure, which is clearly of order c2
T . Again, in the standard parametrization

all these results follow from a non-trivial set of cancellation, which also represent a check of

our computations.

The infinitesimal cross-section is given by

dσ =
1

2

∑
initial ε

∑
final ε

(
1

p2

)(
p4

4πw0(cT + cL)

)2 {[
(p̂ · p̂′)− c2

s

]
(ε̂1 · p̂′)(ε̂2 · p̂)

}2
dΩ (2.30)

Here we are averaging over the incoming polarizations (hence the 1/2) and summing over

the final ones. A good basis to do this in would be parallel to the scattering plane and

perpendicular to the scattering plane. As we can see from the form ofM, any perpendicular

component of the polarization does not contribute to the amplitude. Putting everything

together, keeping all powers of cs, we have the total cross section:

σ =
1

105π

1

p2

(
p4

w0cs

)2

[1 + 7c4
s] +O(cT ) (2.31)
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We now see the importance ofMLT→LT ∝ cT . This dependence on the “transverse speed of

sound” is necessary to avoid a divergent physical quantity (here the scattering cross-section)

as cT → 0. Remarkably, the strong-coupling scale for this process is the same as for purely

longitudinal scattering—cf. eq. (2.16). Note also that because of the independence of the

cross section on f3 and f4 this cross section is generic for all fluid types, regardless of the

particular functional form of f(b). Its dependence on the particular fluid model only comes

through the speed of sound.

2.3.4 Transverse 2→ 2 scattering

As we can see from formula (6.18) for the differential scattering cross section, the more

transverse incoming and outgoing states the more a rate could possibly diverge as cT → 0.

The results so far agree with that expectation. The only problematic quantity we encoutered

is the rate for L → TT , which has however peculiar (singular) kinematics as cT → 0. The

processes with smooth kinematics were instead found to have a well behaved rate. In the

T + L → T + L cross section we picked up a c−1
T from the phase space of the outgoing

excitation and we picked up a c−1
T from one of the 1/2E normalization factors. It was thus

critical that |MLT→LT | ∝ c2
T in order that the cross section be well defined.

From eq. (6.18) we can see that for transverse 2 to 2 scattering dσ
dΩ
∝ c−6

T |M|2. In order

that our physical process be finite in the cT → 0 limit we need (at least) M ∝ c3
T . We

find that this is not the case. In fact, simple power counting using the parametrization

discussed in section 4.2 indicates the amplitude will be suppressed (at least) as c2
T . This

expectation is confirmed working in the standard parametrization: by dramatic cancelations

among Feynman diagrams the zeroth and first order terms vanish, and the leading non-trivial

term is of order c2
T . The necessary tree-level Feynman diagrams are:
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In the CM frame with ‖ and ⊥ denoting polarizations parallel and perpendicular to the

scattering plane, respectively, at lowest order in cT the amplitude is

iMTT→TT =
ik4c2

T

w0

×

 cos 2θ for ‖‖→⊥⊥ ,⊥⊥→‖‖
1
2

(
cos θ − cos 2θ

)
for ‖⊥→‖⊥

(2.32)

and zero for all other combinations of polarizations. In the ‖⊥→‖⊥ case, θ is the angle

between the two ‖-polarized phonons. Note that, as in the previous physical process, there

is no dependence on f3 and f4. So, once again, this process is generic for all fluid models

regardless of the details of f(b).

After squaring the amplitude, we average over incoming polarizations and sum over the

final ones. We have:

1

4

∑
initial ε

∑
final ε

|M|2 =
1

4

(
k4c2

T

w0

)2 [
2 + 1

2
cos 2θ + 3

2
cos 4θ

]
, (2.33)

and so the total cross section, including a 1/2 symmetry factor, is

σTT→TT =
1

256π

(
13

15

)
1

k2

(
k4

w0cT

)2

. (2.34)

As we can see, it blows up as we take cT → 0 indicating that our theory is breaking down.

We emphasize once again the absence of the free parameters f3 and f4 in this result, which

implies that the pathology just unveiled cannot be avoided by a judicious choice of their

values.
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2.4 The infrared situation

Our S-matrix analysis indicates that the transverse degrees of freedom are strongly-coupled

at arbitrarily low energies. However the strong-coupling phenomenon we unveiled is quite

peculiar. We deformed the theory in the far IR by introducing a small deformation parameter

cT . This changes the asymptotic states of the theory, and we discovered that some of these

get strongly coupled in the UV, at an energy scale that drops to zero when we recover

the original theory—the limit cT → 0. A vanishing ultraviolet strong-coupling energy scale

suggests that our problem is probably more properly thought of as an infrared one—we may

be approaching strong-coupling from the wrong side! That is, in the deformed theory at

finite cT we encounter strong coupling in moving to high energies, but since the deformed

theory differs from the original one at low energies, it may be that the strong coupling scale

is in fact a divide between the two theories—that there is no regime where the two theories

look alike. If we stick to the original description, without ever introducing cT , we may realize

that we have some form of strong coupling in the IR.

The distinction we are putting forward may sound like a matter of definition, but it is not.

A theory that becomes strongly coupled in the UV is simply not defined at energies of order

of the strong-coupling scale and above—it needs infinitely many parameters for its definition.

If this were the case for us, our theory would not be consistent, in any energy range. On

the other hand, there are a number of ways in which perturbation theory can break down

in the IR without impairing the consistency of a theory. There is for instance real QCD-

like strong coupling, where perturbation theory does break down but the non-perturbative

theory is perfectly well defined—it is just hard to solve! Or there are QED-like infrared

divergences, which can be tamed by focusing on suitable infrared-safe observables, for which

the perturbative expansion applies. Or there may be huge quantum IR fluctuations without

necessarily implying large interactions, like for instance for would-be Goldstone bosons in

1 + 1 dimensions [20]. This would signal a bad identification of the theory’s vacuum state.
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And in general, to ascertain the consistency of an IR-problematic theory, at least in certain

energy and momentum regimes, one can just put the system in a finite-size ‘box’ and consider

its time evolution for a short time, in which case perturbation theory typically does not even

break down.

The first signal that our problem with the transverse degrees of freedom may be infrared

in nature comes from considering quantum fluctuations about the semiclassical vacuum state

with 〈φI〉 = xI . An order parameter that conveniently quantifies the amount of spontaneous

symmetry breaking in a manifestly translationally invariant fashion is

〈∂µφI〉 = δIµ ∼ 1 . (2.35)

It is straightforward to estimate quantum fluctuations in this quantity. We decompose the

fields as φI = xI + πI , and from the πI propagators,

〈TπI(x)πJ(y)〉 → 1

w0

· iP IJ
L

ω2 − c2
Lp

2 + iε
+

1

w0

· iP IJ
T

ω2 + iε
, (2.36)

where PL and PT are the longitudinal and transverse projectors, we get

〈∂iπI ∂jπJ〉 ∼
1

w0

p5

ω
(2.37)

〈∂0π
I ∂jπ

J〉 ∼ 1

w0

p4 (2.38)

〈∂0π
I ∂0π

J〉 ∼ 1

w0

p3ω (2.39)

These are real-space correlators, and in the right-hand sides the dimensionless, order-one

part of the Fourier transform,
∫
dΩ d log p d logω ei(... ), is understood. Also we are considering

considerably off-shell (ω, p) pairs, by taking for instance the separation in real space to be

space-like with the respect to the sound speed (i.e., by working in Euclidean space.) The

correlators (2.38, 2.39) behave in essentially the same way as for standard field theories in

dimensions higher than 1 + 1: quantum fluctuations in order parameters are damped at low

momenta and low energies, and as a consequence in the IR there is spontaneous symmetry
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breaking. However the correlator (2.37) ruins this familiar picture: for fixed momentum, it

is IR-divergent. Equivalently, in the p-ω plane there is a sector extending all the way to

p = 0, ω = 0 where quantum fluctuations in our order parameter (2.35) are huge. This

reminds us of Coleman’s theorem [20] in 1 + 1 dimensions, and suggests that our strong-

coupling problems may stem from an incorrect definition of the vacuum. In other words, we

have been assuming all along that doing perturbation theory about the semiclassical vacuum

φI = xI is sensible, but eq. (2.37) is somehow telling us that quantum fluctuations want to

dismantle this state. As an aside, notice that we have every reason to believe that Lorentz

boosts are spontaneously broken: since the correlators (2.38, 2.39) are damped in the IR,

it seems that only the breaking of the spatial symmetries (translations, rotations, volume-

preserving diffs) is affected by our phenomenon. More concretely, we can compute quantum

fluctuations in an order parameter that is invariant under all symmetries but Lorentz boosts,

like for instance the fluid velocity uµ. Classically in the ground state we have uµ = (1,~0).

At first order in the π field the fluctuation reads δuµ = (0,−~̇π). From eq. (2.39) we thus get

the velocity-velocity correlator,

〈δuµ δuν〉 ∼ δµi δ
ν
j

1

w0

p3ω , (2.40)

which is damped in the IR, thus signaling that quantum fluctuations do not want to restore

Lorentz invariance.

Several natural questions arise: How do we check the above statements more concretely?

Can we identify the correct vacuum state? Does it support a well defined perturbative

theory? And perhaps the most physically relevant: is there a semiclassical limit where we

recover classical hydrodynamics? To start addressing these questions, we step back from

our fluid case and consider a much simpler system with somewhat similar features: the free

particle in quantum mechanics.
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2.4.1 The free quantum particle

Consider a free particle living on a line. Classically, x = xi = const is a perfectly good state.

However, quantum mechanically we know that if we start from a state localized around

xi, time-evolution will make the wave-function spread out, and at very late times the state

will be totally delocalized. Related to this, the ground state of the theory wants to have a

constant wave-function throughout the whole line. (This is non-normalizable for an infinite

line, but for simplicity we can replace the line by a very large circle.) The spontaneous

breaking of translations that we see classically, x = const, quantum mechanically is gone.

Given the system’s simplicity, there are many equivalent ways to describe this phe-

nomenon quantitatively. One that will prove readily exportable to the fluid case, is the

path integral one. Consider, in the path-integral representation, the amplitude for evolving

from xi at t = 0 to xf at t = T :

〈xf , T |xi, 0〉 =

∫ x(T )=xf

x(0)=xi

Dx eiS[x] ∝ exp
i (xf − xi)2

2T
. (2.41)

We are using ~ = 1 units. Also for simplicity we are setting the particle’s mass to one. The

exponent is of course the classical action for the solution interpolating between xi and xf

in time T . The prefactor that we omitted is the determinant of the kinetic operator about

the classical solution. Since we have a free theory such an object does not depend on the

solution under consideration, or on the overall distance (xf − xi), and will play no role in

our discussion—it is just an overall normalization factor.

We see that, for a given T , at small distances |xf −xi| .
√
T the amplitude is essentially

constant, whereas it starts oscillating rapidly when we move to much larger distances, |xf −

xi| �
√
T . We are tempted to conclude from this that the width of the wave-function

grows like
√
T , but this is premature because the amplitude we got is a pure phase at all

distances, which means that the probability is uniform in xf . In other words, as soon as T

is bigger than zero, the wave function is completely delocalized. This is clearly not what

we expect physically, and is an artifact of having chosen an initial δ-like wave-function: a
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δ(x) has infinite momentum spread, which means that in zero time the particle is going to

be everywhere with non-vanishing probability. If we instead choose a more reasonable state,

say a gaussian centered at xi = 0 with width σ, the final wave function we get is:

ψ(xf , T ) =

∫
dxi ψ(xi, 0) 〈xf , T |xi, 0〉 ∝


exp− x2

f

2σ2 , T � σ2

exp−x2
f σ

2

T 2 , T � σ2

(2.42)

where we ignored overall normalization constants, as well as factors that do depend on

xf but are pure phases. We thus see that at early times the wave-function width is—not

surprisingly—dominated by the initial width σ, whereas at late times it grows linearly with

T .

We can turn the problem around and ask: suppose we want to have a somewhat localized

state that looks stationary over a time period of order T . What is the minimum wave-function

width we should allow for? Answer:
√
T . As a consequence, in the long-time limit there

cannot be spontaneous symmetry breaking. With hindsight, we can go back to our original

amplitude eq. (2.41) and learn how to read it properly. Despite being purely imaginary, the

exponent really tells us the minimum uncertainty we should allow in the initial position in

order for our state to look approximately stationary over a time of order T .

Before moving on to the field theory case, it is worth pointing out that if we have N

free particles we can run the above computation independently for each of them, since all

amplitudes factorize. This means that, roughly speaking, each particle can afford an O(1)

action, so that the whole system can explore trajectories with an O(N) action.

2.4.2 Coleman’s theorem from the path integral

We can now apply the same logic to a massless free field theory in d+ 1 dimensions,

S[φ] =

∫
dd+1x 1

2
(∂φ)2 , (2.43)
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and recover Coleman’s theorem in the path-integral language. We have a shift symmetry

φ→ φ+ c, which classically is spontaneously broken by any Poincaré invariant configuration

φ(x) = const. Without loss of generality we can set the constant to zero, and ask whether

quantum fluctuations tend to disrupt this configuration. Coleman teaches us that this will

be the case for d = 1.

We want to compute the path integral

〈f(~x), T |0, 0〉 =

∫ φ(T )=f(~x)

φ(0)=0

Dφ eiS[φ] ∝ eiS[φcl] , (2.44)

for a generic final configuration f(~x). Given what we learned for the free particle on a line,

the result will tell us which are the field configurations that inevitably get populated after

a time T if we start at t = 0 with a wave-functional for φ(~x) centered around φ = 0. To

compute S[φcl], we have to solve the classical equations of motion with the given boundary

conditions. In (spatial) Fourier space the immediate solution is:

φ̂cl(~k, t) = f̂(~k) · sin kt

sin kT
, (2.45)

where f̂(~k) is the final configuration’s Fourier transform. The action is

S[φcl] =

∫
ddk

∣∣f̂(~k)
∣∣2 · k cot kT . (2.46)

We can for simplicity consider the two regions k � 1/T and k � 1/T separately, and ignore

what happens at intermediate momenta. As to the former region, we can set cot kT → 1/kT ,

so that we have

S(k � 1/T ) ' 1

T

∫ 1/T

ddk
∣∣f̂(~k)

∣∣2 . (2.47)

The high momentum region, however, contains all the poles of the cotangent. These poles

are just enforcing the right periodicity for the corresponding momenta. That is, for a given

T all modes with k = nπ/T should go back to zero after a time T , as enforced by the perfect

harmonicity of our system. As a consequence, if the final f̂(~k) does not vanish for these

special momenta, the corresponding action is infinite. To have a finite action f̂(~k) has to
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have infinitely many zeroes, at the right locations. Apart from this peculiarity, when we

integrate over momenta much larger than 1/T the cotangent behaves like a number of order

one, and to get an estimate for the action we can just ignore it. We thus have

S(k � 1/T ) ∼
∫

1/T

ddk
∣∣f̂(~k)

∣∣2 · k . (2.48)

We can now consider a specific final configuration f(~x). We choose it to be localized in

a region of size L, with Fourier momenta of order 1/L and with typical magnitude f̄ . As

to the final remark of sect. 2.4.1, here we are considering just a few independent degrees

of freedom—the Fourier modes with k ∼ 1/L in a volume of size L—so that they get

spontaneously excited to the desired level f̄ only if the corresponding action in (2.44) is of

order one, or smaller. At early and late times we get, respectively

S(T � L) ∼ Ld

T
f̄ 2 , S(T � L) ∼ Ld−1f̄ 2 (2.49)

Our path-integral formula (2.44) at late times thus yields

〈f(~x), T |0, 0〉 ∼ exp i Ld−1f̄ 2 , T � L (2.50)

This is Coleman’s theorem in our language. For d > 1, the amplitude for finding the system

significantly away from φ = 0 (large f̄) in bigger and bigger regions becomes smaller and

smaller. Put another way, the typical spread of the field decreases with distance scale. This is

the standard behavior of a field theory in high dimensionality. On the other hand, for d = 1

the L-dependence drops out, and we are left with a finite amplitude of finding an order-one

f̄ on all scales. In fact we know that a more careful estimate shows that the typical spread

of the field grows logarithmically with distance scale—as usual one cannot get the logs right

by performing Fourier transforms by dimensional analysis. Our analysis for the fluid will be

insensitive to such minutiæ.
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2.4.3 Back to the fluid

For our fluid, it is easy to convince oneself that the situation is more similar to the free particle

case than to a 1 + 1 standard field theory. The reason is simply that all the peculiarities

associated with the transverse excitations in a perfect fluid stem from their not having a

gradient energy, that is, from their behaving like infinitely many free particles. Of course, this

is a linearized statement. At the non-linear level, for large vorticous excitations, interactions

become important and the free-particle approximation breaks down. But, in fact, it is easy to

see that at low fluid velocities we can really describe the dynamics of vortices as a system of

free particles constrained to move on a quite non-trivial infinite-dimensional manifold—the

group of volume preserving diffeomorphisms.

To see this, we have to take the incompressible fluid limit. Of course, a fluid’s compress-

ibility is not a dimensionless quantity. It is a measure of the pressure gradient needed to

sustain a given density gradient. Since dp/dρ is the (squared) speed of sound, incompressibil-

ity is not an intrinsic property of the fluid, but rather emerges in the appropriate kinematical

regime: any fluid behaves as an incompressible one at low enough fluid velocities. In this

limit, one can consistently restrict to the vortex sector of the theory, i.e. to configurations

φ(~x, t) that at fixed time are volume-preserving diffs of ~x, as we now show.

Integrating out sound

It is easy to see that for low speeds and accelerations (i.e. weak time-dependence of φ),

integrating out classically the compressional modes introduces new Lagrangian terms for the

vortices that are of order ∂4
t and higher, whereas the vortex dynamics that we get by simply

ignoring the compressional modes starts at order ∂2
t . Expanding about the incompressible

limit following the logic spelled out in the next chapter and Appendix 6.5, and keeping the

leading terms in a small ∂t expansion we have from (6.52)-(6.55):

S ' S0 + w0

∫
d3xdt

[
− 1

2
c2
s (∇2Ψ)2 − 1

2
c2
s (∇2Ψ)

v2

c2
− ~∇Ψ · D

Dt
~v
]
, (2.51)
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where S0 is the compression-independent part of the action, v is the vorticose fluid flow

velocity field, D
Dt

is the convective derivative ∂
∂t

+ (v · ∇) and Ψ corresponds to the scalar

potential representing the compressional modes. Note that the second term in the action

is the only one suppressed by c2, and is clearly associated with relativistic effects. For a

non-relativistic fluid with cs � c, it can be safely ignored. On the other hand, for relativistic

fluids (cs ∼ c) with non-relativistic flows (v � c), such a term should be kept, being of the

same order as the other ones.

Varying the action above with respect to Ψ and solving for it, we get

Ψ = −1

2

1

∇2

v2

c2
+

1

c2
s

1

∇4
~∇ · D

Dt
~v . (2.52)

Plugging back into the action we get the effective action for the vortex variables,

Seff = S0 + ∆S (2.53)

S0 = w0

∫
d3φ dt

[1

2
v2 +

1

8

v4

c2
− 1

8

c2
sv

4

c4

]
(2.54)

∆S ' w0

∫
d3xdt

[1

8

c2
sv

4

c4
− 1

2

v2

c2

( 1

∇2
~∇ · D

Dt
~v
)

+
1

2

1

c2
s

( 1

∇2
~∇ · D

Dt
~v
)2]

(2.55)

where in S0 we dropped the rest-mass, ~v-independent contribution. As advertised, inte-

grating out the compressional modes introduces O(∂4
t ) corrections to the vortex action. At

small velocities and accelerations we can just restrict our original Lagrangian to the volume-

preserving configurations, that is we can just use the lowest order term in S0. In this

approximation, and in comoving coordinates, the dynamics are free, but of course we have

a very non-trivial constraint on the configuration space: ~x(~φ, t) cannot leave the space of

volume preserving diffs.

The absence of spontaneous symmetry breaking

We can now formulate precisely the question of spontaneous symmetry breaking for our fluid.

We want to compute the amplitude to propagate from ~x = ~φ to ~x = ~ξ(φ), with ~ξ a volume
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preserving diff: 〈
~ξ(φ), T

∣∣~φ, 0〉 =

∫ ~x(T )=~ξ(φ)

~x(0)=~φ

D~x eiS[~x] ∝ eiS[~xcl] (2.56)

If at late times all volume-preserving diffs get populated with equal probability, there is no

spontaneous symmetry breaking and our perturbative analysis in the broken phase is not

applicable.

Unfortunately, we are not able to carry out this computation for a completely generic

final configuration ~ξ(φ): given the simple free dynamics of the system, we can confidently

say that there will be a classical solution with time-independent velocity field ~v(~x) evolving

from ~x = ~φ to ~x = ~ξ(φ). However, because of the complexity of the manifold where motion

takes place, determining the velocity field that connects the initial and final configuration

would be quite hard. And without knowledge of the velocity field, we cannot compute the

classical action.

Nevertheless, to assess the question of spontaneous symmetry breaking we do not need

to be completely general. We can focus, for instance, on sample vortex configurations with

a high degree of symmetry. For example, we can consider ~ξ(φ) to be a rotation around the

z-axis, of an angle ∆ϕ that depends on the distance r from the axis (dropping to zero above

some distance R), localized in a region of length L � R in the z direction.6 The classical

solution connecting the initial configuration to this is a vortex in constant rotation with

r-dependent angular velocity,

ω(r) =
∆ϕ(r)

T
(2.57)

localized in a cylinder of radius R and height L. From eq. (2.54), the classical action for this

6Similarly to the sample f(~x) considered in sect. 2.4.2, the final configuration considered here corresponds

to exciting an O(1) number of degrees of freedom. In a region of sizes L, R, and R we are considering

essentially just the ‘fundamental harmonic’, with kz ∼ 1/L and kx ∼ ky ∼ 1/R. This makes the comment

at the end of sect. 2.4.1 immaterial for our purposes.
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solution is

Scl[∆ϕ] ' 2π

∫
dzrdrdt 1

2
w0r

2ω2(r) =
w0

T
π

∫
dzdr r3∆ϕ2(r) ∼ w0

R4L∆̄ϕ
2

T
, (2.58)

where ∆̄ϕ is the typical overall rotation of the final configuration in the region of interest.

The amplitude we are interested in therefore is

〈
rotation of ∆̄ϕ in R,L ;T

∣∣~φ, 0〉 ∼ exp i
w0R

4L

T
∆̄ϕ

2
. (2.59)

Angles of order one get populated in a cylindrical region of any given size R, and L if we

wait long enough:

T & w0R
4L . (2.60)

At late times the symmetry is completely restored. Notice how the estimate (2.60) matches

precisely what we could have inferred from the linearized statement (2.37).

2.5 Quantum viscosity?

Even if the above arguments alleviate the concerns raised by the perturbative analysis of

sect. 2.3, we are still left with indications that the effective theory at hand may not be

unitary.

A standard effective field theory can be unitary at low energies thanks to the decoupling

of the short distance degrees of freedom. That is, thanks to the fact that to excite the

microscopic degrees of freedom one is neglecting/being agnostic about, one needs a non-zero

energy. There is a gap, and as long as one works below the gap, the long-distance degrees

of freedom are sufficient to parameterize the dynamics.

In our case, we are not in such good shape. To excite very microscopic vorticose defor-

mations of the fluid we need no energy at all. High momenta are not associated with high

energies. This is also evident from eq. (2.37), where energy and momentum play strikingly

different roles. This suggests that for any given cutoff in momentum space, the effective
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theory may not be exactly unitary. No matter how small the energy of the process under

consideration, there may be a non-trivial probability flow across the cutoff. From the effec-

tive theory viewpoint this should look like dissipation. In fact, for classical turbulence in

a viscous fluid this is exactly what happens—viscosity drives vorticity from large scales to

smaller and smaller ones, down to the UV cutoff of the fluid description (the mean free path

of the underlying microscopic system.) Could it be that in our case we have some sort of

quantum contribution to viscosity due to this non-decoupling of micro-vortices? How can

we test this conjecture?

2.6 Summary & Outlook

Our findings raise more questions than they answer. The perturbative analysis about the

naive, semiclassical vacuum φI = xI indicates that the ordinary fluid effective field theory is

strongly coupled at all scales, and thus inconsistent (sect. 2.3). On the other hand, a more

careful non-perturbative study of the theory’s quantum-mechanical vacuum shows that this

has essentially nothing to do with the semiclassical one, and suggests that the naive per-

turbative degrees of freedom and their dynamics have no quantum-mechanical counterpart

(sect. 2.4). One is thus tempted to welcome the latter conclusion and drop the former, and

simply ignore the perturbative results. In particular, the strong coupling problem we isolated

in sect. 2.3 might not be there—being associated with excitations that might themselves not

be there. Also, in the ~x(~φ, t) parameterization of sect. 2.4, the vortex dynamics are essen-

tially free—the only thing resembling an interaction is the volume-preserving constraint. It

is not clear what ‘strong coupling’ would mean in such a description of the system.

However, there is a number of confusing aspects that suggest that this optimistic attitude

may be naive. The first is that even for theories where Coleman’s theorem applies, one

can recover correct information about physical quantities—like the spectrum for instance—

by doing perturbative computations about the wrong semiclassical vacuum [21] (see also a



56

related discussion in [22]). We do not know yet whether, and to what extent, the results

of [21] apply in our case. If they do, they would demote our Coleman theorem-like result

to a somewhat formal statement about the vacuum structure in the far infrared, with less

crucial consequences for more local physics.

The second confusing fact—which points in the same general direction as the previous

one—is that for tiny but finite cT we have a well defined effective theory that is perturbative

up to some finite energy/momentum scale. For this effective theory there is no funny Coleman

theorem-like behavior. All the symmetries that are spontaneously broken classically, remain

so quantum-mechanically. The associated Goldstone bosons are described precisely by our

perturbative analysis of sect. 2.3. On the other hand, as we stressed above, if cT � cS we

expect this theory to be physically equivalent to the cT = 0 one for local questions, which

do not rely crucially on the precise nature of the asymptotic states of the theory. While this

kind of logic may be misleading for massive gauge theories or massive gravity, where having

or not having the mass really determines the number of local (as opposed to asymptotic)

physical degrees of freedom, here there is no such subtlety. The transverse degrees of freedom

are perfectly physical even for vanishing cT ; they have non-vanishing conjugate momenta and

are thus standard Hamiltonian degrees of freedom. Only, they do not feature wave solutions.

It thus seems that for local questions the perturbative analysis of sect. 2.3 should be

perfectly fine. Of course the S-matrix is not a local quantity, and it may well be that the

pathologies we encountered there are irrelevant for local questions. But we find it unlikely:

if an effective theory exhibits strong coupling in scattering processes at some energy and

momentum scales, it is probably useless for computing local correlation functions at the

corresponding length scales. To settle the question one should compute directly local n-

point functions, and see whether the perturbative expansion breaks down there. However,

for the S-matrix we have a very powerful property—unitarity—that makes the tree level

sufficient for such a question. For local correlation functions instead, one should really
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ascertain the validity of the perturbative expansion by computing loop corrections—which,

given that Lorentz invariance is spontaneously broken, is certainly doable but somewhat less

transparent than usual. We leave this to future work.

Our results invite one to focus on correlators of quantities that are invariant under volume-

preserving diffs. For instance, for a free massless scalar in 1 + 1 dimensions, even though

Coleman theorem applies, correlators of shift-invariant quantities are perfectly well-defined,

and match what one would naively expect by doing perturbation theory about the wrong

classical vacuum where the shift symmetry is spontaneously broken. Whether this property

survives the inclusion of interactions and the generalization to our fluid, we do not know.

If all diff-invariant correlators are well defined for our fluid, then one could in principle

decide that those are the only observable quantities. This would correspond to gauging

the problematic volume-preserving symmetry. This is certainly an interesting possibility to

consider, and maybe the theory defined this way would be consistent. Yet it is not clear

to us what resemblance it would bear with a physical fluid: as we tried to make clear, at

the classical level the volume preserving diffs are not a gauge redundancy—they are real

symmetries acting on physical and measurable degrees of freedom.

On a different note, even if the effective theory is not strongly coupled, we find it inter-

esting that microscopic vortices may impair its unitarity (sect. 2.5). We plan to make this

statement more systematic and quantitative. In particular, it would be interesting to un-

derstand to what extent this effect can be parameterized as a new contribution to viscosity,

and whether it has any relation to the conjectured viscosity-over-entropy bound [23].

And finally, to make good on our promise discussed in the comment before section 2.2.1

we note again that one may take issue with all the previous analysis because, with our

thermodynamic understanding of the EFT, the zero temperature limit corresponds to Fb = 0

(or equivalently w0 = 0) and so it appears that our quadratic action is trivial. In order to

remedy this situation we need to include a conserved charge and work instead with the
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effective field theory described by F (b, y) as defined in section 1.3. So while one may be

temped to say that the previous analysis and discussion (which was done before a complete

understanding of this subtlety) is entirely moot we believe that this should not be the

case. The reason being that the essential features that plagued our system—modes without

gradient energies—are still there in the conserved charge case. If we look at perturbations in

the conserved charge case (see Appendix 6.1 for more details) in the zero temperature limit

the quadratic action is non-trivial

L ' 1
2
w0

(
~̇π2
L − c2

s(~∇ · ~πL)2
)

+ 1
2
w0 ~̇π

2
T + 1

2
Fyyy

2
0 ( ˙̃π0)2 , (2.61)

where, importantly w0 = (Fyyo − Fbb0) → Fyy0 6= 0. Clearly, there are modes without

gradient energy terms—in fact, there is now one more of them. The same restrictions apply

to this π0 mode as do the πT modes in the sense that both are restricted to not having

a gradient energy to any order in derivatives by an infinite dimensional symmetry. And in

fact, the two infinite dimensional symmetries taken together form a subclass of 4-dimensional

volume preserving diffeomorphisms.

And so, while the details still need to be worked out, which we leave for the moment for

future work, the qualitative features of the previous analysis should still survive: There will

be a similar incompressible limit where we can once again prove, in an identical manner a

la section 2.4.3 that we do not have spontaneous symmetry breaking. We believe that set

of calculations as to those in section 2.3 can be performed for the charged fluid system and

because of the nearly identical starting ingredients the conclusions will be the same. And so

while the details will be worked out in the future, we still feel that the analysis throughout

this chapter, and all the confusion they generate, is still of value.



Chapter 3

Vortex–Sound Interactions

In the preceding chapter, where the quantization of hydrodynamics was attempted, we dis-

cussed at length about how the vortex degrees of freedom are problematic at the quan-

tum level but the trouble is there already at the classical level. Consider, for instance, a

non-relativistic incompressible fluid, where the only allowed configurations are vortices, i.e.,

divergence-free velocity fields. In that limit, the continuity equation is just the constraint

~∇·~v = 0, the only degree of freedom is the vorticity field ~Ω = ~∇×~v, and the Euler equation

can be rewritten as

∂

∂t
~Ω = ~∇×

(
~v × ~Ω

)
. (3.1)

If one neglects the non-linearity on the right hand side there is no time-evolution. The

dynamics are completely dominated by non-linearities.

An equivalent viewpoint is the effective field theory one put forward in Chapter 1. As

discussed in the previous chapters, vortices correspond to excitations that, because of an

infinite-dimensional symmetry (volume-preserving diffeomorphisms), have vanishing energy

in the limit of vanishing velocities, regardless of the excitations’ spatial gradients. It is then

easy for the system to excite these zero-energy gradients, and to make them exit the regime

of validity of perturbation theory. Indeed, in field theory, gradient energy counts as quadratic

59
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potential energy in the Hamiltonian. In the absence of a quadratic potential, the dynamics

are dominated by anharmonicities.

The situation is strikingly different for compressional modes (in a compressible fluid).

At the equation of motion level they correspond to perturbations δρ in the density field,

obeying a wave equation plus non-linear corrections:( ∂2

∂t2
− c2

s∇2
)
δρ+ · · · = 0 . (3.2)

Even neglecting the non-linearities, there are some non-trivial dynamics corresponding to

the free propagation of sound waves. Then—for small δρ—the non-linearities can be treated

as small corrections to this. At the effective field theory level, compressional modes are

standard gapless fields, which carry kinetic and gradient energy, and for which non-linear

terms correspond to standard perturbative interactions .

These considerations indicate that there should exist physical situations in which com-

pressional modes can be dealt with in perturbation theory, even though there might be an

underlying vorticose ‘background’ that cannot. A nearly incompressible fluid provides such

a system; there, by definition, compressional modes are difficult to excite.

It should be remembered that near incompressibility is not an intrinsic property of certain

fluids, but rather a kinematical regime that exists for all fluids: for fluid flows that are much

slower than sound, any fluid behaves as nearly incompressible [24], and vice versa, for fluid

flows that are as fast as sound, any fluid is quite compressible. The analysis that follows

thus applies to any fluid in the appropriate kinematical regime.

We will develop an effective field theory of sound interacting with vortices, and we will

outline the systematics of the perturbative expansion that can be carried out close to the

incompressible limit (sect. 3.1).1 Some physical aspects of our analysis are not entirely new.

1We will ignore dissipative effects due to viscosity and heat conduction throughout this chapter. This is

consistent at low frequencies and long wavelengths, because these effects correspond to higher order terms

in the derivative expansion. An initial attempt at incorporating dissipation in our effective field-theory
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For instance, the study of sound generation due to fluid flow (as opposed to time-dependent

boundary conditions) was pioneered in the 1950’s by Lighthill [25,26]. Since then, its study

has had a long history full of many contributions and contributors, the details of which can

be found in the relatively recent texts [27,28].

The basic idea of Lighthill is to identify the non-linear terms in (3.2) (the ‘dots’) as the

source of sound, and to try to solve that equation perturbatively. In a sense our field theory is

doing just that. However, by insisting on field theoretical ideas formulated in terms of a local

action we can be completely systematic in how we carry out such a perturbative expansion—

simply because perturbation theory in quantum field theory has been exhaustively studied.

We can organize each computation in terms of Feynman diagrams. By restricting to tree-level

diagrams, we will be, in fact, just solving the classical equations of motion perturbatively.

The Feynman diagram language is an extremely powerful organizational and computational

tool to do that.

It should be noted that Lighthill’s approach to eq. (3.2) is the hydrodynamical analog of

the so-called post-Netwonian expansion of general relativity (see e.g. [29]), which has been

recently recast into an effective field theory language by Goldberger and Rothstein [30]. Our

work owes much to their’s.

Our first application of our tools will be to reproduce two preexisting results in the

literature: the rate at which vorticose motions emit sound (sect. 3.2), and the cross-section

they have for scattering it (sect. 3.3). However, since our field theory is relativistic by

construction, we will be able to provide the relativistic corrections to these results at no

additional cost. To the best of our knowledge, these have never been computed before.

On top of providing powerful computational tools, the effective field theory also offers a

novel viewpoint on the dynamics, which can lead to simple predictions of previously over-

looked phenomena. For instance, since vortices interact with sound waves, and since these

language can be found in [5].
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are gapless, from the field theoretical viewpoint it is obvious that sound waves can mediate

long-range interactions between vortices. These are in addition to the well known purely

kinematical “dragging” interactions, whereby the long-distance tail in each vortex’s velocity

profile drags all the other vortices with it. We are not aware of any mention of our sound-

mediated interactions in the literature. We will compute the leading contribution to the

associated potential (sect. 3.4).

Interpreting the effects of such a potential on the vortices themselves will lead us to

studying a somewhat different problem. The dynamics of vortices can be extremely coun-

terintuitive. Even in the simplest case of vortex lines—which are the only possible vortices

in superfluids, but exist in ordinary fluids as well—the equations of motion for the lines’

positions are first order in time-derivatives. This means that concepts like that of ‘force’ on

a vortex (which we would naively derive from our potential) do not really apply. We remedy

this by constructing an action that describes the vortex lines’ dynamics in the purely incom-

pressible limit (sect. 3.5). This action includes the aforementioned “dragging” interactions

as long-distance (that is, non-local) Lagrangian terms. Then, our sound-mediated potential

energy should just be interpreted as the first-order—in departures from the incompressible

limit—correction to this action, whose consequences at the equation of motion level can be

derived just by varying the action in the usual way.

Finally, bringing everything together (sect. 3.6), we rewrite the non-local dragging inter-

actions as being mediated by an auxiliary local field, and we reintroduce the local couplings

of vortices to sound, thus ending up with a convenient, local field theory describing the

dynamics of vortex lines and their interactions—among themselves and with sound—to all

orders in perturbation theory. We feel this to be substantial technical as well as conceptual

improvement over the more standard “vortex filament” model [31].



63

3.1 Coupling of incompressible vortex flows to sound

waves

Our goal here is to systematically incorporate compressional effects by expanding this La-

grangian around slow (with respect to the speed of sound) vorticose background fluid flows.

The details of this expansion are given in Appendix 6.5 but we reproduce the key logical

steps below simply because this expansion, while pretty technical, is of vital importance for

the remainder of the chapter.

The vortex/compressional mode separation is made most clear by working first in the

~x(φ, t) parameterization of the fluid, i.e. working in comoving coordinates. Additionally, we

make the speed of light c explicit in order to better keep track of relativistic effects. In these

coordinates the action reads:

S = −w0c
2

∫
d3φdt det J f

(
(det J−1)

√
1− v2/c2

)
. (3.3)

Where J is the Jacobian matrix

J ij =
∂xi

∂φj
, (3.4)

~v is the fluid’s velocity field,

~v = ∂t~x(φ, t)|φ , (3.5)

and w0c
2 is its enthalpy density at the reference point b = 1:

w0c
2 = (ρ+ p)b=1 = −Fb(1) . (3.6)

We are giving w0 units of a mass density, and f is a dimensionless function of its dimensionless

argument, defined by

F (b) = −w0c
2 f(b) . (3.7)

The above expression for the action is derived in Appendix 6.5 and was originally given in

reference [10]. The form of equation (3.3) is convenient for taking the non-relativistic limit.



64

However, we will find that keeping track of all relativistic effects is not particularly difficult

and so we will do so.

For incompressible flows we have

~x(φ, t) = ~x0(φ, t) , (3.8)

where, at each moment in time, ~x0(φ, t) is a volume preserving diffeomorphism of the co-

moving coordinates ~φ,

det (J0) = 1 , J0
i
j ≡ det

(
∂xi0
∂φj

)
. (3.9)

This flow will only be a solution to the equations of motion, given by varying (3.3) with

respect to xi(φ, t), when the time-dependence of the flow vanishes. Consequently, for slow

(relative to the speed of sound) vorticose flows, xi0(φ, t) is only an approximate solution with

compressional corrections. So for these nearly incompressible flows we parametrize the fluid’s

configuration by

~x(φ, t) = ~x0(φ, t) + ~ψ(φ, t) (3.10)

where ~ψ(φ, t) vanishes in the limit of negligible time-dependence of ~x0(φ, t), and is curl-free

with respect to ~x0, in the sense that

~ψ = ~∇x0Ψ(~x0, t) , (3.11)

for some function Ψ. It is easy to convince oneself that, at least to lowest order, this is

the correct characterization of compressional modes. For instance the determinant of the

Jacobian (3.4), which characterizes the compression level of the fluid, at linear order in ~ψ is

det J ' 1 + ~∇x0 · ~ψ , (3.12)

where we made use of the volume preserving property of ~x0(φ, t). So, a curl component (wrt

to ~x0) in ~ψ does not contribute to compression—only a gradient component does. In the

following we will denote derivatives wrt to ~x0 simply by ~∂0—not to be confused with the
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usual relativistic notation of denoting ∂0 as the partial derivative with respect to time, which

will be denoted here simply by ∂t.

We can now expand (3.3) in terms of these small perturbations. To quadratic order in

the compressional modes we have

det J = 1 + [∂0ψ] + 1
2

(
[∂0ψ]2 − [∂0ψ∂0ψ]

)
+ . . . , (3.13)

where [. . . ] represents the trace 2. Meanwhile, the velocity field is given simply by

~v = ~v0 + ∂t ~ψ(φ, t) , (3.14)

where ~v0 is the divergence-free velocity field associated with ~x0(φ, t):

~v0 = ∂t~x0(φ, t) , ~∂0 · ~v0 = 0 . (3.15)

Taylor-expanding and changing coordinates from the ~φ to ~x0, and dropping total-derivative

terms, the action can be written to lowest order as

S = S0 + w0

∫
d3x0dt

{
1
2

(
D
Dt
~ψ
)2 − 1

2
c2
s[∂0ψ]2 + ~v0 · DDt ~ψ −

1
2
c2s
c2
v2

0[∂0ψ] + . . .
}

(3.16)

where

S0 = w0

∫
d3φdt 1

2
~v0

2 + . . . (3.17)

has no ψ-dependence. The . . . ’s in S0 are relativistic corrections, which are only powers

of ~v0
2, c and cs. Since S0 does not depend on ~ψ, it should be thought of as the action

for the incompressional flow parameterized by ~x0(~φ, t). To use S0 in this sense, one should

supplement it with a constraint that ~x0 be a volume-preserving diff of ~φ. For instance, it is

straightforward to check that adding to S0 the term∫
λ(φ, t)

[
det(∂xi0/∂φ

j)− 1
]
, (3.18)

2So [∂ψ] = ∂iψ
i and [∂ψ∂ψ] = ∂jψ

i∂iψ
j etc.
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where λ is a Lagrange multiplier, yields the correct Euler equation for incompressible fluids.3

However, as we stressed in the Introduction, the incompressional dynamics are very difficult

to solve for, whereas, at least for slow fluid flows, we can make substantial progress by sys-

tematically applying perturbation theory to the compressional degrees of freedom, for a given

background incompressible flow. So, in the following we will treat the volume-preserving evo-

lution ~x0(φ, t) as given, and we will solve for the small compressional perturbations of such

a background. In the quantum field theory/functional integral language, this is equivalent

to performing the path integral—at tree level—over the ~ψ field, in the presence of given

external sources ~x0(φ, t).

In (3.16), the D
Dt

’s remind us that the partial time derivatives were taken at fixed comoving

coordinates, i.e. fixed φ. These are the usual convective derivatives of fluid dynamics. In the

x0 coordinates, they simply act as

D
Dt
g(x0, t) = ∂tg(x0, t) + (~v0 · ~∂0)g(x0, t) . (3.19)

This expression is exact, to all orders in ~ψ: it is a mathematical identity, which follows

simply from the chain rule; the fact that ~x0(φ, t) only reproduces part of the full, physical

flow, is irrelevant. Finally, we have used that

f ′(1) = 1 , f ′′(1) = c2
s/c

2 (3.20)

(cs is the sound speed), which follow, respectively, from the definitions (3.6), (3.7), and from

a straightforward analysis of the perturbation spectrum about the background (1.2).

And so, keeping the free quadratic terms in ψ (those not coupled to v0), and the linear

coupling of ψ to the background vortex velocity, we finally write the lowest order action

3In the Euler equation, λ plays the role of pressure.
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containing the compressional modes as

∆S = Sfree + Sint (3.21)

Sfree = w0

∫
d3x0dt

1
2

(
(∂tψ

i)2 − c2
s[∂0ψ]2

)
(3.22)

Sint = w0

∫
d3x0dt

(
vi0(~v0 · ~∂0)ψi − 1

2
c2s
c2
v2

0[∂0ψ] + . . .
)
. (3.23)

We have discarded a ~v0 · ∂t ~ψ term after noting that, as ~ψ = ~∂0Ψ, we can place this spacial

derivative on ~v0 by a simple integration by parts, and the term will vanish as ~∂0 · ~v0 = 0.

This simple action is enough to generate the famous “analogy” of Lighthill [26], with

an additional relativistic correction. When we vary (3.21) with respect to ψi we recover

Lighthill’s limit of (3.2). Of course, for the fluids Lighthill was implicitly considering the

relativistic effects would be extremely subleading, however for ultra-relativistic fluids where

c2
s can be as large as c2/3 this correction term can become a leading-order effect.

3.2 Sound emitted by a vorticose source

As an illustration of the utility of the effective field theory techniques, we reproduce Lighthill’s

result with additional relativistic correction terms. Instead of manipulating the lowest or-

der equations of motion we can work directly from the action given by (3.21) utilizing the

standard tools of quantum field theory to calculate physical observables. In particular, us-

ing the language of Feynman diagrams and restricting to tree level amplitudes allows us

to isolate classical quantities [32]. For comparison, a derivation of Lighthill’s result using

more standard techniques can also be found in Landau and Lifshitz’s classic Fluid Mechanics

textbook [24].4

Say that we have a vorticose, possibly turbulent, configuration ~v(~x, t) with typical fluid

flow of v � cs and some characteristic size `. The velocity field acts as a source for sound

waves. A cartoon depiction of this process is shown in Figure 3.1. We can formally deal

4 It should be noted that there is a small typographical error in their final result.
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Figure 3.1: Sound radiating from a vorticose source.

with this emission process via QFT tools, by computing the amplitude for emission of a

single “phonon” from our compact vorticose source. The linear (in ~ψ ) terms of Sint in (3.21)

contribute to the “tadpole” diagram

= iM(~p) , (3.24)

where M(~p) denotes the probability amplitude to emit a single phonon of momentum ~p.

Given the probability amplitude one can calculate the emission rate with the standard for-

mula:

dΓ(~p) =
1

T

d3p

(2π)32csp
|M(~p)|2 , (3.25)

where T → ∞ represents the total integration time, and will drop out in time averaged

quantities (which is what we are after). The standard relativistic formula has also been

modified with c→ cs as the energy of a phonon with momentum ~p is simply csp (Appendix

6.3 and 6.6 for details).
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Proceeding in the usual manner one finds:

iM(~p) = w
1/2
0

pipj

p
κ̃∗ij(csp, ~p) (3.26)

where κij(~x, t) is the “kinetic tensor”

κij(~x, t) ≡ vivj − 1
2
δij

c2s
c2
v2 , (3.27)

and κ̃ij its Fourier transform,

κ̃ij(ω, ~p ) =

∫
d3xdt κij(~x, t) e

iωte−i~p·~x . (3.28)

Before inputting this amplitude into equation (3.25), we can make use of the multipole

expansion: The typical frequency of the vorticose source is ω ∼ v/`. The emitted sound

waves inherit such a frequency, and have therefore a typical wavelength λ ∼ cs/ω ∼ ` ·(cs/v),

which is, in our approximation, much bigger than the vorticose source’s size `. This means

that we can treat the source as point-like, or the sound waves’ wavelength as infinite. In the

monopole approximation we have

κ̃ij(csp, ~p ) ' κ̃ij(csp, 0) . (3.29)

In this approximation, integrating over the solid angle we have

dΓ(ω) =
ω3 dω

T

w0

60π2c5
s

[
|κ̃ii|2 + 2|κ̃ij|2

]
, (3.30)

where the κ̃’s are evaluated at frequency ω and vanishing ~p, and we have used nink = 1
3
δik

and ninknlnm = 1
15

(δikδlm + δilδkm + δimδkl) (the ‘overline’ denotes the average over the solid

angle.)

The emission rate is not the most natural quantity to consider when calculating classical

wave emission, a more typical one would be the power radiated. It is easy enough to augment

(3.30) in order to get this more standard quantity. If we have Γ =
∫
dΓ we can write the

power as simply P =
∫
E · dΓ. In our case, the energy of a single phonon is simply ω (we
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are working in ~ = 1 units). Extending for convenience the range of integration to negative

frequencies (and dividing by 2), the total radiated power is

P =
1

T

w0

120π2c5
s

∫ ∞
−∞

dω ω4
[
|κ̃ii|2 + 2|κ̃ij|2

]
. (3.31)

Noting that, for real f(t) and g(t),∫ ∞
−∞

dω

2π
f̃(ω) g̃∗(ω)ω2n =

∫ ∞
−∞

dt
dnf(t)

dtn
dng(t)

dtn
, (3.32)

we see that the inclusion of the 1/T factor, where T →∞, gives us time averages. Meanwhile,

the restriction to vanishing ~p gives us volume integrals of the form

Kij(t) ≡
∫
d3xκij(~x, t) . (3.33)

Putting everything together, for the radiated power we finally get

P =
w0

60πc5
s

[
〈K̈2

ii〉+ 2〈K̈ij
2〉
]
. (3.34)

where 〈...〉 denotes the time average, and the over-dots time derivatives.

To compare this result to the standard one—see e.g. [24]—, we define the traceless and

pure-trace quantities

Qij(t) ≡
∫
d3x

(
vivj − 1

3
v2δij

)
, Q(t) ≡

∫
d3x 1

3
v2 , (3.35)

which we can use a basis for our tensor Kij. In terms of these we get

P =
w0

πc5
s

[
1
4
〈Q̈ 2〉

(
1− 3 c

2
s

c2
+ 9

4
c4s
c4

)
+ 1

30
〈Q̈ij

2〉
]
. (3.36)

This matches the result contained [24] with the addition of relativistic corrections. Note that

these are much smaller than the leading terms only if cs is much smaller than c, regardless

of how small v/c is. For relativistic equations of state with c2
s ∼ 1/3 c2, the relativistic

corrections are unsuppressed. The above expression is correct to lowest order in v/cs—

which is our small expansion parameter, associated with near incompressibility—but to all

orders in cs/c, and thus applies to those cases as well.
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Figure 3.2: Sound scattering off a vorticose source.

By going to higher orders in the diagrammatic expansion of eq. (3.24), one could system-

atically compute higher order (in v/cs) corrections to this result—for instance “radiative”

corrections, as was done in the case of gravitational wave emission by binary systems in [33].

The advantage of the EFT techniques for performing these higher-order computations is

manifest: for instance, the UV divergences associated with the point-like approximation for

the source can be handled in the standard and well understood ways of renormalization

theory.

3.3 Scattering sound waves off vorticose sources

If we include higher order terms in (5.3) we can calculate other interesting quantities. For

example, the scattering of sound waves by a nearly incompressible flow. A cartoon illustration

depicts this process in Figure 3.2. As emphasized in [34] this can be a powerful probe of the
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Figure 3.3: Feynman diagrams contributing to the scattering of sound by a background fluid flow.

The circled crosses denote ψ-v0 interaction terms. There is no propagator associated with the double

lines, which just depict the external source v0.

details of the fluid flow, e.g. to address questions about turbulence. The simplest scattering

diagram will come from terms in the action quadratic in ψ—one ψ for the incoming wave, one

for the outgoing one—and coupled to v0. In principle there are other diagrams contributing

to the same physical process, depicted in fig. 3.3. However, it is easy to convince oneself

by simple power counting that, for small v0/cs, the quadratic-in-ψ vertex is the leading

contribution: as derived in Appendix 6.5, it involves a single power of v0, whereas all the

other diagrams start at order v2
0. The ‘cross’ in the second diagram of the figure yields

directly a v2
0 factor, while the crosses in the other diagrams yield a factor of v0 each, but

there are two such vertices per diagram.

Continuing the expansion that led to (5.3), and which is summarized in detail in Appendix

6.5, we obtain for this interaction term in the action:

Sint ⊃ Sψ vn = w0

∫
d3xdt

{
(∂tψi)(v · ∇ψi)−

c2
s

c2
(vi∂tψ

i)[∂ψ] +O(v2)

}
. (3.37)

The second term is a relativistic correction, which is important if the speed of sound is not

much smaller than that of light. With an abuse of notation, we have stopped differentiating

between x and x0, and between v and v0: all x’s and v’s should be thought of as being x0’s

and v0’s.

When calculating the power emitted by a vorticose source in the previous section we only

made one assumption about the flow (in addition to its having a finite size): its flow velocity

was very subsonic, with v/cs � 1. Now however, we have another dial we can control, that of
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the frequency of the injected sound waves. In particular, we take the same limit as [34] and

take the frequency of the incoming sound to be much larger than the natural frequency of the

vorticose fluid flow: ωψ � ωv. This is an experimentally convenient limit, as it distinguishes

the scattered radiation from the naturally emitted one discussed in the previous section.

For given velocity profile ~v(~x, t) of the source, the (ω1, ~p1)→ (ω2, ~p2) scattering amplitude

associated with the interaction terms above is simply

iM = −i
{

(p̂1 · p̂2)
[
ω1p

i
2 + ω2p

i
1

]
− c2

s

c2

[
ω1p̂

i
1 p2 + ω2p̂

i
2 p1

] }
ṽi(∆ω,∆~p) , (3.38)

where ∆ω and ∆~p are the energy and momentum transfers:

∆ω ≡ ω1 − ω2 , ∆~p ≡ ~p1 − ~p2 . (3.39)

According to our assumptions, the typical frequency and wave-number of ṽi are

∆ω ∼ ωv � ω1 , ∆p ∼ 1

`
∼ ωv

v
, (3.40)

where ` is the typical size of the source. We thus see that from the sound waves’ viewpoint,

the energy transfer is negligible, both in absolute terms and relative to the momentum

transfer:

∆ω

ω1

� 1 ,
∆ω

ω1

∼ v

cs
· ∆p

p1

� ∆p

p1

. (3.41)

To simplify the amplitude we can thus set

ω1,2 → ω , |~p1,2| → ω/cs . (3.42)

On the other hand, the momentum transfer—and thus the scattering angle—can be sizable,

as long as ωv/ω is not much smaller than v/cs :

∆p

p1

∼ cs
v
· ωv
ω
. (3.43)

We are thus left with

iM' −i ω
2

cs

[
(p̂1 · p̂2)− c2s

c2

]
(p̂1 + p̂2) · ~̃v(∆ω,∆~p) . (3.44)
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Inserting this into the standard formulae for the scattering cross section, which, for the

convenience of the reader, are also quickly derived in Appendix 6.6, we have

dσ

dΩ d(∆ω)
=

1

4c6
s

· ω4

(2π)3
· 1

T

[
(p̂1 · p̂2)2 − 2c2s

c2
(p̂1 · p̂2) + c4s

c4

] ∣∣(p̂1 + p̂2) · ~̃v
∣∣2 , (3.45)

where T → ∞ is a long observation time—long enough to observe the whole scattering

process (the same T should be used to define the Fourier transform ~̃v).

If the source’s velocity field is nearly stationary, ~̃v ∼ (2π) δ(∆ω), or more generally if one

does not have the experimental resolution necessary to detect the small frequency transfer

∆ω, one can integrate in ∆ω and end up with a time-averaged expression:

dσ

dΩ
=

1

4c6
s

· ω4

(2π)2

[
(p̂1 · p̂2)2 − 2c2s

c2
(p̂1 · p̂2) + c4s

c4

]
(p̂1 + p̂2)i(p̂1 + p̂2)j

〈
ṽi∗ṽj

〉
, (3.46)

where now ṽ = ṽ(∆~p , t) denotes a purely spatial Fourier transform of the source’s velocity

field, and 〈...〉 denotes a time-average. Needless to say, the second and third terms in brackets

are relativistic corrections, and—like in the previous section—they are exact to all orders in

cs/c.

The result expressed in (3.45) can be recast in a form that can be compared to previous

results obtained by more traditional (and much more laborious) methods [34]. However,

the comparison takes some non-trivial translating and so it is contained in Appendix 6.7.1.

When the smoke clears, we see that our answer disagrees with that given in [34] by an overall

factor of 2. To test the self-consistency of our computations, we check whether they obey

the optical theorem. Since the optical theorem relates something quadratic in the scattering

amplitude (the total cross-section) to something linear in it (its imaginary part in the forward

limit), this is a non-trivial check of the overall normalization of our final result. According to

standard cutting rules, at this order in perturbation theory the optical theorem should relate

the cross section we have just computed to the imaginary part of the the third diagram in

fig. 3.3. As we show in Appendix 6.7.2, the check works out, which gives us confidence in

our results.
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3.4 Sound-mediated long distance interactions between

vortices

In addition to the physical processes considered above, which have been previously treated

by perturbation theory performed at the level of the equations of motion (at least to lowest

order for non-relativistic fluids), our formalism naturally motivates the calculation of the

long-range interaction due to the exchange of compressional modes between two physically

separated vortex configurations. The effective field theory approach invites such a question,

and gives it a clear-cut qualitative answer: our vortices interact with compressional modes;

these are gapless, and, as a consequence, can be exchanged between arbitrarily distant vor-

tices; at some order in perturbation theory, this exchange will yield a non-trivial long range

interaction between vortices. There is no question about it. For instance, this is how the

classical 1/r Coulomb interaction arises in QED—via the tree-level exchange of virtual pho-

tons. On the other hand, such a question is not a natural one to ask in the standard approach

to fluid dynamics, and in fact, to our knowledge, these long-range interactions have never

been postulated before—let alone computed.

Notice that there are other long-range interactions between vortices, which survive even

in the strict incompressible limit (cs → ∞), and are well understood in purely kinematical

terms. As we will describe at some length below, each vortex typically carries a long distance

“tail” in its velocity profile, scaling for instance as 1/r for infinitely long vortices. Then, if

one is given several well-separated vortices, each will be dragged by all the others’ velocity

tails. As will see, our sound-mediated interaction will contribute a small correction to this,

suppressed by (v/cs)
2, but by no extra powers of r.

In Chapter 2 we initiated the analysis of our long-range interactions, by solving the

linearized equation of motion for the sound modes and plugging the solution back into the

action. Here we will use a more systematic technique—that of the effective action.5 Even

5 An excellent pedagogical introduction to the effective action as utilized in a very similar context is given
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though at the classical level using the effective action is equivalent to solving the (generally

non-linear) equations of motion for some of the fields and plugging their solutions back into

the action, and even though in the end (at least at first) we will restrict to a lowest order

computation thus reproducing the result of the previous chapter, we find it useful to set up

a more systematic framework anyway, to pave the way for higher-order computations or for

more general ones.

For our system, the sources will be given by vortices characterized for simplicity by the

same typical length scale l and the same typical velocity v � cs, separated by a much

bigger length scale r � l, so that they appear as point-like sources to each other. These

vortices interact via the exchange of compressional modes—virtual phonons, in our QFT-

inspired language. We can compute the potential energy due to this exchange, and standard

thinking indicates that its gradient will give the “force” that the sources exert on each other.

As we will see, this intuition is fundamentally incorrect, but the potential energy is still

a well-defined physical quantity worth computing, and we can worry about its dynamical

implications later.

The relevant quantity is the effective action Seff one is left with after integrating out the

compressional modes in the path integral. Schematically

eiSeff [~x0] ≡
∫
D~ψ eiS[~x0, ~ψ] . (3.47)

Since ~ψ is gapless, Seff will contain non-local interaction terms—precisely what we are after.

As it turns out, the simple lowest order action given by (3.21),

S[~x0, ~ψ ] ' S0[~x0 ] + Sfree[~ψ ] + Sint[~x0, ~ψ ] , (3.48)

is all we need to perform this calculation to leading order. S0 is the lowest order action

for ~x0(~φ, t), given in (3.17). Sfree is the quadratic action for ~ψ, and Sint contains its linear

by [35].
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Figure 3.4: Lowest order diagram contributing to the potential energy mediated by virtual sound

between two vorticose sources.

couplings to v0:

Sint =

∫
d4x ~ψ · ~J , ~J(x) ≡ w0

(
− ~̇v0 − (v0 · ∇)~v0 + 1

2
c2s
c2
~∇(~v0

2)
)
. (3.49)

Therefore, to lowest order we just have

Seff [~x0] = S0 − i lnZ[ ~J ] , Z[ ~J ] ≡
∫
DψieiSfree+i

∫
d4x ~ψ· ~J+ε terms , (3.50)

and we can compute the Gaussian functional integral via the standard completion of the

square method. Up to an irrelevant constant we get simply

Seff = S0 +
1

2

∫
d4xd4y Ji(x)∆ij(x− y)Jj(y) , (3.51)

where ∆ij is the usual Feynman propagator defined by

∆ij(x− y) ≡ i
〈
0
∣∣T {ψl(y)ψm(x)

} ∣∣0〉 =
1

w0

∫
d4k

(2π)4

k̂ik̂jeik(x−y)

−k2
0 + c2

sk
2 − iε

. (3.52)

Diagrammatically, this leading order correction to the effective action is given by the simple

diagram denoted in fig. 3.4.

The compressional modes that mediate a long-distance interaction between slowly-moving

sources are going to be (very) off-shell, i.e. −k2
0 +c2

s
~k2 6= 0, and so we can take ε→ 0 straight
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away. In particular, we expect the relevant frequencies and momenta to be 6

k0 ∼ v

l
, ~k ∼ 1

r
, (3.53)

and so if we take v/cs � l/r we can expand the denominator of the propagator as a power

series in (k0/csk):

1

−k2
0 + c2

sk
2

=
1

c2
sk

2

(
1 +

k2
0

c2
s
~k2

+ ...
)
. (3.54)

This is analogous to the low-energy expansion of a massive propagator in relativistic QFTs,

and for us it means that our interactions, despite being genuinely non-local in space, can be

expressed as a series of interaction terms that are at least local in time.

So, to lowest order in this expansion and isolating the interesting interaction term (that

is, the cross term when we write the total vortex velocity as the sum of the two separate

sources ~v = ~v1 + ~v2) we have simply,

Seff = S0 + ∆S = S0 +
1

w0

∫
d4xd4y

d4k

(2π)4
J i1(x)J j2(y)

kikj

c2
sk

4
eik(x−y) (3.55)

= S0 + w0

∫
x,y

d4k

(2π)4
κik1 (x)κjl2 (y)

kikkkjkl

c2
sk

4
eik(x−y) , (3.56)

where we have freely integrated by parts and utilized the divergence free nature of ~v, and

the κ’s are the two sources’ kinetic tensors, as defined in (3.27).

Now, as these sources are supposed to be localized (that is, their velocity field falls off

sufficiently fast away from their respective centers) we can multipole expand each source,

keep the lowest order term in (l/r) (the monopole), and perform the k0 integral, which

generates a (2π)δ(t1 − t2). We may therefore write the integral of interest as:

∆S ' w0

c2
s

∫
dt Kik

1 (t)Kjl
2 (t)

∫
d3k

(2π)3

kikjkkkl

k4
ei
~k·~r , (3.57)

6We are assuming that v̇ ∼ v2/l, so that the typical frequency of the sources is v/l. However, in many

cases, like for instance those we will discuss below, one has nearly stationary, incompressible flows, in which

case the typical frequencies are zero in first approximation, and the associated “virtual” compressional modes

are maximally off-shell.
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where ~r is the vortices’ relative position vector, and, like in sect. 3.2, each K is defined simply

as the monopole moment of the corresponding κ,

Kij ≡
∫
d3xκij =

∫
d3x

(
vivj − 1

2
c2s
c2
δij v2

)
. (3.58)

The ~k integral is straightforward to perform by first rewriting the k’s at the numerator as

gradients w.r.t. ~r, and then noticing that∫
d3k

(2π)3

1

k4
ei
~k·~r = − 1

8π
r + IR-divergent, ~r-independent pieces, (3.59)

as can be checked by introducing any IR-regulator, like e.g. 1/k4 → 1/(k2 +m2)2.

Recalling that the potential enters the action with an overall minus sign, we can finally

write the effective vortex-vortex potential mediated by sound in a compact form as

∆V =
w0

8πc2
s

Kik
1 K

jl
2 ∂i∂j∂k∂l r . (3.60)

The derivatives, once expanded, yield

∂i∂j∂k∂l r =
1

r3

[
−
(
δijδkl + 2 perms.

)
− 15 · r̂ir̂j r̂kr̂l + 3

(
r̂ir̂jδkl + 5 perms.

)]
. (3.61)

Notice that the monopole moment (3.58) obeys positivity properties that forbids its

vanishing as soon as one has some v—no matter how inventive one is in devising such a

velocity profile. For instance, its trace is

Kii =

∫
d3x v2

(
1− 3

2
c2s
c2

)
, (3.62)

which, using c2
s/c

2 ≤ 1/3, is always bigger than
∫

1
2
v2—the kinetic energy per unit enthalpy.

As a result, the monopole-monopole interaction that we have computed will always be the

most important long-distance interaction mediated by sound

For more general or higher order computations it is probably more convenient to perform

the multipole expansion directly at the level of the action, before integrating out ψ, along

the lines of [30]. In this way, on top of organizing the perturbative expansion in a more



80

systematic fashion, one is able to handle the UV divergences that unavoidably will show

up at some order in perturbation theory using the standard tools of renormalization theory.

For instance, ‘self-energy’ diagrams—diagrams in which a vortex exchanges a sound mode

with itself—are UV divergent. Their divergent contribution to Seff can be reabsorbed via

renormalization into the coefficients of terms that are already present in the (multipole-

expanded) Lagrangian. A more systematic treatment of these issues are performed in [3],

but we will report the next-to-leading order computations in the next subsection as a proof

of principle.

Eq. (3.60) is our final result for the long-distance, monopole-monopole interaction be-

tween localized vortex configurations. It is easy to estimate its size. The individual kinetic

monopole moments are roughly Kij ∼ v2l3, the derivatives structure acting on r scales as

r−3, and so the effective potential scales like

∆V ∼ l3

r3

v2

c2
s

· Ekin , (3.63)

where Ekin ∼ w0v
2l3 it the typical kinetic energy of the vortex configuration. We will see in

sect. 3.5 that the aforementioned kinematical dragging phenomenon can be modeled via a

long-range potential energy that, for localized vortices, scales as (l/r)3 · Ekin. Our effect is

thus suppressed with respect to this one by an extra (v/cs)
2 factor.

3.4.1 Next-to-leading-order in v/cs contributions

As a demonstration of the ability of our formalism to compute higher order effects in the

v/cs expansion we present a preliminary result of a systematic power counting construction

following the lines of [30]. In particular, the following are the (preliminary) results of the

next-to-leading-order correction to the vortex-vortex effective action due to virtual sound

exchange. This is an “in principle” type of calculation. So while we understand it may not

be the most important quantity of interest to our experimental friends at this point [36] we

do it because we can. In our EFT/Feynman diagram language the calculational program is
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Figure 3.5: Higher order in v/cs diagrams contributing to the potential energy mediated by virtual

sound between two vorticose sources. Dots denote first order corrections in v/cs to the coupling and

propagator.

straightforward and relatively simple; we can’t imagine doing the same from the equations of

motions of perfect fluid dynamics. So while this particular calculation may not be necessary

to such high order, surely there are others that may need such accuracy and therefore our

methods.

As promised, reading off the interactions terms from (6.52)- (6.55) we can then multipole

expand directly at the level of the action and write down the Feynman rules. Treating all our

compressional modes as potential, i.e. off-shell, which is appropriate for this calculation and

using the scaling that can be extracted from the previous section’s results we can calculate

the diagrams that contribute at the next order in v/cs (and lowest order in l/r depending

on the character of the sources for this order of v/cs). The details of the calculation and the

systematics of the power counting and can be found in the soon to appear [3].

The necessary diagrams are given by Figure 3.5. There are 4 diagrams (plus their sym-

metric counterparts) to this order in v/cs. As commented on previously, the effective action

that we are constructing here by integrating out these sound modes is not organized simply

by a single expansion parameter as is the case in the simple compact, spin-less, binary in-

spiral problem [30]. This makes for a more complicated, but also interesting power counting

structure. Not only does the relatives size of l/r and v/cs matter but, as we will see, because

we have not completely specified the character of the sources there is some freedom associ-

ated with the scaling of particular quantities. For instance, time derivatives on the monopole
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moment of kinetic tensor (Kij) for generic sources will scale in one particular way while for

simpler sources, like vortex rings7, they will scale in a completely different way. The only

time dependence (other than its self induced constant velocity) that the vortex ring solution

exhibits is induced by the other vortex source. So, for instance, in the presence of another

vortex ring source (of similar dimensions)

∂tKgeneric ∼
(v
l

)
K ∼

(v
l

) (
l3v2

)
(3.64)

∂tKvortex ring ∼
(
l

r

)4

×
(v
l

)
K ∼

(
l

r

)4

× ∂tKgeneric . (3.65)

Correction to propagator:

The first diagram in Figure 3.5 represents an insertion of the (∂tφ
i)

2
in the propagator.

It corresponds simply to the first term in the series expressed in (3.54) which, we must

remember, is valid only for v/cs � l/r for generic sources. Its calculation is straightforward,

and we deal with the integral over momentum space in the same way as in did for the leading

order diagram. We treat the ki’s in the numerators as derivatives and for this particular

diagram must deal with a 1/k6 integral. Once again we deal with it by introducing an

IR-regulator; the details are contained in Appendix 6.8. When the dust clears, the final

correction to the effective potential given by this diagram is:

∆VProp Corr =
w0

c4
s

1

4π

1

12

[
K̇ij

1 +Kij
1 V

a
1 ∂a

] [
K̇nm

2 +Knm
2 V b

2 ∂b

]
∂i∂j∂n∂m r

3 , (3.66)

where ~Vn are the velocities of the centers (about which we multipole expand) of the vorticose

sources. Note that we are performing this calculation to lowest order in (l/r) at the level

of the multipole expansion but depending on the character of the sources the K̇ij
1 and the

Kij
1 V

a
1 ∂a terms will scale differently in powers of (l/r). This apparently indicates that one

needs to go a little further in the explicit organization of the interaction Lagrangian, using

7We will explore vortex rings and offer some references relating to them in the next section. For the

moment the reader will just have to trust us on their scaling.
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information about the particular sources in question, in order to give an exactly scaling, and

therefore hierarchy, of corrections to the lowest order dynamics. We will discuss this scaling,

and how they compare to contributions from other diagrams of the same order in (v/cs) in

just a moment.

Higher order coupling:

The second diagram in Figure 3.5 has one higher order coupling, given in (6.54), of the

compressional mode to the velocity source. Its computation is straightforward using the

same bag of tricks (IR-regulator, etc.) and in the end it contributes

∆VH.O. Coupling =
w0

c2
sc

2

1

8π
Kij

1

[
(c2 − c2

s)

2c2
Mkl

2 ∂l

+
f3

8
M2 ∂

k − (c2 − c2
s)

2c2

(
Ṗ k

2 + P k
2 V

l
2∂l

)]
∂i∂j∂k r

+(1↔2) , (3.67)

where we have defined the the new quantities M ij
1 =

∫
d3x v2

1v
i
1v
j
1 and P i

1 =
∫
d3x v2

1v
i
1.

Seagull diagram:

The third diagram in Figure 3.5 has a quadratic coupling of the sound to the vortex

sources. This diagram is more complicated (but fundamentally no more difficult) than the

previous ones. Examining the possible coupling in (6.55) and multipole expanding we see

that all the terms that are linear in vi are going to vanish. To lowest order in (v/cs) the

couplings all take the form of

Tijnmab v
ivj (∂nψa)

(
∂mψb

)
(3.68)

where Tijnmab is just some contractions (δs) scaled by factors. Explicitly, it is given by

Tijnmab =
1

2
δinδjmδab − c2

s

c2
δiaδjnδmb +

(
c2
s

4c2
+
f3

4

)
δijδnaδmb +

c2
s

4c2
δijδnbδma . (3.69)

This diagram now has two 1/k4 momentum integrals. Up to symmetry factors (which we
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will parametrize by α) we have

∆VSeagull =
w0

c4
s

α

(8π)2K
′ ij
1 Kcd

2 Kef
2 Tij nmab (∂c∂d∂m∂a r) (∂e∂f∂n∂b r)

+(1↔2) , (3.70)

where K ′ ij1 =
∫
d3x vi1v

j
1 (the kinetic tensor monopole without the relativistic correction

term).

Cubic Interaction:

The final diagram in Figure 3.5 contains the cubic coupling of the sound modes to them-

selves. There are two distinct structures in (6.53). Let’s focus on the simpler

w0

∫
d4x

c2f3

6
[∂ψ]3 (3.71)

piece for the moment. The Sψ3 ∝ [∂ψ][(∂ψ)2] piece will follow in a similar fashion but

with a little more algebra. In fact, we will not report it here simply because the details are

not of any use to the reader for how algebraically (there are many different contractions)

complicated the result is. Those interested can find it in [3]. This diagram is more interesting

than the others because we will actually have to use some of the tools familiar to quantum

field theory in order to compute its effect, thus legitimizing our hard work in casting the

problem in that language. It is worth delaying the presentation of the final result to see how

this comes about. Before integrating over momenta the (3.71) interaction term gives rise to

an effective potential of

∆V[∂ψ]3Cubic =
w0 c

2f3

c6
s

Kab
1 K

cd
1 K

ef
2

∫
~k,~q,~p

(2π)3δ3(~q + ~p+ ~k)
kakbqcqdpepf

k2q2p2
ei~p·~r , (3.72)

plus the (1↔2) contribution for the symmetric diagram. When we integrate over d3q, for

instance, we are left with a loop integral in d3k. That is, integrals of the same structure

appear in loop corrections/quantum corrections to scattering amplitudes in quantum field

theories [19]. In order to do this loop integral it is convenient to employ Feynman parameters
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to combine the ~k2(~k+~p)2 denominator. Reorganizing and shifting the integral in the standard

way we can write the above as

∆V[∂ψ]3Cubic =
w0 c

2f3

c6
s

Kab
1 K

cd
1 K

ef
2

∫
~p

pepf

p2
ei~p·~r

∫ 1

0

dx

×
∫
~l

(l + (x− 1)p)a(l + (x− 1)p)b(l + x p)c(l + x p)d

(l2 + ∆)2
, (3.73)

where ∆ = x(1− x)p2.

When we expand the numerator out we can see that there are going to be three different

structures: ∫
~l

l4

(l2 + ∆)2
,

∫
~l

l2

(l2 + ∆)2
and

∫
~l

1

(l2 + ∆)2
. (3.74)

As we can see the first two of these are UV-divergent. If we work in dimensional regularization

power law divergences are automatically set to zero. In any other consistent renormalization

scheme such power law divergences could be simply absorbed into the bare couplings and

would not contribute to any physical effects. A modern quantum field theorist would not

even bat an eye at these kinds of integrals and dealing with such divergences but to our

knowledge such procedures are less well defined at the equations of motion level and would

presumably pose a serious barrier to the analysis of effects higher order in v/cs effects like

this.

After using dimensional regularization to perform all the integrals over ~l, performing the

integral over x and then organize our results we arrive at a sequence of terms of the form∫
~p

pipjpkplpmpn

p3
ei~p·~r . (3.75)

Just as before we can treat the p’s in the numerator as derivatives and use an IR-regulator

to handle the 1/p3 integral; the result can be found in Appendix 6.8. When the dust clears
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we are left with

∆V[∂ψ]3Cubic =
w0 c

2f3

c6
s

1

2048 π2
Kab

1 K
cd
1 K

ef
2

×
[(
δabδcd + 2δacδbd

)
∇2∇2 + 3 ∂a∂b∂c∂d

−10 δab∂c∂d∇2 − 12 δac∂b∂d∇2
]
∂e∂f log r + (1↔2) . (3.76)

The Sψ3 ∝ [∂ψ][(∂ψ)2] piece has a very similar structure but with slightly more complicated

index contractions.

Relative Scalings:

After all this work we can take stock of our results. As discussed previously we have to

be more precise about the nature of the vorticose sources that we are dealing with in order to

have a precise scaling. In one limit, if we take the most generic case, some sort of turbulent

sources for instance, the leading term comes from the first diagram and scales as

∆VProp Corr(generic) ∼ l

r

v2

c2
s

· Ekin ×
(
v

cs

)2

∼ ∆VLowest Order ×
(
v

cs

)2 (r
l

)2

. (3.77)

Note that while, as promised, this contribution to the effective potential is subleading in

(v/cs) it is actually enhanced by (r/l)! But, in order to expand the propagator in the first

place and treat the (∂tφ
i) as an interaction term we require (v/cs)(r/l)� 1 and so this term

is still subleading in comparison to the effective potential given by 3.60.

For simpler configurations, like the vortex rings we will study below, the first diagram in

Figure 3.5 scales at a much higher order in (l/r), so high in fact that it is now subleading

with respect to the other diagrams in the figure.

∆VProp Corr(ring) ∼ l9

r9

v2

c2
s

· Ekin ×
(
v

cs

)2

. (3.78)
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The next diagram in Figure 3.5 contributes

∆VH.O. Coupling(ring) ∼ l3

r3

v2

c2
s

· Ekin ×
(
v

cs

)2 (cs
c

)2

∼ ∆VLowest Order ×
(
v

cs

)2 (cs
c

)2

. (3.79)

Meanwhile, the seagull and cubic vertex diagrams scale as

∆VSeagull ∼ ∆VCubic ∼
l6

r6

v2

c2
s

· Ekin ×
(
v

cs

)2

∼ ∆VLowest Order ×
(
v

cs

)2(
l

r

)3

. (3.80)

We see some interesting tension here. If the fluid is relativistic then cs ∼ c and ∆VH.O. Coupling

dominates while if (l/r)3 � (cs/c)
2, the fluid is non-relativistic to a certain degree, then

∆VSeagull and ∆VCubic dominate.

3.4.2 Potential between two vortex rings

In order to get a better physical sense of eq. (3.60), we can compute it for the simple

configuration of two interacting circular vortex loops—so-called vortex rings. A cartoon

depiction of this interaction is given in Figure 3.6. Vortex rings are not only the simplest

localized vortex-line configuration; they are also beautiful, fascinating objects of intense

experimental interest and study, for humans [31,36] as well as other species [37] (see fig. 3.7).

For the following we will ignore the relativistic correction term in Kij, but its inclusion is

straightforward. We refer the reader to [31] for an extensive review of the vortex rings’

physical properties.

Say we have a vortex ring lying in some plane with normal vector n̂. The radius of the

ring is given by R, the circulation by Γ, and the vortex line thickness by some cutoff a (the

so-called core radius). By symmetry Kij will take the form:

Kij = Aδij +B n̂in̂j . (3.81)
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Figure 3.6: Two vortex rings exchanging virtual sound.

The parameters A and B are given by the scalar integrals

A = 1
2

∫
d3x

(
v2 − (~v · n̂)2

)
(3.82)

B = 3
2

∫
d3x

(
(~v · n̂)2 − 1

3
v2
)

(3.83)

For distances much larger than R the velocity flow is given by that of a dipole, that is,

the velocity falls off like 1/r3, and so, as anticipated and desired, the main contribution to

Kij comes from the region near the vortex ring itself. However, at very close distances to

the vortex line the same integral will diverge logarithmically (if the core radius a is taken

to zero). For a � R, we can thus get a good estimate of the integrals above by isolating

the coefficient of log a, which we can compute in the straight vortex line limit. Then, by

dimensional analysis, log a has to be accompanied by − logR. Geometric factors coming

from precisely integrating over scales of order R (which we can do, at least numerically) and

from the details of how the UV cutoff is actually implemented (which is model-dependent),

will show up as finite, order-one additions to this large universal logR/a contribution, and

are therefore sub-leading. Implementing this trick we find:

K ' 1
4
Γ2R log(R/a) (I + n̂⊗ n̂) . (3.84)
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Figure 3.7: Dolphins can set up very clean vortex ring configurations, and play with them. They

blow air into them, which, given the pressure gradients associated with the fluid flow, “floats” to

the core of the ring, thus serving beautifully as a tracer. Pictures taken from [38, 39].

However for realistic vortex rings in normal fluids (as opposed to superfluids), R is not that

much bigger than a, and the “divergent” log is so weak that one cannot neglect the allegedly

sub-leading finite pieces. Therefore, in order to be completely general we can write

K = Γ2R (α I + β n̂⊗ n̂) . (3.85)

where α and β are order-one (or log) coefficients that in general depend on the exact core

structure of the vortex rings.

Inserting this into (3.60) and assuming for simplicity the same core structure for the two

rings, we can write the effective potential as

∆V =
w0

8πc2
s

(Γ2
1R1) (Γ2

2R2) · 1

r3
· f(n̂1, n̂2, r̂) , (3.86)

where f parameterizes the angular structure:

f(n̂1, n̂2, r̂) = −(β2 + 4αβ)− 2β2(n̂1 · n̂2)2 − 15β2(n̂1 · r̂)2(n̂2 · r̂)2 (3.87)

+ (6αβ + 3β2)
[
(n̂1 · r̂)2 + (n̂2 · r̂)2

]
+ 12β2(n̂1 · r̂)(n̂2 · r̂)(n̂1 · n̂2) .

Notice that f can be either positive or negative. For instance, if we take α = β = 1 for

simplicity, then for a configuration with n̂1 = n̂2 = r̂ one gets f = 8, while for n̂1 = n̂2 ⊥ r̂
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one gets f = −7. That is, depending on the geometric configuration, this potential can be

both “attractive” and “repulsive”. As we will see in a moment, the quotes are in order,

because these terms are extremely misleading for vortex dynamics.

3.4.3 How (not) to interpret this 1/r3 potential

For standard systems, one usually thinks of a potential like that given by (3.60) as a function

of ~r that will generate a force in the usual way, ~F = −∂V
∂~r

. The problem with this interpre-

tation for us is that the notion of “force” does not really apply to vortex dynamics. To see

why this is the case, let us restrict ourselves to the study of vortex lines, which exist both

in normal fluids and in superfluids, and of which the vortex rings we just discussed are an

example.

The way that we visualize a vortex line is by thinking of it as exactly that, a line, or

more generally a curve. But really such a curve is a placeholder for a very special extended

field configuration: the curve is the locus where the vorticity is nonzero, but the velocity

field extends to large distances from the curve, typically in a 1/r fashion for very long lines.

As a consequence, you cannot do to a vortex line the usual kinds of things that you would

to a string-like object in empty space, like, for instance, boost it. Doing so will change the

boundary conditions at infinity of the velocity field, thus in effect boosting the whole fluid.

This does not mean that vortex lines cannot move, however, it just simply means that for

the velocity field to go to zero at infinity, the vortex line will move in only one particular

way; there is no free initial condition for their velocity so that, at any given time, the local

velocity of any vortex-line infinitesimal element is completely determined by the dynamics.

For instance, isolated, perfect vortex rings always move at a constant speed determined by

their radius and circulation (see for instance [31]). Why do they do this?

In the incompressible limit, as ρ is no longer a dynamical variable, the hydrodynamical

equations of motion are for ~v only and are given by the simplified continuity equation and
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the curl of the Euler equation:

~∇ · ~v = 0 (3.88)

∂

∂t
~Ω = ~∇×

(
~v × ~Ω

)
(3.89)

where ~Ω = ~∇ × ~v is the vorticity field. The linearity of (3.88) implies that if we have

multiple isolated vortex lines (lines where the vorticity is non-zero), then the velocity field

outside these lines obeys linear superposition. Furthermore, Kelvin’s theorem (which follows

from (3.89)) applied to infinitesimal comoving loops surrounding the vortex lines, implies

that each line will move with the fluid flow generated by itself and every other vortex line.

Since the relation between ~ω and ~v is formally identical to that between current density and

magnetic field in magnetostatics, and since for vortex lines ~ω is given by a sum of circulations

times delta functions supported on the lines, with the circulations playing the role of total

electric currents flowing along these lines, the local velocity of the flow at ~x generated by all

the vortex lines can be written in a Biot-Savart fashion as

~v(~x) = −
∑
n

Γn
4π

∫
n

(~x− ~x ′)
|~x− ~x ′|3

× d~x ′ (3.90)

where Γn is the circulation associated with the n-th vortex line.8

As we can see, given that a vortex line element placed at ~x will move with this velocity,

the vortex lines’ positions obey first order equations of motion, in contrast to the usual

second order equations of motions of any string-like object in empty space. This is the root

of their peculiarity: with first-order equations of motion, there is no room for “forces”, and

the effective potential we have computed above must then be interpreted more carefully.

Our strategy in the next section will be to derive a Lagrangian formulation that reproduces

precisely these first-order equations motion. Then, our sound-mediated effective potential

8There is a well-defined circulation Γn =
∫
Sn
~ω ·d~S for each line (the integral is taken over the cross-section

of the “line”), which is in particular constant along that line, because of Stokes theorem, and constant in

time, because of Kelvin’s.
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will just be a correction to such a Lagrangian, which will yield a corresponding correction

to the equations of motion via the variational principle.

The model that we briefly sketched above is called the vortex-filament model and was

pioneered in [40] and [41]. A modern review of such topics is discussed nicely in [31]. In the

next sections we will find a reformulation of the same model that we believe is likely to lead

to substantial progress in solving systems involving vortex lines.

Before we proceed, note that the integral over the “self-interacting” line in (3.90), is

going to diverge logarithmically as ~x ′ → ~x. Introducing a finite UV cutoff a, say the line’s

thickness, one gets that the leading contribution to the self-interacting integral is∫
self

(~x− ~x ′)
|~x− ~x ′|3

× d~x ′ ' ẑ
1

R
log
(
R/a

)
+ . . . , (3.91)

where R is the line’s local radius of curvature at ~x, ẑ is the direction orthogonal to the plane

defined by the local curvature, and the dots stand for subleading pieces, which come from the

integral over regions that are far from ~x, and which are finite for a→ 0. This UV divergence

tells us that there is a mild dependence of the velocity of vortex lines on the details of their

core structure. Changing these details, or equivalently changing the definition of a, will only

affect the subleading, finite pieces. As usual, the coefficient of the log divergence is universal.

If one is in the large log(R/a) limit, the velocity is dominated by this universal piece. In

the vortex filament model this approximation is called the local induction approximation,

because the local velocity is mostly induced by the local curvature of the vortex line.

3.5 An action for vortex-lines and their interactions

Given that this chapter focuses on the Lagrangian formalism, it is natural to ask if there

is an action that will generate (3.90) upon variation. As mentioned above, a byproduct of

finding such an action is that it would provide us with a straightforward interpretation of

our sound-mediated potential (3.60): this should simply be interpreted as a correction to
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the action, with obvious implications for the equations of motion.

Strictly speaking, the lowest order incompressible action (3.17), S0 = w0

∫
1
2
~v0

2, contains

the dynamics we want to reproduce. However, we want to restrict the velocity field to

configurations with a vorticity field localized on lines, and we would like to use the positions

of the lines themselves as degrees of freedom. It is not trivial to rewrite S0 as an action for

these degrees of freedom. So, for the moment we will just guess what the right action is, and

we will comment later on what its relation to S0 is.

Consider for the moment just one vortex line, parameterized by ~X(t, λ), where λ is some

parameter running along the line, over which we are going to integrate. The action that

we are going to write down should produce the equation of motion (3.90) upon variation

w.r.t. to ~X. Let’s focus on the left hand side first. To get the velocity, which is just ~v = ∂t ~X,

one needs a term in the action with one time derivative only. A nontrivial, natural candidate

in 2D (for vortex dots) would be∫
dt 1

2
(X1∂tX

2 −X2∂tX
1) =

∫
dt 1

2
εij X i∂tX

j . (3.92)

Varying w.r.t. to X1 yields ∂tX
2, and varying w.r.t. to X2 yields −∂tX1. The antisym-

metric structure is crucial in order not to end up with a total derivative. Then, a natural

generalization to 3D seems to be∫
dt dλ 1

3
εijkX i∂tX

j∂λX
k . (3.93)

The vector ∂λ ~X is tangent to the curve, and so the combination εijk∂λX
k behaves like the

two-dimensional ε-tensor for the plane locally orthogonal the curve, thus giving us back the

2D expression above. The only apparent downside is that when we vary w.r.t. ~X to get the

equations of motion, we now end up with an extra ∂λX
k multiplying (via a cross product)

the velocity on the left hand side.

Let’s ignore this for the moment and let’s move to the right hand side of (3.90). It

contains a line integral over all vortex lines, including the one we are trying to understand
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the motion of. Then, the corresponding term in the action should be represented by a double

line integral, over all possible pairs of lines, including those pairs made up of the same line

taken twice. Notice that the line element in (3.90) can be written as d~x ′ → dλ ∂λ ~X. Notice

also that eq. (3.90) involves a cross-product. Given the extra cross product with ∂λ ~X we

expect to get from (3.93), and given that, schematically εε ∼ δ, we end up with the following

inspired guess for the action of a system of vortex lines:

S = C

∫
dt

[∑
n

∫
dλ 1

3
Γnε

ijkX i
n ∂tX

j
n ∂λX

k
n +

1

8π

∑
n,m

∫
dλdλ′ΓnΓm

∂λ ~Xn · ∂λ′ ~Xm

| ~Xn − ~Xm|

]
,

(3.94)

where the sums run over all the vortex lines, C is an overall—yet to be determined—constant

(whose value does not affect the equations of motion), while the relative 1/8π is needed to

get the correct equations of motion, as we will show in a moment. In this expression for the

action it is understood that, in the double-integral term, ~Xn is parameterized by λ and ~Xm

by λ′. As we stressed above, the double sum also includes n = m, in which case the same

line is traced out twice, independently by λ and λ′.

Varying the curves in the usual way, ~Xn(λ, t) −→ ~Xn(λ, t) + δ ~Xn(λ, t), and ignoring

boundary terms, we get the equations of motion for the n-th line:

εijk ∂tX
j
n ∂λX

k
n

= −
∑
m

Γm
4π

∫
dλ′

[(
~Xn − ~Xm

)j
∂λX

j
n ∂λ′X

i
m

| ~Xn − ~Xm|3
−
(
~Xn − ~Xm

)i
∂λX

j
n ∂λ′X

j
m

| ~Xn − ~Xm|3

]
, (3.95)

or, in vector notation (using the identity ~a × (~b × ~c) = ~b (~a · ~c) − ~c (~a ·~b) on the right hand

side):

∂t ~Xn × ∂λ ~Xn = −

[∑
m

Γm
4π

∫
dλ′

( ~Xn − ~Xm

)
× ∂λ′ ~Xm

| ~Xn − ~Xm|3

]
× ∂λ ~Xn . (3.96)

Now, it seems that our action (3.94) has not successfully reproduced the desired eom

(3.90); there is an additional cross product with ∂λ ~Xn which we cannot simply remove from

both sides of the equation. As a result, the equations of motion generated by our action are
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a little less stringent then the ones generated by “physical reasoning”. Should we be worried

about this?

As it turns out, the little extra freedom in (3.96) makes manifest a particular redundancy

of how we describe the physical configurations of our system, which so far we have been

reticent about. Given the spatial configuration of the vortex lines in our system at some

particular time t, eq. (3.96) will dictate the velocity of a particular point on the vortex line

only in the direction normal to that line. That is, the component of the velocity parallel to

the curve is undetermined. But as the fluid velocity flow is completely determined by the

positions of the vortex lines, any motion that does not change the locations and shapes of

the lines, such as motion along the lines, is totally unphysical. In hindsight, it is obvious

that this is related to a reparameterization invariance of the action (3.94):

λ→ λ̃(λ, t) . (3.97)

Both terms in the action are invariant, because the pieces that transform non-trivially are

combined in structures that are manifestly invariant: at fixed t one has

dλ ∂λ ~Xn = d ~Xn , dλ dλ′ ∂λ ~Xn · ∂λ′ ~Xm = d ~Xn · d ~Xm . (3.98)

This is a form of gauge invariance, which must be treated in the usual ways; for instance,

in order to solve the equations of motion, one should first choose a gauge. The traditional

form of the eom, (3.90), corresponds to a particular (and not so simple) gauge choice. Perhaps

a more “physical” choice in our language would be to choose ∂t ~X ·∂λ ~X = 0, i.e set the parallel

component of the velocity to zero, for all time. But depending on the problem at hand, other

choices might be considerably more convenient. For instance, to study an infinite vortex line

that is roughly aligned with a coordinate axis, say the z axis, one can choose the gauge

λ = z ≡ X3, thus effectively eliminating the X3 degree of freedom from the problem.
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3.5.1 Fixing the overall coefficient

While we have been able to reproduce the dynamics of the fluid system given the action

(3.94), we still have to determine the action’s overall scaling. We can fix this constant C

by matching a physical quantity for a simple physical configuration. As usual for effective

field theory, the matching of Lagrangian coefficients can be done via an observable of an

idealized, simple configuration, and the inferred values for the coefficients can then be used

for all other configurations as well.

Consider a single vortex line aligned with the z-axis, with circulation Γ. Its velocity field

is

~v =
Γ

2π

1

r
ϕ̂ . (3.99)

The original non-relativistic action for an incompressible fluid, eq. (3.17), implies that such

a configuration has an energy per unit length

dE

dz
= w0

∫
1
2
v2

0 d
2x = w0

Γ2

4π
logL/a , (3.100)

where L is some IR cutoff (e.g. the size of the container) and a some UV cutoff (e.g. the

vortex-line thickness).9

We can now compute the same physical quantity with our new action, eq. (3.94). The

first piece—the ‘kinetic’ term—does not contribute to the Hamiltonian of the system, since

it is linear in Ẋ:

E = H =
∂L

∂Ẋ i
Ẋ i − L . (3.101)

We are thus left with the second piece only, which yields

E = −C Γ2

8π

∫
dzdz′

1

|z − z′|
, (3.102)

9As before, as long as we are interested in the log-divergence only, we need not be specific about how

these cutoffs are implemented, since the coefficient of the log is completely independent of these details—only

additive finite pieces are sensitive to them.
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corresponding to an energy per unit length

dE

dz
= −C Γ2

4π
logL/a . (3.103)

Notice that, given the different geometric nature of the integrals involved, the cutoffs used

here cannot have exactly the same meaning as those used above; the universality of log

divergences allows us to be cavalier about this. Comparing the two expressions for the

energy per unit length we get simply

C = −w0 . (3.104)

3.6 The hydrophoton

Eq. (3.94) reproduces the correct dynamics and energetics of generic vortex line configu-

rations, and is thus the correct action for them. Nevertheless, it has an obvious annoying

feature: due to the double λ-integral in the second term, it is a non-local action. To develop

an intuition about the (counter-intuitive) dynamics of the system, especially for perturbation

theory questions (stability of solutions, properties and interactions of small perturbations,

etc.), having a local action would be much more convenient.

Fortunately, given the 1/r nature of the non-locality in question, we know exactly how

to fix the problem. We ‘integrate in’ an auxiliary local field ~A(~x, t), coupled to the ‘currents’

Γn ∂λ ~Xn, which are localized on the vortex lines:

Slocal =w0

[
−
∑
n

Γn

∫
dtdλ 1

3
εijkX i

n ∂tX
j
n ∂λX

k
n (3.105)

+

∫
d3xdt 1

2

(
∂iAj

)2 −
∑
n

Γn

∫
dtdλ ∂λ ~Xn · ~A

(
~Xn, t

)]
.

One can solve the equations of motion for ~A deriving from this action,

∇2 ~A(~x, t) = −
∑
n

∫
dλΓn ∂λ ~Xn δ

3
(
~x− ~Xn(λ, t)

)
, (3.106)
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Magnetostatics Incompressible Hydro

current ~J vorticity ~ω

magnetic field ~B velocity field ~v

vector potential ~A hydrophoton ~A

Table 3.1: Schematic dictionary between magnetostatics and our system of vortices in an incom-

pressible fluid.

and plug the solution back into action, thus getting back the non-local action (3.94). Since ~A

appears at most quadratically in the action, this equivalence is exact, even at the quantum-

mechanical level, which might be important for zero-temperature superfluids.

In this new local picture, interactions can be described in standard field theoretical

terms: the action at a distance in (3.94) has been replaced by local interactions of each

vortex-line with ~A. Then, different vortex-lines, or different pieces of the same line, interact

by ‘exchanging’ ~A. It is obvious what ~A corresponds to in the magnetostatics analogy of the

previous section: it is the vector potential in Coulomb gauge (~∇ · ~A = 0). Indeed, given the

(localized) current density

~J(~x, t) =
∑
n

Γn

∫
dλ ∂λ ~Xn δ

3
(
~x− ~Xn(λ, t)

)
, (3.107)

the
∫
~J · ~A term in (3.105) is precisely the standard interaction between current and vector

potential, and eq. (3.106) is precisely the equation of motion for the vector potential in

Coulomb gauge, ∇2 ~A = ~J . We dub ~A the ‘hydrophoton’ field. For more general vortex

configurations in which the vorticity is not localized on lines, the analogy still works in

detail—only, one should identify the current density with the vorticity field ~ω. Table 3.1

summarizes the dictionary between magnetostatics and our system.

In conclusion, the interaction between vortex lines in an incompressible fluid can be

described exactly as magnetic interaction between currents. The only novelty is how the
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lines respond to these magnetic-type fields: given the peculiar structure of the lines’ kinetic

action in (3.105) (the first line), there is no analog of the Lorentz force. Instead, as discussed

in the previous section, the instantaneous velocity of a line-element is the local value of the

‘magnetic’ field.

We can now assess very easily the importance of our sound-mediated potential (3.60),

relative to the purely kinematical long-distance interactions which, in our new language, are

mediated by ~A. For instance, two vortex rings of radii R1,2, circulations Γ1,2, and orientations

n̂1,2, at a large distance from each other have the same interaction potential energy as two

magnetic dipoles,

Vdip =
w0

r3

[
3(r̂ · ~µ1)(r̂ · ~µ2)− ~µ1 · ~µ2

]
, (3.108)

with dipole moments

~µn = π(ΓnR
2
n) n̂n . (3.109)

We thus get

Vdip ∼
w0

r3
(Γ1R

2
1) (Γ2R

2
2) , (3.110)

which is indeed a factor of (cs/v)2 bigger that the sound-mediated potential, eq. (3.86). No-

tice however that for very thin vortex cores, like e.g. in superfluid vortex lines, eq (3.86) gets

enhanced by a factor of (logR/a)2, which can partially compensate the (v/cs)
2 suppression

factor.

The reader might be skeptical about the usefulness of our introducing the local field ~A to

describe vortex interactions. In fact, aren’t we supposed eventually to solve all the equations

of motion? If we first solve the equation of motion for ~A and we plug the solution into the

others, we are effectively reproducing the equations of motion deriving from (3.94). So, why

bother introducing ~A in the first place? Although this is technically a valid viewpoint—no

information is added by introducing ~A—such a statement is technically and conceptually

equivalent to claiming that it is useless to introduce the local fields ~E and ~B (or V and

~A) in electrostatics and magnetostatics, since one can do everything at the level of the
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Coulomb force between charges and the magnetic force between currents. A position that,

in hindsight, few would defend. We believe that, like for electrostatics and magnetostatics,

our local rewriting of vortex interactions will prove valuable in the study of vortex line

systems.

3.6.1 Example: Kelvin waves

To prove the usefulness of our approach, we now study via standard field-theoretical tech-

niques the low-frequency spectrum of small perturbations of an infinite straight vortex-line.

Let’s align the (unperturbed) line with the z-axis. The perturbed fields are

~X(λ, t) = ~X0 + ~π(λ, t) , ~X0 = ẑλ (3.111)

~A(~x, t) = ~A0 + ~ψ(~x, t) , ~A0 = −ẑ Γ

2π
log(r/a) (3.112)

where ~X0 and ~A0 are the unperturbed configurations, r =
√
x2 + y2 is the distance from

the z-axis, and a is a UV cutoff (the line thickness). We can now expand Slocal in powers

of ~π and ~ψ. The linear term in the fluctuations is, of course, going to vanish as ~X0 and

~A0 are solutions to the equations of motion. We are thus left with, at lowest order in the

fluctuations, a quadratic action:

S ' −w0

[ ∫
dtdλ 1

2
Γεijπ

i
⊥∂tπ

j
⊥ −

∫
d3xdt 1

2

(
∂iψj

)2
(3.113)

+Γ

∫
dtdλ

(
~ψ(0) · ∂λ~π + ~∇ψ‖(0) · ~π + ~∇A‖0(0) · ~π ∂λπ‖ + 1

2
∂i∂jA

‖
0(0) πiπj

)]
,

where ‘⊥’ and ‘‖’ are defined w.r.t. the z-axis, and we have freely integrated by parts and

thrown out boundary terms. In the second line, the notation ~ψ(0) and ~A0(0) reminds us

that these ‘bulk fields’ and their derivatives are to be evaluated on the unperturbed line,

at x = y = 0 (the last three terms come from expanding their arguments in powers of ~π).

One can thus see that the second-to-last term vanishes as ∂jA
‖
0 is odd in either x or y (or

simply vanishes for j = 3). Continuing further the decomposition of ~ψ and ~π into parallel
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and perpendicular components, and noticing that ~A0 only has derivatives in the orthogonal

direction, we finally get

S ' −w0

[ ∫
dtdλ 1

2
Γεijπ

i
⊥∂tπ

j
⊥ −

∫
d3xdt 1

2

(
∂iψj⊥

)2
+ Γ

∫
dtdλ ~ψ⊥(0) · ∂λ~π⊥

−
∫
d3xdt1

2

(
∂iψ‖

)2
+ Γ

∫
dtdλ

(
~∇⊥ψ‖(0) · ~π⊥ + 1

2
∂⊥i ∂

⊥
j A
‖
0(0)πi⊥π

j
⊥

)]
.

(3.114)

Recall that we have not fixed the gauge yet. We would like to choose λ = z = X3, that is,

π‖(λ, t) = 0 . (3.115)

Since π‖ has completely disappeared from the action, we can perform this λ→ z gauge choice

directly at the level of the action without worrying about losing π‖’s equation of motion.

Varying (3.114) with respect to ψ⊥, ψ‖, and π⊥ we generate the three equations of motion:

0 = ∇2 ~ψ⊥ + Γδ2(~x⊥) ∂z~π⊥ (3.116)

0 = ∇2ψ‖ − Γ~∇⊥δ2(~x⊥) · ~π⊥ (3.117)

0 = ∂t~π⊥ × ẑ − ∂z ~ψ⊥(0) + ~∇⊥ψ‖(0) + ~∇⊥∂⊥i A
‖
0(0)πi⊥ . (3.118)

These equations can be recast into a slightly more convenient form by insisting on manifest

translational invariance: The background configurations ~X0(λ, t), ~A0(~x, t) (spontaneously)

break translations in the plane orthogonal to our line. As a results, these translations are

non linearly linearized on the associated perturbations:

~π⊥ → ~π⊥ + ~ε⊥ , ψ‖ → ψ‖ − ~ε⊥ · ~∇⊥A‖0 , (3.119)

implying in particular—along the lines of Goldstone theorem—the absence of a gap at zero

momentum. Although the action and equations of motion above are invariant under these

transformations, the absence of a zero-momentum gap is not obvious at all, and will require

non-trivial cancellations, since there are terms in which ~π⊥ appears without derivatives. It
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would be nicer to have a reformulation of these equations (and of the action), in which the

broken translations act simply as a shift on ~π and nothing else. This is easily accomplished

by redefining the ψ‖ field as

ψ‖ = ψ̃ − ~π⊥ · ~∇⊥A‖0 , (3.120)

so that, using ∇2
⊥A
‖
0 = −Γδ2(~x⊥), the eom become

0 = ∇2 ~ψ⊥ + Γδ2(~x⊥) ∂z~π⊥ (3.121)

0 = ∇2ψ̃ − ∂2
z~π⊥ · ~∇⊥A

‖
0 (3.122)

0 = ∂t~π⊥ × ẑ − ∂z ~ψ⊥(0) + ~∇⊥ψ̃(0) . (3.123)

Now ~π⊥ always appears with derivatives, and translational invariance is realized simply as

~π⊥ → ~π⊥ + ~ε⊥.10

These equations describe waves propagating in the z direction. To see this, let’s go to

Fourier space for z and t (but not for ~x⊥), upon which the equations of motion become

0 =
(
∇2
⊥ − k2)~ψ⊥ + Γ δ2(~x⊥) ik ~π⊥ (3.125)

0 =
(
∇2
⊥ − k2)ψ̃ + k2 ~π⊥ · ~∇⊥A‖0 (3.126)

0 = −iω ~π⊥ × ẑ − ik ~ψ⊥(0) + ~∇⊥ψ̃(0) , (3.127)

where now ~π⊥ depends on k and ω, and ~ψ⊥ and ψ̃ depends on them as well as on ~x⊥.

The shape of the perturbed line is uniquely determined by ~π⊥. Therefore, as long as we

are interested in just that, we only need the solutions for ~ψ⊥ and ψ̃ close to the line—see

the third equation. Treating then ∇2
⊥ in the first two equations as being of order 1/r2 � k2,

10The same change of variables at the level of the action, replaces the second line in (3.114) with

w0

∫
d4x

[
1
2

(
∂iψ̃
)2 − ∂zψ̃ ∂z~π⊥ · ~∇⊥A‖0 + 1

2

(
∂z~π⊥ · ~∇⊥A‖0

)2]
, (3.124)

which has manifest shift-invariance for ~π⊥. Varying the new action with respect to the fields one gets, after

stratighforward manipulations, precisely the new equations of motion.
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close to the line we get

∇2
⊥
~ψ⊥ + Γδ2(~x⊥) ik ~π⊥ ' 0 ⇒ ~ψ⊥ ' −

Γ

2π
ik log(kr)~π⊥ (3.128)

∇2
⊥ψ̃ −

Γ

2π
k2 ~π⊥ ·

~r⊥
r2
' 0 ⇒ ψ̃ ' Γ

4π
k2 log(kr)~r⊥ · ~π⊥ (3.129)

(The exact solutions at all distances involve a Bessel function of the second kind, K0(kr),

and have the precisely these asympthotics for kr � 1.) Plugging these solutions into the

third equation, we finally get a wave equation for ~π⊥ only:

− iω
(
~π⊥ × ẑ

)
+

Γ

4π
k2 log(1/ka)~π⊥ = 0 , (3.130)

where we have stopped the limit r → 0 at some UV cutoff a, on which, like before, the log

weakly depends, and we have ignored a piece proportional to ri⊥∂
j
⊥ log(kr)

∣∣
a
, which is finite

for a → 0, and can thus be thought of as redefining the UV cutoff a inside the log. Notice

that we have expressed the log so that it is positive, since ka� 1.

Such a wave equation describes two transverse, circularly polarized modes of oscillation,

with dispersion relations

ω = ± Γ

4π
k2 log(1/ka) , (3.131)

and polarizations 1√
2
(1,∓i). Note that both these modes circulate (at a fixed height along

the vortex line) in the opposite direction of the flow circulation. These are the famous

Kelvin waves, and our results match their qualitative and quantitative properties as derived

via Victorian methods [42].

Despite the (weak) dependence on the UV cutoff, the dispersion relation above has pre-

dictive content. We can rewrite it in an ‘RG-invariant’ fashion by comparing the frequencies

associated with two different momenta:

ω1

k2
1

− ω2

k2
2

= − Γ

4π
log(k1/k2) , (3.132)

or equivalently

∂(ω/k2)

∂ log k
= − Γ

4π
. (3.133)
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Such relations are completely independent of the UV details of the vortex line, and are thus

a robust prediction of the low-energy effective field theory. For instance, one can use them

to measure indirectly the circulation Γ.

3.6.2 Reintroducing sound

It is now time to go back to the first part of this chapter, and look again at how compressional

modes couple to incompressional fluid flows. Consider first the lowest-order coupling (5.3),

and, to be consistent with this section and the previous one, let’s neglect the second term,

which is a relativistic correction. In place of ~v0, we could plug in the integral expression (3.90),

which gives the incompressional velocity field as a function of the vortex lines’ geometry.

Clearly, the resulting Lagrangian term would correctly describe the interaction between

vortex lines and sound, and can obviously be extended to all orders in (v/cs)
2, following

the expansion of Appendix 6.5. The downside of this approach is once again the non-local

nature of the resulting action: for each power of v0, we end up with a line integral over all

vortex lines.

The hydrophoton provides us with a conceptually much cleaner solution. Following the

magnetostatics analogy, which, for the incompressional part of the fluid flow, is exact, we

simply have

~v0 = ~∇× ~A . (3.134)

So, the local action that describes vortex lines, the hydrophoton, sound, and their interac-

tions, is simply

S =w0

[
−
∑
n

Γn

∫
dtdλ 1

3
εijkX i

n ∂tX
j
n ∂λX

k
n (3.135)

+

∫
d3xdt

[(
∂iAj

)2
+ 1

2
~̇ψ 2 − 1

2
c2
s(~∇ · ~ψ)2

]
+
∑
n

Γn

∫
dtdλ ∂λ ~Xn · ~A

(
~Xn, t

)
+

∫
d3xdt (~∇× ~A)i

(
(~∇× ~A) · ~∇

)
ψi + . . .

]
.
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Figure 3.8: Lowest order Feynman diagram contributing to the emission of sound by the scattering

of two vortex rings. The dashed lines represent the hydrophoton and the wavy line the sound.

The first line contains the vortex lines’ peculiar kinetic terms. The second line is the free

action for the hydrophoton and sound fields. The third line contains all the interactions:

of ~A with the vortex lines, and of ~A with sound. The dots denote all higher order sound

interactions of Appendix 6.5, which, given the replacement (3.134), involve more powers of

~ψ and ~A, and are straightforward to write down explicitly.

The message is clear: vortex lines interact directly with ~A; sound interacts directly with

~A; vortex lines and sound interact only indirectly, via ~A. For processes that are amenable to a

perturbative treatment, one can then use standard field theoretical/diagrammatic techniques

to compute observables. Consider for instance a soft scattering process in which two vortex

rings pass by each other at large impact parameter (compared to their radii). What is the

sound emitted by such a “collision”? The most relevant Feynman diagram is depicted in

fig. 3.8: the two vortex rings exchange a long-distance hydrophoton, and this internal line

emits a phonon, as dictated by the AAψ vertex in the action above.

3.7 Summary & Outlook

We have initiated a systematic application of effective field theory techniques to the study

of near incompressible hydrodynamical systems. As usual for local field theories, questions

that can be dealt with in perturbation theory are reduced, at least conceptually, to “turning
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the crank”: one can organize each observable as an expansion in Feynman diagrams—of ever

increasing complexity as one moves to higher orders in perturbation theory—each of which

can be computed in standard ways starting from the action.

The small expansion parameters in our analysis have been the typical fluid-flow speed,

which we took by assumption to be much smaller than that of sound, and the typical size

of the regions where vorticose flow is localized, which we took to be small relative to the

sound waves’ wavelengths and to the distance to other vorticose regions. The smallness of

the former parameter allows for a perturbative expansion in compressional modes (sound).

The smallness of the latter allows for a multipole expansion.

Our insisting on the field theory language has also led us to an entirely local action for

vortex-line dynamics—which is nontrivial, given that, as is well known, each line carries a

long-distance 1/r velocity profile with it. We have ‘integrated in’ such a velocity profile—or

better, the associated vector potential (which we have dubbed the “hydrophoton”)—thus

ending up with a local field theory describing vortex lines, the hydrophoton field, sound

modes, and their mutual interactions, to all orders in (v/cs). In this reformulation, vortex

lines interact with themselves, with one another, and with sound, by exchanging hydropho-

tons. We believe this to be substantial technical improvement over the standard “vortex

filament” model. Once again, questions amenable to a perturbative expansion are straight-

forward to analyze—and answer.

From a theoretical viewpoint, there are a number of open conceptual questions about our

field-theory formulation of vortex line dynamics. First, we did not construct it bottom-up

from standard low-energy effective field theory principles, nor did we derive it top-down from

our general fluid action (1.7)—we just guessed the vortex-line action, and checked that it

reproduces the correct dynamics as derived from the Euler equation. To be responsible field

theorists, we should remedy this. In particular, as we emphasized, the dynamics of vortex

lines are strikingly different from those of string-like objects in empty space. Vortex lines
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obey first order equations of motion, which means that their local velocity is completely

determined by the geometry of the lines’ configuration. According to standard effective field

theory intuition, all robust properties of the dynamics should follow from symmetry—in order

not to be disrupted by renormalization, for instance. So, what is the symmetry protecting

such a peculiar behavior? Compared to string-like objects in empty space, we seem to

have less symmetry—Lorentz or Galileo boosts are gone, being (spontaneously) broken by

the surrounding medium. This allows us to write down more Lagrangian terms, including

our peculiar kinetic term with one time derivative—but the action (3.94), or equivalently

(3.105), is hardly the most generic action invariant under translations and rotations. This

is all the more frustrating as our original fluid action, eq. (1.7), was constructed precisely as

the most generic action invariant under all the appropriate symmetries. Reparameterization

invariance under λ→ λ̃(λ, t)—which is symmetry of (3.94) and (3.105)—will play of course

a crucial role in reducing the number of allowed Lagrangian terms. We plan to address these

symmetry questions in the near future.

Second, for small vortex rings we would like to go one step further, and treat them as

point-like objects with multipole moments (starting with a ‘magnetic’ dipole), and a number

of degrees of freedom: their position, radius, orientation, and an infinite tower of excited

states (Kelvin waves). Once again, given the first-order nature of the equations of motion,

the dynamics of these objects are quite peculiar. For instance, from a preliminary analysis

it seems to us that the orientation is not a low-energy degree of freedom: one can certainly

choose any orientation as an initial condition, but then one cannot change it via low-frequency

processes. In a sense, unlike for ordinary string loops in empty space, the orientation degree

of freedom seems to belong in the excited Kelvin wave spectrum. Again, all the vortex

ring properties should follow from systematically applying symmetry considerations to the

effective theory of point-like objects in the fluid, along the lines of [30].

Third, what is this hydrophoton anyway? We have a local field ~A, whose equation of
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motion in the incompressible limit,

∇2 ~A = ~ω , (3.136)

implies instantaneous signal propagation at arbitrarily large distances. This is clearly an

artifact of the incompressible approximation, and once the speed of sound is brought down

to finite values, we expect ~A to propagate at that speed—no small disturbances can propagate

faster. This sounds very much like sound. Is ~A in some sense sound itself?

But, while we responsibly address all the conceptual points raised above, nothing pre-

vents us from looking for relevant physical applications of our methods, which can range

for instance from classical vortex ring systems in ordinary fluids like water [36], to quan-

tized vortex line interactions in laboratory superfluids or in pulsars, where dense arrays of

vortex lines in the neutron superfluid are expected to interact strongly with much denser

arrays of magnetic flux tubes in the proton superconductor, with crucial consequences for

the dynamics of the star as a whole [43].



Chapter 4

Applications to Cosmology: Solid

Inflation

4.1 Introduction

There is certainly no shortage of models for primordial inflation. We regret to inform the

reader that—as anticipated in the Abstract and Introduction—we are going to add our

own to this list. However, we feel that the inflationary model we introduce here presents

conceptually novel features that make it stand out as a radical alternative to the standard

inflationary scenario. The main reason for this is that our model does not conform to

the standard symmetry breaking pattern of inflationary models, and this has far-reaching

implications.

In the usual cases, the matter fields ψm feature time-dependent cosmological background

solutions ψ̄m(t), which spontaneously break time translations. As a result, there is one fluc-

tuation mode π(x) that can be identified with the associated Goldstone excitation. Roughly

speaking, it can be thought of as an in-sync perturbation of all the matter fields, of the form

ψ(x) = ψ̄m(t+ π(x)) ' ψ̄m(t) + ∂tψ̄m(t) · π(x) . (4.1)

109
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When coupling to gravity is taken into account, such a mode describes adiabatic perturba-

tions. As usual for Goldstone bosons, the spontaneously broken symmetry puts completely

general, non-trivial constraints on these perturbations’ dynamics [46]. This property is at

the basis of the model-indepedent approach that goes under the name of “effective field

theory of inflation” [47], whose tenets are particularly compelling since they encompass—at

first glance—all cosmological models: cosmology is about time-dependent, homogeneous,

and isotropic field configurations.

However, as we will see, there are other possibilities. In our case, we will be dealing with

matter fields featuring time-independent, ~x-dependent background solutions. Apparently,

this contradicts two facts about inflationary cosmology:

1. The universe is homogeneous and isotropic;

2. In an expanding universe physical quantities depend on time and, more to the point,

that one needs a physical ‘clock’—a time-dependent observable—to tell the universe

when to stop inflating.

As for item 1: ~x-dependent solutions can be compatible with the homogeneity and isotropy

we want for cosmological solutions and for the dynamics of their perturbations, provided

extra symmetries are imposed. For instance, to get an Friedmann-Robertson-Walker (FRW)

solution for the gravitational field, we need an homogeneous and isotropic background stress-

energy tensor. This can arise from matter fields that are not homogeneous nor isotropic,

provided there are internal symmetries acting on the fields that can reabsorb the variations

one gets by performing translations and rotations. The simplest example is that of a scalar

field with a vacuum expectation value

〈φ〉 = αx . (4.2)

Such a configuration breaks translations along x. However, if one postulates an internal

shift symmetry φ → φ + a, then the configuration above is invariant under a combined
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spacial translation/internal shift transformation. As we will see, this is enough to make the

stress-energy tensor and the action for small perturbations invariant under translations. To

recover isotropy as well, one needs more fields, and more symmetries. For instance—in fact,

this is the case that we will consider in this chapter—one can use three scalar fields φI(x)

(I = 1, 2, 3), with internal shift and rotational symmetries

φI → φI + aI , aI = const , (4.3)

φI → OI
Jφ

J , OI
J ∈ SO(3) , (4.4)

so that the background configurations

〈φI〉 = αxI (4.5)

are invariant under combined spacial translation/internal shift transformations, and under

combined spacial/internal rotations. As we discussed Chapter 1, such a system has the

same dynamics as those of the mechanical deformations of a solid—the phonons. In this

sense, the cosmological model that we are putting forward corresponds to having a solid

driving inflation. If this interpretation causes the reader discomfort—in particular, if having

a solid that can be stretched by a factor of ∼ e60 without breaking sounds implausible—one

should think of our model just as a certain scalar field theory. As we will see, the structure

of such a theory is the most general one compatible with the postulated symmetries—and

the impressive stretchability we need can also be motivated by an approximate symmetry—

so that from an effective field theory standpoint, ours is a perfectly sensible inflationary

model. From this viewpoint, the fact that the solids we are used to in everyday life behave

quite differently—quantitively, not qualitatively—seems to be an accident: they lack the

‘stretchability symmetry’.

As for apparent contradiction number 2: In our model the role of the physical clock will

be played by the metric. More precisely, it will be played by (gauge invariant) observables,

made up of our scalars and of the metric, like for instance the energy density or the pressure.
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These can depend on time even for purely space-dependent scalar backgrounds, because

in the presence of a non-trivial stress-energy tensor, the metric will depend on time, in

a standard FRW fashion. Doesn’t this correspond to a spontaneous breakdown of time

translations too? At some level it is a matter of definition, but we will argue in sect. 4.4 that

the operationally useful answer is ‘no’, in the sense that there is no associated Goldstone

boson, and that one cannot apply to our case the standard construction of the effective field

theory of inflation as given in [47].

Formal considerations aside, our peculiar symmetry-breaking pattern has concrete phys-

ical implications, with striking observational consequences. For instance, it predicts a three-

point function for adiabatic perturbations with a ‘shape’ that is not encountered in any

other model we are aware of. It is plotted later in fig. 4.1; we will see that it diverges in

the squeezed limit, but in a way that depends on the direction in which one approaches the

limit, with a quadrupolar angular dependence. Additionally, its overall amplitude is also

unusually large, corresponding to fNL ∼ 1
ε

1
c2s

.

Before proceeding to spelling out our model in detail, we close this Introduction with

two qualifications. The first is that we have been using (and will be using) a somewhat mis-

leading, but fairly standard, language: when spontaneously broken symmetries are gauged,

the associated would-be Goldsone bosons are not in the physical spectrum—rather, they

are ‘eaten’ by the longitudinal polarizations of the gauge fields. In fact, there is a gauge,

the so-called unitary gauge, in which the Goldstone fields are set to zero. In our case we

will be dealing with spontaneously broken translations and rotations, and when gravity is

dynamical, these are gauged. In unitary gauge one can set the scalars to their vevs (4.5), and

have the corresponding excitations show up in the metric. The Goldstone language is still

useful though, in that it captures the correct high energy/short distance dynamics of these

excitations. For massive gauge theories, this statement goes under the name of “the equiv-

alence theorem”. For cosmological models, it is just the statement that at sub-cosmological
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distances and time-scales, in first approximation one can neglect the mixing between matter

perturbations and gravitational ones. We hope the Goldstone boson nomenclature will be

more useful than misleading.

The second qualification is that our model is not entirely new. A different formulation of

essentially the same inflationary model was put forward and briefly analyzed by Gruzinov

in [49]. Our emphasis here will be on the peculiar symmetry breaking pattern, on the effective

field theory viewpoint, on a systematic analysis of cosmological perturbations—including

their non-gaussian features—and in general on the conceptual and technical differences with

more standard inflationary models. Cosmological solids have also been used as an exotic

model for dark matter [50], and more recently as dynamical media with negative pressure

but well-behaved excitations [51].

As a general guide for the reader, the bulk of this (long) chapter can be schematically

divided into three parts:

• sects. 4.2–4.4 introduce our model and discuss its field-theoretical and conceptual as-

pects, including why it cannot fit into the standard EFT of inflation;

• sects. 4.5–4.8 contain a technical analysis of cosmological perturbations, up to their

three-point correlation function;

• sects. 4.9 and 4.10 address a number of conceptual subtleties in the analysis of cosmo-

logical perturbations, stemming from a very unusual feature of our model: the absence

of adiabatic perturbations during inflation.

A brief summary of our results is contained in sect. 4.11, along with a number of possible

generalizations of our scenario. Much technical material is contained in the Appendix.
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4.2 Effective field theory for solids (and fluids)

To begin with, let us review how one can describe the mechanical degrees of freedom of a

solid in modern effective field theory terms. The first systematic approach to this question

has probably been that of ref. [52], but here we instead utilize the formalism and language

developed in Chapter 1. As a note to avoid future confusion with standard cosmological

nomenclature, throughout this chapter we will call the φI ’s ‘internal’ coordinates, and reserve

‘comoving’ for the standard FRW coordinates for when we introduce gravity.

We want to construct the most general low-energy theory for three scalar fields obeying

Poincaré invariance and the internal symmetries (4.3) and (4.4). As discussed in Chapter 1

at lowest order in the derivative expansion, the only Lorentz-scalar, shift-invariant quantity

is the matrix

BIJ ≡ ∂µφ
I ∂µφJ . (4.6)

We then have to construct SO(3) invariants out of this matrix. For a 3 × 3 matrix, there

are only three independent ones, which we can take for instance to be the traces

[B] , [B2] , [B3] , (4.7)

where the brackets [. . . ] are shorthand for the trace of the matrix within. Alternatively, one

could take the determinant, and two of the traces above. In the following, we will find it

convenient to use one invariant—say [B]—to keep track of the overall ‘size’ of the matrix B,

and to choose the other two such that they are insensitive to an overall rescaling of B, e.g.

X = [B] , Y =
[B2]

[B]2
, Z =

[B3]

[B]3
. (4.8)

The most general solid action therefore is

S =

∫
d4xF

(
X, Y, Z

)
+ . . . (4.9)

where F is a generic function that depends on the physical properties of the solid—e.g. its
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equation of state—and the dots stand for higher-derivative terms, which are negligible at

low energies and momenta.

As a self-consistency check, notice that the background configuration (4.5) solves the

equations of motion for any value of α, which can then be thought of as being determined

by the boundary conditions (the external pressure we alluded to above.) The eom for the

action above are

∂µ
(
∂µφ

J ∂F

∂BIJ

)
= 0 . (4.10)

For a linear configuration like (4.5), all terms in parentheses are constant, since they depend

on the φIs’ first derivatives, which are constant. The eom are thus trivially obeyed.

As a side note, in Chapter 1 we continued on to describe a perfect fluid by imposing the

infinitely many more internal symmetries described by the volume preserving diff given by

(1.5). This expresses the physical fact that for a fluid one can move volume elements around

in an adiabatic manner without paying any energy price—only their compression matters.

Of the SO(3) invariants above, only one particular combination survives: the determinant

of B,

detB = 1
6

(
[B]3 − 3[B][B2] + 2[B3]

)
, (4.11)

which is of course insensitive to multiplication of B by unit-determinant Jacobians. We can

see precisely how, in this formalism, a fluid is just a very symmetric solid.

Back to the solid. The background configurations (4.5) spontaneously break some of our

symmetries. There are associated Goldsone bosons, which are nothing but fluctuations of

the φI ’s about such a background,

φI = α(xI + πI) . (4.12)

We get these fluctuations’ free action by expanding our action (4.9) to second order in πI .

Using

BIJ = α2
(
δIJ + ∂IπJ + ∂JπI + ∂µπ

I∂µπJ
)
, (4.13)
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after integrating by parts and neglecting boundary terms we get

S → S2 =

∫
d4x

[
− 1

3
FXX · ~̇π 2 +

(
1
3
FXX + 6

27
(FY + FZ)

)
(∂iπj)

2

+
(

1
9
FXXX

2 + 2
27

(FY + FZ)
)

(~∇ · ~π)2
]
, (4.14)

where the subscripts stand for partial derivatives, which are to be evaluated at the back-

ground values

X → 3α2 , Y → 1/3 , Z → 1/9 . (4.15)

These Goldstone excitations are the solid’s phonons. For what follows it will be convenient

to split the phonon field ~π into a longitudinal part and a transverse one,

~π = ~πL + ~πT , ~∇× ~πL = 0 , ~∇ · ~πT = 0 . (4.16)

It is straightforward to extract the longitudinal and transverse propagation speeds from the

phonon’s action:

c2
L = 1 +

2

3

FXXX
2

FXX
+

8

9

(FY + FZ)

FXX
, c2

T = 1 +
2

3

(FY + FZ)

FXX
, (4.17)

in terms of which the quadratic action is simply

S2 =

∫
d4x (−1

3
FXX)

[
~̇π 2 − c2

T (∂iπj)
2 − (c2

L − c2
T ) (~∇ · ~π)2

]
. (4.18)

Note that with cT 6= 0 for generic solids the troublesome transverse/vorticose modes are now

under control! For these solid systems all the troublesome issues that where discussed in

Chapters 2 and 3 are no longer there. Consequently, perturbation theory and the quantum

mechanical treatment of these systems should be absolutely straightforward.

If we expand eq. (4.9) to higher orders, we get the interactions among the phonons.

The expansion is straightforward, but already at cubic order the result is quite messy, and

not particularly illuminating. Below, we will display explicitly the cubic interactions in a

particular limit, which yields some simplifications, and which is the physically relevant limit
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for an inflationary background. For the moment, it suffices to say that, by construction, the

n-th order interaction terms will be schematically of the form (∂π)n, where the derivatives can

be spacial or temporal, and the indices are contracted in all possible ways. The coefficients

of these interactions terms—the coupling constants—will be given by suitable derivatives

of F , evaluated on the background solution. Like for all derivatively-coupled theories, our

interactions become strong in the UV, at some energy scale Λstrong. For our theory to be

predictive for cosmological observables, we will need this strong-coupling scale to be above

the Hubble rate H, for the whole duration of inflation.

4.3 Inflation

We can now allow for a cosmological spacetime metric and for dynamical gravity, which,

operationally, is trivial: the index-contraction in (4.6) should be done via gµν rather than

ηµν , and the measure in (4.9) should carry a
√
−g. As usual, “minimal coupling” corresponds

to the most general coupling one can have between a matter system and gravity at lowest

order in the derivative expansion. Then our solid’s stress-energy tensor is

Tµν = − 2√
−g

δS

δgµν
= −2

∂F

∂BIJ
∂µφ

I∂νφ
J + gµν F . (4.19)

This “triviality” was one of the advertised advantages of working with the EFT.

As to the scalar fields’ background configuration, the xI in (4.5) should now be inter-

preted as comoving FRW coordinates. The reason is that the FRW metric is invariant under

translations and rotations acting on the comoving coordinates, and we want the l.h.s. and the

r.h.s. in (4.5) to transform in the same way under the symmetries we are trying to preserve.

We can also choose the normalization of the comoving coordinates to set the α parameter

to one, so that from now on the background configuration is simply

〈φI〉 = xI . (4.20)
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When computed on the background, the stress-energy tensor reduces to the standard

T µν = diag
(
− ρ, p, p, p

)
, with

ρ = −F , p = F − 2
a2FX , (4.21)

where the subscript X stands for partial derivative, and F and FX are evaluated at the

background values for our invariants:

X → 3/a2(t) , Y → 1/3 , Z → 1/9 . (4.22)

Notice that—by construction—X is the only invariant that depends on the scale factor; Y

and Z were designed to be insensitive to an overall rescaling of BIJ . This is the reason why

only FX appears in the pressure: for an FRW solution, the pressure is related to the response

of the system to changing the scale factor, i.e., the volume. For a more general configuration,

the stress-energy tensor (4.19) has a more complicated structure, which depends on FY and

FZ as well, which we report here for later use:

Tµν = gµν F − 2 ∂µφ
I∂νφ

J

((
FX −

2FY Y

X
− 3FZZ

X

)
δIJ +

2FYB
IJ

X2
+

3FZB
IKBKJ

X3

)
.

(4.23)

Now, in order to have near exponential inflation, we need

ε ≡ − Ḣ

H2
� 1 . (4.24)

Via the Friedmann equations 1,

H2 =
1

3M2
Pl

ρ , Ḣ = − 1

2M2
Pl

(ρ+ p) , (4.25)

and eq. (4.21), we can express ε directly in terms of our Lagrangian F :

ε = 3 · 1

a2

FX
F

=
∂ logF

∂ logX
, (4.26)

1We are defining the Planck scale as M2
Pl = (8πG)−1
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where we used eq. (4.22) for the background value of X. We thus see that if we want our

solid to drive near exponential inflation, we need a very weak X-dependence for F . Which

is not surprising, since X is the only invariant that is sensitive to the volume of the universe:

for inflation to happen, the solid’s energy should not change much if we dilate the solid by

∼ e60; this is only possible if the solid’s dynamics do not depend much on X.

This also suggests how to enforce the smallness of ε via an approximate symmetry. Con-

sider the scale transformation

φI → λφI , λ = const . (4.27)

The matrix BIJ changes by an overall λ2 factor, which affects X but not Y nor Z. Therefore,

the smallness of FX can be interpreted as an approximate invariance under (4.27): If F only

depended on Y and Z, it would be exactly invariant under (4.27), and this would prevent

quantum corrections from generating some X-dependence. If we start with a small FX at

tree level, the symmetry is only approximate, yet all further X-dependence generated at

quantum level will be suppressed by the small symmetry-breaking coupling constant—FX

itself.

Notice that in general, ordinary scale invariance—that acting on the spacetime coordi-

nates as xµ → λxµ—cannot be readily used as an approximate symmetry to enforce the

smallness of symmetry-breaking parameters. For instance, one cannot solve the Higgs-mass

hierarchy problem this way [53]. Moreover, it is generically anomalous, that is, broken by

quantum effects, as clearly displayed by the running of coupling constants for interactions

that are scale-invariant at tree level. Here instead, we are dealing with a purely internal

symmetry—eq. (4.27)—which commutes with all spacetime symmetries. It has nothing to

do with spacetime scale-invariance. It is on an equal footing with our other internal symme-

tries (4.3), (4.4), and, like those, is non-anomalous and can be used to constrain the structure

of the Lagrangian. To avoid confusion, in the following we will refer to the symmetry (4.27)

as ‘internal scale invariance’.
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Notice in passing that at lowest order in the derivative expansion, imposing internal scale

invariance gives us full (internal) conformal invariance as a byproduct. The reason is the

following. The invariants we are using in our lowest-order action are combinations of traces

of the form [Bn]. Under a generic internal diff

φI → ξI(φ) , (4.28)

these traces transform as

[Bn]→ [(JTJ) ·B · (JTJ) ·B · · · (JTJ) ·B] , (4.29)

where J is the diff’s Jacobian matrix, and we have used the cyclicity of the trace. Now, by

definition, conformal transformations are the subgroup of diffs that change the flat metric

δIJ only by an overall scalar factor, that is, they have a (JTJ) proportional to the iden-

tity. So, under a general conformal transformation, our traces only change by an overall

(φ-dependent) factor. Our Y and Z combinations are insensitive to such a change, and as

long as the Lagrangian only depends on those, it is invariant under all internal conformal

transformations. It is interesting that even though our internal scale invariance has in princi-

ple nothing to do with ordinary spacetime scale invariance, it shares with it the unavoidable

company of special conformal transformations. In both cases, special conformal transfor-

mations are not needed to close the symmetry group, yet they are respected by generic

scale-invariant dynamics. In the spacetime symmetry case, there are fundamental reasons

why that happens [54, 55]. In our case, it appears to be an accidental feature of the lowest

order truncation of the derivative expansion.

Back to physics. The smallness of ε in our model does not come for free. To see this,

notice that by dialing FX we could go continuously through ε = 0 and end up with negative ε,

that is, positive Ḣ, which violates the null energy condition (NEC). But our EFT conforms to

the hypotheses of the general theorem of [10], which links NEC violations to such pathologies

as ghost- or gradient-instabilities and superluminality. For small but positive ε, we could be
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dangerously close to these pathologies 2. Our quadratic action for the phonons—eq. (4.14)—

is quite explicit about this: the phonon’s kinetic energy is suppressed by ε,

S2 ∼
∫
d4x ε|F | · ~̇π 2 + . . . (4.30)

For very small ε, this can in principle lead to two problems for our theory:

• Superluminality: the gradient energies in (4.14) are not explicitly suppressed by ε, and

as a consequence the propagation speeds (4.17) are formally of order 1/ε, unless the

numerators are also small. In an effective field theory like ours, with spontaneously

broken Lorentz invariance, superluminal signal propagation is not necessarily an incon-

sistency. However, it prevents the theory from admitting a standard Lorentz-invariant

UV-completion [56]. We therefore feel that it should be avoided.

• Strong coupling: unless interactions are also suppressed by suitable powers of ε—and it

turns that they are not—a smaller kinetic energy means stronger interactions. This is

obvious if one goes to canonical normalization for π, by absorbing the prefactor in (4.30)

into a redefined phonon field. Then inverse powers of ε will show up in the interaction

terms, thus signaling that the strong coupling scale of the theory is suppressed by some

(positive) power of ε. We have to make sure that this strong coupling scale is above

H, for the whole duration of inflation.

As for the former issue, notice first of all that the term proportional to FXX in the

expression for c2
L is forced to be close to −2/3. The reason is that not only do we need the

‘slow-roll’ condition (4.24) for inflation to happen, we also need

η =
ε̇

εH
� 1 (4.31)

2These considerations are irrelevant for standard slow-roll inflation, where the smallness of ε is achieved

via an approximately flat potential. One cannot play with the potential’s slope and end up with positive

Ḣ. Positive Ḣ would require flipping the sign of the inflaton’s kinetic energy, which would of course entail

ghost-instabilities. On the other hand, in our case the sign of Ḣ is the same as that of FX , which is the

Lagrangian parameter we are playing with to make ε small.
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for inflation to last many e-folds.3 This forces the second derivative FXX also to be small.

In particular, given eq. (4.26), and

H =
d

dt
log a = −1

2

d

dt
logX , (4.32)

we get

FXXX
2

FXX
= −1 + ε− 1

2
η . (4.33)

So that, at lowest order in ε and η, the propagation speeds (4.17) reduce to

c2
L '

1

3
+

8

9

(FY + FZ)

FXX
, c2

T = 1 +
2

3

(FY + FZ)

FXX
. (4.34)

It is quite interesting that in this limit they depend on exactly the same (FY + FZ) combi-

nation; we see no obvious reason why this should be the case. As a result, the two speeds

are not independent: they are related by 4

c2
T ' 3

4
(1 + c2

L) . (4.36)

We thus see that for both speeds to be sub-luminal, we need

c2
L <

1
3
, (4.37)

that is, positive (FY +FZ) (recall that FXX = εF is negative, because F is). We do not want

(FY + FZ) to be too positive though—otherwise, we end up with negative squared speeds,

that is, exponentially growing modes. We thus need (FY + FZ) to fit into a small window,

0 < (FY + FZ) < 3
8
ε|F | . (4.38)

3In the computations that follow, we will assume all the slow-roll parameters to be of the same order of

magnitude.
4To all orders in ε and η, the exact relation is

c2T = 3
4

(
1 + c2L − 2

3ε+ 1
3η
)
. (4.35)
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We were able to motivate the smallness of FX ,

FXX = εF , (4.39)

via an approximate symmetry. It would be desirable to do the same for this new combination

of derivatives. One possibility is of course to say that all derivatives of F are small, that is

∂F

∂BIJ
BKL ∼ εF . (4.40)

This formally corresponds to an approximate invariance under all internal diffs

φI → ξI(φ) , (4.41)

that is, to the statement that the value of the Lagrangian does not depend much on the

fields. Less formally, and more physically, it corresponds to saying that the bulk of the

solid’s energy density and pressure are dominated by a cosmological constant, which does

not depend on the fields. Although this is of course a technically natural choice—having a

large cosmological constant was never a problem—it is not particularly interesting. It would

be more interesting to find a symmetry that allows large derivatives of F ,

FY , FZ ∼ F (4.42)

but that—in the limit of exact symmetry—forces the combination FY +FZ to vanish. Another

possibility would be a symmetry that makes FY + FZ saturate the upper bound in (4.38),

that is, that makes c2
L vanish. This is not as unlikely as it sounds: for instance the perfect

fluid action (1.7)—whose structure is protected by the volume-preserving diff symmetry—

features vanishing propagation speed for the transverse phonons, as can be checked explicitly

in (4.17), by using expression (4.11) for the determinant. We have not been able to find a

symmetry that enforces the condition (4.38) while preserving (4.42). We have to take such a

condition as an assumption, which might involve some fine tuning, but which is nonetheless

consistent and necessary for the consistency of our inflationary solution.
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As for the strong coupling issue, we have to estimate the strong coupling scale Λstrong

in our small ε limit, and make sure that cosmological perturbations are weakly coupled at

horizon crossing, that is, at frequencies of order H. Expanding the action (4.9) to all orders

in π we get interactions of the form

fn · (∂π)n , (4.43)

where fn is some typical derivative of F . In our case some combinations of derivatives are

small,

FXX ∼ (FY + FZ) ∼ εF , (4.44)

but we do not expect this to yield a substantial weakening of interactions. For instance,

we will see below that in our approximation the coefficient weighing cubic interactions is

FY , which, as we argued above, can be as large as the background energy density, FY ∼ F .

Assuming that FY is a good estimate for the coefficients encountered in interaction terms,

and assuming for the moment that both cL and cT are of order of the speed of light—so that

there is no parametric difference between time- and space-derivatives—we can estimate very

easily the strong coupling scale: We can go to canonical normalization for the kinetic term

L2 ∼ εF · (∂π)2 → (∂πc)
2 , (4.45)

so that the n-th order interaction becomes

Ln ∼ FY · (∂π)n → FY
(εF )n/2

(∂πc)
n . (4.46)

This is a dimension-2n interaction, weighed by a scale

Λn ∼
(εnF n

F 2
Y

) 1
4n−8

(4.47)

(recall that F and FY have mass-dimension four.) If FY is of the same order as F , this is

simply

Λn ∼ F 1/4 · ε
n

4n−8 , (FY ∼ F ) , (4.48)
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which, for n ≥ 3 and ε � 1, is an increasing function of n. The lowest of all such scales—

which defines the strong coupling scale of the theory—is thus that associated with n = 3:

Λstrong = Λ3 ∼ F 1/4ε3/4 , (FY ∼ F ) . (4.49)

If on the other hand FY is much smaller that F , say of order εF , we get that all interactions

are weighed by the same scale, which then defines strong coupling:

Λstrong ∼ Λn ∼ F 1/4 · ε1/4 , (FY ∼ εF ) . (4.50)

Either way, the strong coupling scale is a fractional power of ε smaller than the scale asso-

ciated with the solid’s energy density.

If the propagation speeds cL, cT are non-relativistic, the estimate of the strong coupling

scale depends on the specific structure of the interaction terms, that is, on how many time-

derivatives there are. In general, one may expect stronger interactions, i.e., lower strong-

coupling scales for non-relativistic excitations (see Chapter 2 for a systematic analysis of

this phenomenon in a different limit of our solid action.) Notice first of all that, because of

(4.36), the transverse phonon speed cT is always relativistic,

3
4
< c2

T < 1 . (4.51)

So, our estimates above always work for the transverse phonons’ self-interactions. For lon-

gitudinal phonons with cL � 1, we can repeat the estimate using the cubic interaction,

assuming this is still a good indicator of the strong coupling scale of the theory. Expanding

(4.9) up to cubic order, and neglecting terms that are proportional to X-derivatives of F or

to (FY + FZ), we find

S3 '
∫
d4x

(
− 1

243
FY
)
·
{

16 [∂π]3 − 36 [∂π]2
(
[∂π · ∂πT ] + [(∂π)2]

)
+18 [(∂π)3] + 18 [(∂π)2 · ∂πT ]

}
, (4.52)

where (∂π)ij ≡ ∂iπj is the matrix of spacial derivatives of π, ∂πT is its transpose, and the

brackets stand for the trace. Notice in particular that there are no time-derivatives. For



126

cL � 1, one can estimate the strong coupling scale via the same trick utilized in Chapter 2.

We can redefine the time variable as t → t′/cL. Now in the kinetic energy term there is no

hierarchy between time- and space-derivatives,

S2 ∼
∫
d4x εF ·

(
π̇2 − c2

L(∇π)2
)
→
∫
d4x′ εF cL · (∂′π)2 , (4.53)

and we can apply the usual order-of-magnitude estimates as for relativistic theories. The

cubic interaction becomes schematically

S3 →
∫
d4x′

FY
cL
· (∂′π)3 . (4.54)

To get the lowest possible value for the strong-coupling scale—that is the most dangerous

one—we can take FY to be as large as possible, FY ∼ F .5 Going to canonical normalization

and estimating the strong-coupling scale as above we get 6:

pstrong ∼ F 1/4(ε3c5
L)1/4 (4.56)

This is the strong coupling momentum scale, or equivalently, the strong-coupling energy

scale in units that are appropriate for our new t′ variable. To convert to the original units

of energy, we have to multiply by an extra cL:

Estrong ∼ F 1/4(ε3c9
L)1/4 . (4.57)

5There is a third possibility where FY � F . While this may not be a problem when analyzing the strong

coupling scale of the theory, it is still very unnatural to have the background energy scale much smaller than

the other scales in the theory. We already have one cosmological constant problem in cosmology, it would

maybe be better if we tried not to introduce a second one.
6If one were to repeat the same analysis for a more generic n-th order interaction, also weighed by FY

like eq. (4.52), and also involving spatial derivatives only, one would get

pstrong ∼ F 1/4ε
n

4(n−2) c
n+2

4(n−2)

L , (4.55)

which, for small ε and cL, is minimized at n = 3.
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As we mentioned above, cosmological perturbation theory is under control only if

Estrong � H . (4.58)

Relating H and F via the Friedmann equation, H2 ∼ F/M2
Pl, we get a lower bound on the

combination ε · c3
L,

ε · c3
L �

(
H/MPl

)2/3
. (4.59)

In principle our H can be several orders of magnitudes smaller than the Planck scale, in

which case this bound is not particularly restrictive. Still, it is a nontrivial condition for the

self-consistency of the perturbative computations we will perform.

Once the strong-coupling danger is exorcised, large interactions are demoted (or pro-

moted) from a problem to an exciting feature of the model: they imply huge non-gaussianities

for our cosmological perturbations. As we will see in sect. 4.5, our non-gaussian signal is

peaked on squeezed triangles, with the same size-dependence as the so-called local forms of

non-gaussianity, but with a different angular dependence. The corresponding fNL parameter

is of order 1/(ε · c2
L), which is a factor of 1/ε bigger than what one finds—at the same value

of cL—in single-field models with non-relativistic sound speed.

A clarification is in order: we have been analyzing the viability of our model focusing on

the phonons’ dynamics, neglecting the background spacetime curvarture and the phonons’

mixing with gravitational perturbations. Of course this is not entirely correct. As we men-

tioned in the Introduction however, at energies much bigger than H, or equivalently, for

time-scales much shorter than H−1, curvature and mixing have negligible effects, and in first

approximation they can be neglected. Our conditions above, (4.38) and (4.59), should then

be thought of as necessary and sufficient for our system to be well-behaved in the UV, at

very short distances and time scales. Our detailed analysis of cosmological perturbations in

sect. 4.5 will confirm these results.

We should also point out that although we will be using standard ‘slow-roll’ nomenclature

for the conditions (4.24), (4.31) and for the associated perturbative expansion, nothing is
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‘rolling’ in our system, slowly or otherwise: our φI scalars are exactly constant in time. As

usual however, the so-called slow-roll expansion really relies on the slowness of certain time-

dependent observables like H, Ḣ, etc., which are well defined regardless of the presence of

a rolling scalar. We will still use ‘slow-roll’ to refer to such a weak time-dependence, hoping

that this will not cause confusion. As we emphasized, in our case the physical origin of this

slowness is the near independence of the dynamics on X, which is, among our invariants,

the only one that depends on time. Besides ε and η, in the following we will need one more

slow-roll parameter,

s ≡ ċL
cLH

, (4.60)

which is small, because cL depends on time only via the Lagrangian’s X-dependence.

Finally, we should comment on why we are focusing on a solid rather than on a perfect

fluid. First, since eventually we will be interested in quantum mechanical effects—as usual,

quantum fluctuations will be the ‘seed’ for cosmological perturbations—we focus on a solid

because, as demonstrated in Chapter 2, we do not know yet how to consistently treat the

perfect fluid effective theory as a quantum theory. The problem has to do with the transverse

excitations, which appear to be strongly coupled at all scales. Second, even forgetting about

the transverse excitations and focusing on the longitudinal ones, we would not be able to

keep those weakly coupled for many e-folds. As clear from (4.35), to have vanishing c2
T

(which is one of the defining features of a fluid) and small ε, we need η ∼ −1. But, by

definition, η = ε̇/(Hε), so that we need ε = FXX/F to decrease by an order one factor

over one Hubble time, i.e. to decrease like some order-one power of 1/a. F has to be nearly

constant over many e-folds, which means that it is actually the numerator FXX that is

tracking 1/a(t). But it is precisely combinations like FXX that control the strong-coupling

scale for longitudinal excitations in a fluid, which means that we cannot have FXX decrease

by exponentially large factors without making the system strongly coupled at frequencies of

order H at some point during inflation.
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4.4 Physical ‘clocks’ and reheating

Eventually we want our inflation to end and to be followed by a standard hot Big-Bang

phase, that is, we want the universe to reheat and to become radiation dominated.7 In our

case, this process can be thought of as a phase-transition from a solid state to a relativistic

fluid state. The advantage of our language in dealing with such a transition is that, as

we emphasized in sect. 4.2, it describes both solids and fluids in terms of the same long-

distance degrees of freedom, our scalars φI . Only, the fluid action (1.7) enjoys (many) more

symmetries. So, regardless of the microscopic dynamics that are actually responsible for the

phase transition, at long distances and time scales reheating corresponds to some sort of

symmetry enhancement of our action. We will be more specific about this in a moment.

In terms of our infrared degrees of freedom, what triggers reheating? In standard slow-

roll inflation, it is the inflaton itself, when its time-dependent background field reaches a

critical value. On the other hand, in the absence of perturbations, our φI ’s are exactly

time-independent: 〈φI〉 = xI . However the metric is not, and there are gauge-invariant

combinations like our

X = gµν ∂µφ
I∂νφ

I , (4.61)

or the energy density and pressure in eq. (4.21), that do depend on time. Usually we

are used to solids turning into liquids—that is, melting—when the temperature exceeds a

critical value. But we can also envisage a solid that ‘melts’ at zero temperature, when one

of the physical quantities above goes past a critical value. Helium offers an example of such

a phenomenon: at zero temperature one can turn liquid helium into a solid by raising the

7It should be noted that [49] avoided going through a specific model of reheating by simply evolving the

solid until cT → 0, and demanding that the solid turn into a perfect fluid at that point. Given our analysis

above, if we want to keep all the slow roll parameters small, as is reflected in (4.51) c2T cannot become much

smaller than 3/4. Via our EFT approach we thus see that the reheating model of [49] necessarily entails a

breakdown of the slow-roll expansion before reheating, which is, of course, a consistent possibility.
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pressure beyond ∼ 25 atm, and melt it back again by lowering the pressure below that value.

In our case, we need this zero-temperature melting to be associated with a substantial release

of latent heat, so that the fluid we end up with is (very) hot 8. As far as we can tell, this

does not violate any sacred principles of thermodynamics.

Notice that as far as the background solution is concerned, to lowest order in the derivative

expansion all choices for what observable triggers our solid’s melting are physically equiv-

alent: this is evident in our parameterization of the action (4.9), where all time-dependent

observables depend on time only through X, or, equivalently, through a(t). However, when

we include fluctuations, we break this equivalence. For instance, the three invariants [B],

[B2], and [B3] are independent combinations of the fields’ derivatives. In the presence of

fluctuations, the hypersurface defined by [B] reaching its critical reheating value is different

from that defined by [B2] or [B3] reaching their critical reheating values. As a result, some of

our predictions for cosmological correlation functions might depend on the physical variable

chosen to trigger reheating. Notice that after reheating, in the hot fluid phase, there is no

ambiguity: the lowest-order action (1.7) only depends on one variable, the determinant of

BIJ . It is thus natural, although not obviously necessary, to postulate that reheating is

triggered by the value of detB.

So, in terms of our action, our assumption is that for large detB the action has the

general structure (4.9), whereas for detB below a critical value, the action has the more

restricted form (1.7). In the space of our X, Y , Z invariants, this corresponds to dividing

up the space into two regions, where the action has different symmetries: eqs. (4.3), (4.4)

for the former, eq. (1.5) for the latter. Moreover, the slow-roll condition Ḣ � H2 during

inflation is protected by another (approximate) symmetry of the solid phase, eq (4.27), which

we want to be maximally violated in the post-reheating fluid phase, which has Ḣ ∼ H2.

Since renormalization is local in field space, the existence of different regions with different

8In the fluid phase, which is described by the action (1.7), the temperature is given by T = − dF
d
√
detB

.
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symmetries is protected by precisely those symmetries, and is thus a consistent and natural

assumption 9. For illustrative purposes, consider for instance the following action:

L = F (X, Y, Z) ∝
{ −(detB)ε/3 · f(Y, Z) for detB > 1

−(detB)2/3 for detB < 1 ,
(4.62)

where f is a generic function that evaluates to one for the background values Y → 1/3, Z →

1/9, and we suppressed an overall common factor, which defines the density at reheating.

The ‘gluing’ at detB = 1 can be smoothed at will. In the first regime, L describes a solid

driving an inflationary phase with constant ε (for fixed Y and Z, detB scales like X3—

hence the ε/3 power). In the second regime, L describes an ultra-relativistic fluid, with

p = ρ/3 ∝ T 4. The two regimes have different internal symmetries, as discussed above, but

they share the same degrees of freedom. The classical evolution of the background solutions

and of perturbations can then be followed smoothly through the transition region, as the

long wavelength degrees of freedom are the same all along, and the equations of motion are

regular.10

Notice that we have been implicitly assuming that reheating is instantaneous, that is,

that our solid/fluid phase transition happens in a time interval that is much shorter than

the Hubble scale, which is reasonable in principle, but not necessary. One can also consider

much slower transitions, which in field space would correspond to replacing the sharp critical

values we have been talking about for our observables, with much more continuous transition

regions. All our physical considerations above apply unaltered. Since, as we will discuss,

some of our predictions are potentially model-dependent, for what follows we need to assume

9A similar mechanism is at work in ghost inflation [57], or in the EFT description of finite-temperature

superfluids [14].
10As mentioned a great deal already, one should refrain from performing quantum computations in the

fluid phase. So, eq. (4.62) should not be thought of as a quantum effective theory in the second regime. Still,

since at reheating all relevant modes are well outside the horizon and, thanks to the usual reasons, can be

treated as classical, we only need (4.62) to be a consistent classical field theory, which it is.
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a specific model for reheating. So, we will assume that reheating is fast, much faster than

H, and that it is controlled by the value of detB.

4.4.1 Why not the EFT of inflation?

Before turning to a detailed analysis of cosmological perturbations, we close this section by

discussing why our model does not conform to the standard EFT of inflation. As we just

saw, we do have physical ‘clocks’, that is time-dependent background observables, so why

can’t we use the standard results for spontaneously broken time-translations? The reason is

that these time-dependent observables depend on time only because the metric does.

To see why this subtlety is important, consider first the dynamics of our system at very

short distances—in the so-called decoupling limit—where the matter fluctuations decouple

from the gravitational ones and the Goldstone boson language is appropriate. In first ap-

proximation, this limit corresponds formally to setting G to zero. But without gravity, our

background solution has no time-dependence whatsoever! All observables like density, pres-

sure, etc. are now exactly constant in time, and only spacial translations and rotations are

broken by the background configuration 〈φ〉 = xI . As a result, the Goldstone bosons, whose

existence and properties have to be assessed in the decoupling limit—because as recalled

in the Introduction, only in this limit does it make sense to talk about them—are those

associated with this spontaneous symmetry breaking pattern, not with time-translations.

It is not surprising then, that once we re-introduce gravity, the dynamics of cosmological

perturbations at all scales are quite different than for the EFT of inflation. This is manifest

in the so-called unitary gauge, where one chooses the time-variable according to a physical

clock. In the standard case, that clock would be the inflaton, and choosing the equal-time

surfaces to be the equal-inflaton surfaces automatically sets to zero the inflaton perturbations

and makes the metric the only fluctuating field. In our case, if we choose one of our time-

dependent observables—say detB or [B]—to define unitary gauge, we are still left with
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matter perturbations, because the background time-dependence that we are using to set

the gauge is carried by the metric, not by matter fields. We can either include the matter

perturbations explicitly in the Lagrangian terms that we write down in this gauge, or we

can set them to zero, by choosing the spacial coordinates now so that φI = xI . This is a

complete gauge-fixing—all spacetime coordinates have been unambiguously defined—and is

of course quite a different gauge choice than the standard unitary gauge. In particular, it is

inequivalent to choosing the so-called ζ-gauge for spacial diffs. Either way, the Lagrangian

terms one would write down are quite different than for the standard EFT of inflation. We

will go into the details of this new unitary gauge in sect. 6.10.

The presence of matter fluctuations in the ‘naive’ unitary gauge cannot be taken as a

sign that we are dealing with what would be called a multi-field model in the standard

classification. First, because there is a gauge—our ‘improved’ unitary gauge—in which all

matter fluctuations are set to zero. Second, because our spectrum of cosmological pertur-

bations only includes one scalar mode, as clear from the Goldstone quadratic action (4.18).

Furthemore, as we will see, this scalar mode is not adiabatic. In other words, in our system

there are no adiabatic modes of fluctuation. This is yet another manifestation that we are

dealing with a truly unconventional cosmological system.

Notice that at the classical level, a subtle, isolated exception to all of the above is of-

fered by a perfect fluid. On the one hand, in our language a perfect fluid is just a very

symmetric solid. In particular, it features the same symmetry breaking pattern. On the

other hand however, because of powerful conservation laws for vorticity, classically one can

consistently set to zero the transverse excitations—the vortices—and be left with an EFT

for the compressional modes only [10]. This admits a description in terms of a single scalar

which spontaneously breaks time-translations—a P (X) theory—to which the standard EFT-

of-inflation construction is applicable.11 In particular, for a perfect fluid scalar cosmological

11Here we are using the standard notation of the community: P is a generic function and X here does not

refer to the [B] we have been considering throughout the text but rather ∂µψ∂
µψ, where ψ is some scalar
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perturbations are adiabatic. Once quantum effects are taken into account however, trans-

verse excitations cannot be neglected any longer. As we discovered in Chapter 2, for a fluid

they are not particularly well behaved quantum mechanically, which is one of the reasons

why we have been considering a more generic solid rather than the special perfect-fluid case.

As a technical aside, we should also emphasize that in a gauge where the matter fields

are unperturbed, φI = xI , our BIJ matrix reduces simply to gIJ , and our Lagrangian thus

becomes the sum of the Einstein-Hilbert action and of a particular function of gIJ , that is, it

reduces to a Lorentz-violating theory of massive gravity. Theories like this have been studied

in broad generality in [58]. The reader familiar with the EFT of inflation might wonder why

we are not writing down directly the action for the perturbations δgIJ in this gauge—the

analog of unitary gauge in that case—, instead of going through the (apparently) unnecessary

burden of writing an action for the full fields, solving for the background solution, and then

expanding the action in small perturbations. The technical reason is that, unlike δg00 or

δKij for the EFT of inflation, our δgIJ does not transform covariantly under the residual

diffs, which are just time diffs for us. The reason is that gIJ does, but its background value,

1
a2(t)

δIJ does not. It is then technically more convenient to write an action for the full gIJ ,

which just amounts to writing an action for BIJ , like we have done.

4.5 Cosmological perturbations

The three sections that follow contain a technical analysis of cosmological perturbations.

Before skipping directly to sect. 4.8, the reader uninterested in the details of the derivations

should be aware of our results: the scalar tilt (4.115), the tensor-to-scalar ratio (4.116), the

tensor tilt (4.100), and the three-point function of scalar perturbations (4.131) (which is

analyzed in some detail in sect. 4.8).

As the background stress tensor takes the usual homogeneous and isotropic form repre-

field whose background ‘vacuum expectation value’ is 〈ψ〉 = ψ̄(t).
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sented by T µν = diag
(
−ρ, p, p, p

)
, all the interesting repercussions of our peculiar symmetry

breaking pattern lie in the dynamics of perturbations around the slow roll background. In

order to best isolate the dynamical degrees of freedom of the gravitational field it is most

convenient to work in the ADM parametrization of the metric:

ds2 = −N2 dt2 + hij
(
dxi +N i dt

) (
dxj +N j dt

)
. (4.63)

It is straightforward to check that the inverse metric gµν is given by

g00 = − 1

N2
, g0i = gi0 =

N i

N2
, gij = hij − N iN j

N2
, (4.64)

where hij is the inverse spatial metric: hikhkj = δij. For the background FRW metric N = 1,

N i = 0, and hij = a2(t) δij.

Following [59] we can write the action as

S =

∫
d4x N

√
h
{

1
2
M2

Pl

[
R(3) +N−2(EijE

ij − E2)
]

+ F (X, Y, Z)
}

(4.65)

where R(3) is the 3-dimensional Ricci scalar constructed out of hij and Eij = N Kij, with

Kij denoting the extrinsic curvature of equal-time hypersurfaces. The constraint equations

given by varying (4.65) with respect to N and N i are:

0 = 1
2
M2

Pl

[
R(3) −N−2(EijE

ij − E2)
]

+ F (X, Y, Z) +N
∂F (X, Y, Z)

∂N
(4.66)

0 = 1
2
M2

Pl∇i

[
N−1(Ei

j − δijE)
]

+N
∂F (X, Y, Z)

∂N j
. (4.67)

The derivatives of F with respect to N and N j can be calculated easily by noting that our

BIJ (and hence X, Y, Z) can be expressed in ADM variables as

BIJ = − 1

N2

(
φ̇I −Nk∂kφ

I
)(
φ̇J −Nk∂kφ

J
)

+ hkm∂kφ
I∂mφ

J . (4.68)

It is usually convenient to work in a gauge where scalar perturbations are removed from

the matter fields and appear only in the metric, as gij = a2(t) (1 + 2ζ)δij, see e.g. [59]. This

possibility is not available to us: By using up the three spatial diffs, we can set the matter
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field perturbations to zero, φI = xI , but then the spatial metric has an extra scalar mode,

proportional to ∂i∂jχ, which we now cannot remove in the usual manner. However, we are

still free to use time diffs, but these at best can set the scalar in front of δij, not χ, to zero.

A more useful choice is to use the time diff to set a physical “clock”—like those we discussed

in the last section—to its unperturbed value. If this clock controls reheating, then reheating

will happen at the same time for all observers in this gauge. We review this gauge choice,

which we call ‘unitary’, in Appendix 6.10.

For the moment we find it more convenient to work in spatially flat slicing gauge (SFSG)—

defined in Appendix 6.10—where we can write the fluctuations about the FRW background

as

φI = xI + πI , hij = a(t)2 exp(γij) , N = 1 + δN , (4.69)

where γij is transverse and traceless, i.e.

∂iγij = γii = 0 . (4.70)

We can also further split the πi and N i fields in terms of their longitudinal scalar and

transverse vector components. We therefore write:

πi =
∂i√
−∇2

πL + πiT , and N i =
∂i√
−∇2

NL +N i
T , (4.71)

where ∂iπ
i
T = ∂iN

i
T = 0. From now on we will stop differentiating between internal I, J, . . .

indices and spacial i, j, . . . ones. The reason is that of the full original SO(3)spacetime ×

SO(3)internal symmetry, only the diagonal combination is preserved by the background φI =

xI . πi and N i both transform as vectors under this unbroken SO(3), and therefore they

carry the same kind of index.

For our purposes here we are interested only in the leading non-gaussian behavior. Bar-

ring accidental cancellations, this can be captured by keeping terms that are cubic in the

fluctuations. In order to reproduce these terms it turns out to be necessary to only know N
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and N i to first order in the fluctuations 12. From now on, we find it easier to work in spacial

Fourier space, with our convention defined for any field ξ(x) by:

ξ(t, ~x) =

∫
~k

ei
~k·~x ξ̃(t,~k) ,

∫
~k

≡
∫

d3k

(2π)3
. (4.72)

For convenience, however, we will drop the twiddle as which field variable we intend will be

obvious from the arguments. And so, solving the constraint equations (4.66) and (4.67) to

first order in fluctuations we have

δN(t,~k) = −a
2Ḣ

kH

π̇L − ḢπL/H
1− 3Ḣa2/k2

(4.73)

NL(t,~k) =
−3a2Ḣπ̇L/k

2 + ḢπL/H

1− 3a2Ḣ/k2
(4.74)

N i
T (t,~k) =

π̇iT
1− k2/4a2Ḣ

(4.75)

where the dot denotes a time-derivative.

Now, plugging these solutions back into (4.65) will give us the correct action for the

fluctuations up to cubic order. For instance, the trilinear solid action after mixing with

gravity is contained in Appendix 6.12 while the quadratic actions for the tensor, vector and

scalar modes are contained in the next section.

Now that we have the correct action for the perturbations in the presence of an inflating

background we can compute correlation functions. In the end, we are interested in the post-

reheating correlation functions of curvature perturbations, parameterized by either of the

gauge invariant (at linear-order) combinations

R =
A

2
+Hδu , ζ =

A

2
−Hδρ

ρ
(4.76)

12This lucky fact is because the higher order terms in N and N i will be multiplying the constraint

equations. In particular: the third order term of N and N i multiplies the zeroth order constraint equations,

and the second order the first order constraint equations [59]. If we were, however, to try and generate the

fourth order terms we would need N and N i to second order.
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where we have followed the notation of [29].13 During our solid inflation phase, in spatially

flat slicing gauge these are given by

R = − k

3Hε

π̇L +HεπL
1 + k2/3a2H2ε

, ζ = 1
3
~∇ · ~π . (4.81)

where the non-local piece of R comes from solving the constraint equation for NL.

Two peculiarities concerning the behavior of these variables during solid inflation are

worth mentioning at this point. First, R and ζ do not coincide on super-horizon scales.

Second, neither of them is conserved. These properties are in sharp contrast with what

happens for adiabatic perturbations in standard cosmological models, and stem from the

fact that during solid inflation, there are no adiabatic modes of fluctuation! We will clarify

why this is the case in sect. 4.9.

13The general (i.e. before gauge fixing) perturbed metric (to the linear-order) is parametrized by

gij = a(t)2 (δij(1 +A) + ∂i∂jχ+ ∂iCj + ∂jCi +Dij) (4.77)

with ∂iCi = 0 and ∂iDij = Dii = 0; furthermore the energy momentum tensor is decomposed into scalar,

vector, and tensor modes as

δT00 = −ρ̄ δg00 + δρ (4.78)

δTi0 = p̄ δgi0 − (ρ̄+ p̄)(∂iδu+ δuVi ) (4.79)

δTij = p̄ δgij + a2(δijδp+ ∂i∂jδσ + ∂iδσ
j + ∂jδσ

i + δσTij) . (4.80)
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4.6 Two-point functions

Upon plugging the expressions (4.73)–(4.75) back into the action, the quadratic action for

tensor, vector, and scalar fluctuations reads:

S(2) = S(2)
γ + S

(2)
T + S

(2)
L (4.82)

S(2)
γ = 1

4
M2

Pl

∫
dt d3x a3

[
1
2
γ̇2
ij − 1

2a2

(
∂mγij

)2
+ 2Ḣc2

T γ
2
ij

]
(4.83)

S
(2)
T = M2

Pl

∫
dt

∫
~k

a3

[
k2/4

1− k2/4a2Ḣ

∣∣π̇iT ∣∣2 + Ḣc2
T k

2
∣∣πiT ∣∣2] (4.84)

S
(2)
L = M2

Pl

∫
dt

∫
~k

a3

[
k2/3

1− k2/3a2Ḣ

∣∣π̇L − (Ḣ/H)πL
∣∣2 + Ḣc2

L k
2
∣∣πL∣∣2] . (4.85)

Notice the quite nontrivial k-dependence for S
(2)
T and S

(2)
L in Fourier space, which would

translate into a (spacially) non-local structure in real space.

4.6.1 Tensor perturbations

Using (4.83) we can calculate the two-point function of the tensor perturbations. As usual,

it is a simpler calculation than the scalar case and will serve as a warmup. We decompose

the tensor modes into their polarizations

γij(~k, t) =
∑
s=±

εsij(
~k)γs(~k, t) , (4.86)

with εsijε
s′∗
ij = 2δss

′
. The transverse, traceless conditions on γij now simply become εii =

kiεij = 0. We further decompose each γs(~k, t) as

γs(~k, t) = γscl(
~k, t) as(~k) + γscl(

~k, t)∗ as†(−~k) . (4.87)

where as(~k)† and as(~k) are creation and annihilation operators obeying the usual commuta-

tion relation

[as(~k), as
′†(~k′)] = (2π)3δ3(~k − ~k′) δss′ , (4.88)
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and where the classical solution γscl(
~k, t) obeys the equations of motion obtained by varying

(4.83):

d2

dτ 2
γcl + 2aH

d

dτ
γcl +

(
k2 + 4εa2H2c2

T

)
γcl = 0 . (4.89)

In the above we have used conformal time τ , where dτ = dt/a, and the definition of the first

slow-roll parameter (4.24). Using the time-dependence of aH, ε, and cT—which is worked

out in Appendix 6.9—we can express the e.o.m. for the tensor mode (4.89) up to first order

in slow-roll parameters as

d2

dτ 2
γcl −

2 + 2εc
τ

d

dτ
γcl +

(
k2 +

4εcc
2
T,c

τ 2

)
γcl = 0 . (4.90)

The subscript “c” denotes that the parameters c2
T , ε are evaluated at some reference time τc,

which is chosen to be the (conformal) time when the longest mode of observational relevance

today exits the horizon, i.e. τc is defined such that

|cL,ckminτc| ' |cL,cτcHtoday| = 1 (4.91)

where the usual convention for flat spacetime atoday = 1 is understood.

The most general solution to the above equation takes the form

γcl(~k, τ) = (−τ)3/2+εc
[
AH(1)

νT
(−kτ) + BH(2)

νT
(−kτ)

]
, νT ' 3

2
+ εc − 4

3
c2
T,cεc , (4.92)

where H(1,2) are Hankel functions, and A and B are constants to be fixed by matching the

appropriate initial conditions.

At very early times the physical wavelength—k/a—is so small compared to the Hubble

scale H that the curvature of spacetime cannot be perceived by such modes; it is therefore

expected that the canonically normalized classical solution should match the free wave func-

tion in the flat-space vacuum, 1√
2k
e−ikτ . Note that the canonically normalized field γscan.(

~k, τ)

is related to γs(~k, τ) by

γs(~k, τ) =

√
2

MPl

γscan.(
~k, τ)

a(τ)
. (4.93)
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Thus, the initial condition for γscl(
~k, τ) is specified by

lim
τ→−∞

γscl(
~k, τ) =

1√
kMPla(τ)

e−ikτ . (4.94)

Comparing this to the general solution given by (4.92) and using the asymptotic form (for

large arguments) of Hankel functions,

lim
x→+∞

H(1)
m (x)→

√
2

πx
eix−i(m+ 1

2)π2 , lim
x→+∞

H(2)
m (x)→

√
2

πx
e−ix+i(m+ 1

2)π2 (4.95)

it is enforced that

A =
Hc(1− εc)

MPl

√
π

2
(−τc)−εcei(νT π/2+π/4) +O(ε2), B = 0 . (4.96)

Where, once again, Hc ≡ H(τc) and εc = ε(τc). This result is valid up to first order in slow

roll.

It is interesting to note that even when these tensor modes are well outside the horizon,

they are not conserved. A similar story applies to the gauge invariant curvature perturbations

ζ andR defined by (4.81) and the vector perturbation (like πiT ), as we will see in the following

section. This is in opposition to the usual situation in most inflation models, and will be

discussed in more detail in Section 4.9. In particular, by utilizing the asymptotic limit (for

small argument) of the Hankel function

lim
x→0+

H(1)
m (x)→ (−i) Γ(m)

π

(
2

x

)m
, (4.97)

the mild time-dependence of the tensor mode in late time is given by:

lim
−kτ→0+

γscl(
~k, τ) = k−3/2

(
τ

τe

)4c2T,eεe/3

(−kτe)c
2
L,eεe

(
iHe

MPl

+O(ε)

)
. (4.98)

where we have made use of relation (4.36). As we will see soon, the transverse vector modes

and scalar modes in our model share this feature as well.

And so finally, we are ready to obtain the two-point function for the tensor perturbations

of the metric. In particular, we are interested in its late time behavior, when modes are well
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outside the horizon:

〈
γs1(~k1, τ)γs2(~k2, τ)

〉
= (2π)3δ3(~k1 + ~k2) δs1s2

∣∣γcl(~k1, τ)
∣∣2 (4.99)

−kτ→0+

−→ (2π)3δ3(~k1 + ~k2) δs1s2 × H2
c

M2
Pl

1

k3
1

(τ/τc)
8c2T,cεc/3

(−k1τc)
−2c2L,cεc

.

The dependence on k and τ is kept to first order in slow roll while the overall constant is to

lowest order.

The advantage of expressing time-dependent quantities in reference to a fixed fiducial

time (τc), as opposed to the usual convention of using the time at horizon crossing, is that

the time- and momentum-dependence are made manifest. We can simply read off the tilt of

the spectrum to first order in slow roll from the above expression:

nT − 1 ' 2c2
L,cεc . (4.100)

We can see that the two point function for tensor modes is blue shifted, which matches the

result of [49], and which is a distinctive signature of our scenario, unreproducible by more

conventional models of inflation. As to the spectrum’s overall amplitude, it is the usual one:

〈γγ〉 ∼ H2/M2
Pl.

4.6.2 Scalar Perturbations

We proceed by calculating the scalar two point function in a similar manner as above. As

emphasized in section 4.5, the scalar quantity of interest14 is the gauge invariant quantity ζ,

which, in Fourier space, is related to the longitudinal Goldstones πL simply by ζ = −kπL/3

(see eq. (4.81)).

14We find ζ a more interesting quantity than R for the reason that given our assumption about reheating,

ζ evolves continuously from inflation phase to post-inflation phase, while R does not. See Section 4.10

for details. However, R does play a vital role as a simplifier in solving for the classical solution for scalar

perturbation.
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As before, let’s decompose the scalar field of interest in terms of creation and annihilation

operators:

ζ(~k, t) = ζcl(~k, t) b(~k) + ζcl(~k, t)
∗ b†(−~k) , (4.101)

where the usual commutation relation is obeyed [b(~k), b†(~k′)] = (2π)3δ(3)(~k − ~k′).

The classical equation of motion for ζcl follows from varying the quadratic πL action

(4.85). The general solution to this equation is quite complicated, however there is a trick

that makes its solution much easier. If we re-express the e.o.m. in terms of the other gauge

invariant parameter Rcl (see eq. (4.81)) we have

− 3c2
Lζcl(

~k, t) =
1

H
Ṙcl(~k, t) + (3 + η(t)− 2ε(t))Rcl(~k, t) . (4.102)

which, together with the definition of R

Rcl =
1

Hε

ζ̇cl +Hε ζcl
1 + k2/3a2H2ε

, (4.103)

forms a system of two first order equations of two variables. Eliminating ζcl we can generate

a second order equation for Rcl which takes the usual form similar to (4.89). Written with

respect to conformal time, and up to first order in slow roll, it is given by:

R′′cl + (2 + η − 2s) aH R′cl +
[
c2
Lk

2 + (3ε− 6s+ 3c2
Lε) a

2H2
]
Rcl = 0 , (4.104)

where prime denotes a derivative w.r.t. conformal time, and s is the slow roll parameter

defined by (4.60). Once again, using the conformal time dependence of aH, s, η, ε, and cL

contained in Appendix 6.9 this equation can be solved in terms of Hankel functions. One

finds that the general solution to first order in the slow roll parameters is given by

Rcl(~k, τ) = (−τ)−α
[
CH(1)

νS

(
− cL(τ) kτ(1 + sc)

)
+DH(2)

νS

(
− cL(τ) kτ(1 + sc)

)]
(4.105)

where α = −1
2
(3 + 2εc + ηc − 2sc) and νS = 1

2
(3 + 5sc − 2c2

L,cεc + ηc). Notice that for this to

be a solution, it is important to keep into account—to first order—the time-dependence of

cL in the argument of the Hankel functions.
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Once again, in order to match the initial conditions we must canonically normalize πL.

A quick glance at (4.85) reveals that the correct canonically normalized field is

πcan.
L (~k, τ) =

√
2 πL

[
M2

Pla
2k2

3
(
1 + k2

3a2H2ε

)]1/2

−kτ→∞−→
√

2εMPlHa
2 πL . (4.106)

With the usual normalization for the creation and annihilation operators we will recover the

Minkowski vacuum for very early times by demanding that

lim
τ→−∞

ζcl(~k, τ) = −
k πcan.

L,cl

3
√

2εMPlHa2
= −

√
k

4 εcL

e−i(1+sc)cL(τ)kτ

3MPlHa2
. (4.107)

Or, equivalently that

lim
τ→−∞

Rcl(~k, τ) = −a
2H2

k

d

dτ

(
πcan.
L,cl

H

)
= i

√
cL

4 εk

e−i(1+sc)cL(τ)kτ

MPla
. (4.108)

Matching the general solution given by (4.105) to the the initial condition (4.108) will set

D = 0 and

C = −i
√

π

8εc

cL,cHc

MPl

(−τc)sc−εc−ηc/2(1 + 1
2
sc − εc)ei(ηc+5sc−2c2L,cεc)π/4 +O(ε3/2) . (4.109)

One can now use (4.102) to obtain the full expression for ζcl(~k, τ), which is (as promised) a

bit messy and not particularly instructive as for our computation we are only interested in

ζ’s late time limit. We will not bother to write it out here.

Just like the tensor perturbations, neither R nor ζ is conserved outside the horizon,

though their temporal dependence is mild, i.e., suppressed by slow-roll parameters:

lim
−kτ→0+

Rcl(~k, τ) =

(
τ

τc

) 4
3
c2T,cεc−2sc

(−cL,ckτc)c
2
L,cεc−5sc/2−ηc/2

(
− Hc√

4εcMPlc
1/2
L,c k

3/2
+O(ε1/2)

)
(4.110)

lim
−kτ→0+

ζcl(~k, τ) =

(
τ

τc

) 4
3
c2T,cεc

(−cL,ckτc)c
2
L,cεc−5sc/2−ηc/2

(
Hc√

4εcMPlc
5/2
L,c k

3/2
+O(ε1/2)

)
.

(4.111)
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Notice that at this order in slow-roll, on large scales ζ and R are proportional to each other,

with proportionality constant c2
L, which is in agreement with (4.102):

R ' −c2
L(τ) ζ (kτ → 0−) . (4.112)

Now finally, the two point function of ζ for late times (when the modes are well outside

the horizon) is given by

〈
ζ(τ,~k1)ζ(τ,~k2)

〉
= (2π)3δ3(~k1 + ~k2)

∣∣ζcl(τ,~k1)
∣∣2 (4.113)

−kτ→0+

−→ (2π)3δ3(~k1 + ~k2)× H2
c

4εcc5
L,cM

2
Pl

1

k3
1

(τ/τc)
8c2L,cεc/3

(−cL,ck1τc)
5sc−2c2L,cεc+ηc

(4.114)

where, as before, we have kept the dependence on k and τ to first order in slow roll while

the prefactor is expressed only to lowest order in slow roll.

Once again, since all the parameters are evaluated at the global time τc as opposed to

the time of horizon crossing for each mode, we can simply read off the tilt to first order in

slow roll directly from the above expression. It is:

nS − 1 ' 2εcc
2
L,c − 5sc − ηc . (4.115)

Notice the overall 1/c5
L factor in front of the spectrum. In a more standard single-field model,

this would be replaced by 1/cL (see e.g. [47]). For small cL, our extra powers of cL give us a

very suppressed tensor-to-scalar ratio:

r ∼ ε c5
L . (4.116)

It is crucial however to ascertain whether we should focus on the ζζ spectrum or the RR

one. After reheating, when the universe is dominated by a hot fluid, they have to coincide,

because of the usual reasons. But during inflation, because of (4.112), they differ by a

factor of c4
L—precisely what suppresses our tensor-to-scalar ratio w.r.t the standard case. In

sect. 4.10 we argue that it is the ζζ spectrum that is continuous at reheating.
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4.7 The three-point function

We now compute the 〈ζζζ〉 three-point function. Like in single-field models with a small

speed of sound, our three-point function will be enhanced by inverse powers of cL with respect

to what one gets in standard slow-roll inflation, for essentially the same reason (see e.g. [47]).

However in addition to this, we will find an extra 1/ε enhancement, coming from the fact

that the quadratic phonon action (4.30) is suppressed by ε, whereas the cubic interactions

(4.52) are not.

In order to compute the correlation function at a specific time, we need to evolve it from

a quantum state we know, that is the early-time flat-space vacuum. Expanding the usual

time-evolution operator and working to lowest order in perturbation theory we have the

standard result, which is given schematically by:

〈
ζ(τ)3

〉
= −i

∫ τ

−∞
dτ ′
〈
Ω(−∞)

∣∣[ζ(τ)3, Hint(τ
′)
]∣∣Ω(−∞)

〉
. (4.117)

For our purposes it is enough to calculate the three-point function to lowest order in slow-roll.

As demonstrated in Appendix 6.12, at this order it is enough to work with the phonon cubic

action (4.52), which in our FRW curved background takes the form (neglecting boundary

terms):

L3 = M2
Pl a(t)3H2 FY

F

{
7
81

(∂π)3 − 1
9
∂π∂jπ

k∂kπ
j − 4

9
∂π∂jπ

k∂jπ
k + 2

3
∂jπ

i∂jπ
k∂kπ

i
}
. (4.118)

Quite amazingly, this applies both in the decoupling limit (k � aHε1/2) and in the opposite

limit (k � aHε1/2). And so, defining ζi ≡ ζ(τ,~ki), we have

〈
ζ1ζ2ζ3

〉
= iM2

Pl

FY
F

k1k2k3

27

∫
~p1,~p2,~p3

(2π)3δ3(~p1 + ~p2 + ~p3)Q(~p1, ~p2, ~p3)× (4.119)∫ τ

−∞
dτ ′ a4(τ ′)H2(τ ′)

〈[
πL(τ,~k1)πL(τ,~k2)πL(τ,~k3), πL(τ ′, ~p1)πL(τ ′, ~p2)πL(τ ′, ~p3)

]〉
,
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where

Q(~p1, ~p2, ~p3) ≡ 7

81
p1p2p3 −

5

27

(
p1

(~p2 · ~p3)2

p2p3

+ p2
(~p1 · ~p3)2

p1p3

+ p3
(~p1 · ~p2)2

p1p2

)
+

2

3

(~p1 · ~p2)(~p2 · ~p3)(~p3 · ~p1)

p1p2p3

, (4.120)

which is totally symmetric under permutations of ~p1, ~p2, ~p3.

Writing πL in terms of creation and annihilation operators allows us to easily express the

integral in terms of the classical solutions. To be precise,

〈
ζ1ζ2ζ3

〉
= −(2π)3δ3(~k1 + ~k2 + ~k3)× 6M2

Pl

FY
F

k1k2k3

27
Q(~k1, ~k2, ~k3) I(τ ;−∞) , (4.121)

where the integral I(τ1; τ2) is defined as

I(τ1; τ2) = J(τ1; τ2) + J∗(τ1; τ2) (4.122)

J(τ1; τ2) ≡ −i πclL (τ1, ~k1)πclL (τ1, ~k2)πclL (τ1, ~k3)

∫ τ1

τ2

dτ ′
(τ ′/τc)

−2ε

H2
c τ
′4 πcl ∗L (τ ′, ~k1)πcl ∗L (τ ′, ~k2)πcl ∗L (τ ′, ~k3)

and we used that Q is an even function of the momenta. Just as in the previous section, we

have used the dependence of H and a on conformal time with reference to τc to lowest order

in slow roll.

Utilizing the classical solution of R(τ,~k) given by (4.105) we can immediately recover

πclL (τ,~k). This general solution, containing Hankel functions, and derivatives of Hankel func-

tions is not particularly useful for attempting to perform the time-integral given by (4.122).

We will first simplify πclL (τ,~k), which will enable us to express the three-point function in an

analytic form.

First, note that at high momenta, above the de-mixing scale the quadratic Lagrangian

for πL takes the simpler form:

Sdemix =

∫
~k

∫
dτ
(
M2

Pla
4H2ε

)[∣∣π′L∣∣2 − c2
Lk

2
∣∣πL∣∣2] , (4.123)

which is—apart from the overall time-dependent pre-factor—the standard quadratic action

for a scalar with generic propagation speed cL. Thus, one can solve the equations of motion
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generated by varying the above expression, fixing the exact form by requiring the flat-space

vacuum in the infinite past (as we have done in the previous sections), without having to go

through R. Of course, the two methods are equivalent, but this route makes the method of

expansion clear. As for momenta that are deep in the full-mixing limit, where |cLkτ | � ε1/2,

R can be written in a simple form utilizing the asymptotic limit of the Hankel function

(4.97), which upon insertion into (4.102) yields a particularly simple πL = −3ζ/k. In fact,

even though in principle the two asymptotic expressions we get in this way should not share

a common regime of applicability, in practice they are indistinguishable (at lowest order in

slow-roll) in a wide range of momenta, e−O(1/ε) < |cLkτ | � 1. 15 Therefore, as a very good

approximation to the full solution, we can use the two asymptotic solutions and ‘glue’ them

together anywhere inside this range. We find it more convenient to glue them at (cLkτ) ∼ ε.

In summary, to lowest order in slow roll we can approximate the profile of πclL by:

πclL (τ,~k) '

Bk
(
1 + icLkτ − 1

3
c2
Lk

2τ 2
)
e−icLkτ , for |cLkτ | & ε(4.124a)

Bk
(
− cL,ckτ

)c2L,cεc+εc(− cL,ckτc)−5sc/2−ηc/2−εc
+O(ε) , for |cLkτ | . ε(4.124b)

where

Bk = −3

2

Hc

MPlc
5/2
L,c ε

1/2
c

1

k5/2
. (4.125)

Our strategy now is to break up the integral (4.122) into separate regions where one of the

functional forms described by (4.124a) and (4.124b) can used. The integral can then be done

explicitly.

4.7.1 Analytic Calculation of Integral

To illustrate the point and make the flavor of the analysis transparent, let’s look at an almost

equilateral configuration of momenta. That is, assume that

~k1 + ~k2 + ~k3 = 0 , k1 ∼ k2 ∼ k3 ∼ k . (4.126)

15This stems from the mildness of their time-dependence outside the horizon.
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First, notice that given some reference time τ∗, we can split the time-integral as

J(τ ;−∞) =
πclL (τ,~k1)πclL (τ,~k2)πclL (τ,~k3)

πclL (τ∗, ~k1)πclL (τ∗, ~k2)πclL (τ∗, ~k3)
J(τ∗;−∞) (4.127)

− i πclL (τ,~k1)πclL (τ,~k2)πclL (τ,~k3)

∫ τ

τ∗

dτ ′
(τ ′/τc)

−2εc

H2
c τ
′4 πcl ∗L (τ ′, ~k1)πcl ∗L (τ ′, ~k2)πcl ∗L (τ ′, ~k3) .

Then, choosing τ∗ to be precisely the conformal time at which a mode of momentum k

transitions from (4.124a) to (4.124b), −cLkτ∗ ∼ ε, we find that the real part of the second

line vanishes at zeroth order in ε, because all the πL’s involved in the expression—inside and

outside the integral—are real, and there is an overall i. The remaining piece is all that will

contribute to the integral. And so we can write

J(τ ;−∞) + J∗(τ ;−∞) =
3∏
i=1

|Bki |
2 (−cLkiτ)c

2
Lε+ε(−cLkiτc)−5s/2−η/2−ε×

∫ τ∗

−∞
dτ ′
−i(τ ′/τc)+εc

H2
c τ
′4

3∏
j=1

(
1− icLkjτ ′ − 1

3
c2
Lk

2
j τ
′2) e+icLkjτ

′
+ c.c.

=− 1

27

c3
L

H2
c

k1k2k3 U(k1, k2, k3)

(
τ

τc

)4c2T ε 3∏
i=1

|Bki |2(−cLkiτc)c
2
Lε−5s/2−η/2 ,

(4.128)

where the scale invariant function U(k1, k2, k3) is given by

U(k1, k2, k3) =
2

k1k2k3(k1 + k2 + k3)3

{
3
(
k6

1 + k6
2 + k6

3

)
+ 20 k2

1k
2
2k

2
3 (4.129)

+ 18
(
k4

1k2k3 + k1k
4
2k3 + k1k2k

4
3

)
+ 12

(
k3

1k
3
2 + k3

2k
3
3 + k3

3k
3
1

)
+ 9
(
k5

1k2 + 5 perms
)

+ 12
(
k4

1k
2
2 + 5 perms

)
+ 18

(
k3

1k
2
2k3 + 5 perms

)}
.

In order to ensure convergence of the integral and project onto the right vacuum, the integral

is actually computed over a slightly tilted contour, that is τ ′ → (1− iε)τ ′+ τ∗, with ε→ 0+,

and the limits of integration are from −∞ to 0. Additionally, in the last step, the fact that

1 � |cLkτ∗| ∼ ε, and |τ∗| > |τ | has been used to collect only the leading order in slow roll

contributions.
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A more careful analysis of the same flavor applies to more general triangle shapes, see

Appendix 6.13. It turns out that the above expression is valid provided that the the triangle

formed by the various momenta is not too squeezed, that is, provided

klong/kshort >
√
ε . (4.130)

And so finally, putting everything together, we can express the full three-point function as

〈
ζ1ζ2ζ3

〉
(τe) ' (2π)3δ3(~k1 + ~k2 + ~k3

)
× (4.131)

3

32

FY
F

H4
c

M4
Pl

1

ε3c12
L

(τe
τc

)4c2T ε Q(~k1, ~k2, ~k3)U(k1, k2, k3)

k3
1 k

3
2 k

3
3

,

where, we remind the reader, Q(~k1, ~k2, ~k3) is given by (4.120) and U(k1, k2, k3) is given by

(4.129).

The mild time dependence, (τe/τc)
4c2T ε, in the above expression can actually produce an

order one correction to the overall magnitude of the three-point function. Indeed, assuming

that inflation lasts for Ne ∼ 60 e-folds after the longest mode of today’s relevance exits the

horizon, we can see immediately that (τe/τc)
O(ε) ∼ e−60×O(ε), which, as promised, depending

on how small ε is, can give an O(1) correction. On the other hand, the mild momentum

dependence (−cLkiτc)c
2
Lε−5s/2−η/2, appearing in (4.128), is equal to one up to O(ε) correc-

tions. We thus drop this piece from (4.131), in order to be consistent with the preceding

computation of the integral. Our result (4.131) should be understood as the leading order

contribution in slow roll.

4.8 The size and shape of non-gaussianities

It is useful to rewrite the three-point function above as an overall amplitude fNL times a

shape that is a function of the momenta with order-one coefficients [48]. It is customary

to do so at the level of correlators of the Newtonian potential Φ during matter-domination,
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rather than of ζ. The relation outside the horizon is

Φ = 3
5
ζ . (4.132)

Neglecting the tilt, one then writes the two- and three-point functions as

〈Φ(~k1)Φ(~k2)〉 = (2π)3δ3(~k1 + ~k2) · ∆Φ

k3
1

(4.133)

〈Φ(~k1)Φ(~k2)Φ(~k3)〉 = (2π)3δ3(~k1 + ~k2 + ~k3) · f(k1, k2, k3) , (4.134)

and normalizes f on ‘equilateral’ configurations with k1 = k2 = k3 [62],

f(k, k, k) = fNL ·
6∆2

Φ

k6
. (4.135)

This defines the parameter fNL in a model-independent fashion, in terms of observable

quantities only. In particular, the observed value for the power-spectrum normalization

is ∆Φ ' 2 × 10−8. Notice that, because of momentum conservation, the three momenta

~k1,2,3 close into a triangle. As a result, the function f depends on the absolute values k1,2,3

only, because a triangle is uniquely defined—up to overall rotations, which are a symmetry

of f—by specifying its sides. Notice also that scale-invariance forces f to have overall scal-

ing dimension k−6, and we have used this fact in (4.135). Notice finally that the standard

convention would be to call F the function that we call f . Unfortunately we have already

been using F for our Lagrangian, so will stick to f for the function defined above. Hopefully

this will not lead to confusion.

Applying these definitions to our case we find

∆Φ =
9

100
·
(
τe
τc

)8c2T ε/3

· H
2

M2
Pl

· 1

ε c5
L

(4.136)

f(k1, k2, k3) =
5

2
· FY
F

1

ε c2
L

·
(
τe
τc

)−4c2T ε/3

·∆2
Φ ·

Q(k1, k2, k3) · U(k1, k2, k3)

k3
1k

3
2k

3
3

(4.137)

fNL = −19415

13122
·
(
τe
τc

)−4c2T ε/3

· FY
F

1

ε c2
L

' −O(1) · FY
F

1

ε c2
L

(4.138)
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The fNL parameter gives us a measure of the absolute size of non-gaussianities. As

we argued in sect. 4.3, FY is essentially a free parameter, which can be as large as F , in

which case our fNL is huge, of order 1/(ε c2
L). By comparison, single-field inflationary models

with small sound speed—whose non-gaussianities are much larger than for standard slow-

roll inflation—have, at the same value of the sound speed, an fNL which is a factor of ε

smaller than ours. Notice that in this case there is a potential tension for our model: the

same combination ε · c2
L appears in the scalar tilt, eq. (4.115). Of course one could have

cancellations there, because of the other terms in the expression for the tilt. But assuming

that these do not change the overall order of magnitude of the tilt, the tilt is small if non-

gaussianities are large, and vice versa. Eventually, one should observe either. If on the other

hand our FY is of order εF , then this 1/ε enhancement for non-gaussianities is gone, and our

fNL becomes of order 1/c2
L, which is the same as for small sound-speed single-field models 16.

But the most interesting feature of our non-gaussian signal is probably its shape, that

is, the dependence of f on the shape of the triangle made up by the momenta ~k1,2,3. We

plot it in fig. 4.1, following the standard conventions of [48]. In particular, it is clear from

the plot that our three-point function is peaked on ‘squeezed’ triangles with k3 � k1,2, but

its behavior for those configurations depends strongly on the angle θ between ~k3 and the

other momenta. Quantitatively, focusing on the QU
k3k3k3 structure in (4.137) and ignoring the

prefactors from now on, we get

f(k1, k2, k3 → 0) ∝ −40

27

(
1− 3 cos2 θ

)
k3

1k
3
3

. (4.139)

where we used momentum-conservation to rewrite k2 as k2 ' k1 + k3 cos θ. Such an angular

dependence is not there in any of the standard inflationary models we are aware of: at least

16We remind the reader that cosmological perturbations can still be nearly gaussian, even for huge values

of fNL, as long as the combination fNL

√
〈ζ2〉 is much smaller than one at the relevant scales. For us, in

the most strongly coupled case (FY ∼ F ), such a combination is of order H/MPl · (εc3L)−3/2, which is much

smaller than one if and only if the weak-coupling condition (4.59) is obeyed. As usual, perturbations are

nearly gaussian if and only if they are weakly coupled at horizon crossing.
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Figure 4.1: The shape of non-gaussianities for our model, according to the standard conventions

and definitions of ref. [48].

for single-field models, the consistency relations force the behavior of the three-point function

in the squeezed limit to be angle-independent—see e.g. [59, 60]. On the other hand, in our

case the standard consistency relations are maximally violated, both at the level of angular

dependence—as we just mentioned—and at the level of the overall prefactor: usually the

squeezed limit of the three-point function is suppressed by the scalar tilt, which is of order

ε; here instead, there is no suppression like that, and in fact, as we argued above the overall

prefactor can be as big as one over the tilt. It is easy to see why the consistency relations do

not hold in our model: the standard argument of [59,60]—that a long-wavelength background

ζ can be traded in for a rescaling of spatial coordinates—does not apply to our case, because

in our model there is no gauge in which the curvature perturbation ζ appears as a ζ · δij

correction to the spatial metric.

The fact that our non-gaussianities feature a novel shape, means that the numerical

analyses of CMB data that have been carried out so far are quite suboptimal for our case.
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Following [48], this can be quantified by computing the overlap—or ‘cosine’—between our

shape and those used in the analyses. These cosines give a measure of how much one could

improve by performing a dedicating analysis, which would entail using directly our shape in

the estimator for the fNL parameter. Of all the standard shapes on the market, the local

one is the only one that is peaked on squeezed triangles, with exactly the same scaling as

ours, but with no dependence on the angle at which the squeezed limit is approached. As

far as angular dependence goes, this corresponds to a monopole, whereas our squeezed limit

(4.139) corresponds to a quadrupole. As a result, the overlap between our shape and the

local one vanishes in the squeezed limit, and overall it is very small, 17

cos(f, flocal) ' 2% . (4.140)

Another popular shape is the equilateral one, which is peaked on configurations with k1 =

k2 = k3. Our shape is fairly suppressed for those configurations, and this results in a smallish

overlap:

cos(f, fequil) ' −39% . (4.141)

Finally, given that our shape is fairly large for degenerate—or ‘flattened’—triangles with

k1 = k2 +k3, one might think that it has a large overlap with the so-called orthogonal shape.

However, we find a small cosine with the orthogonal template of [63]:

cos(f, forthog) ' −32% . (4.142)

17According to the nomenclature of [48], we are computing ‘3D’ cosines, which are relevant for analyses of

fully 3D data, like e.g. those of large scale structure surveys. For analyses of CMB data, which are projected

onto a 2D sphere, one should refer to 2D cosines, which are however much more cumbersome to compute.

Even though they are not entirely precise in this case, 3D cosines are still a good indicator of the overlaps

between different shapes. We should also mention that for some of these cosines, the computations involve

logarithmic divergences in the squeezed limit, which we cutoff at a value of 103 for the maximum ratio

between momenta in the data set.
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All this suggests that (a) at the level of the three-point function, our model is very distin-

guishable from more standard inflationary models, and that (b) to test our model, we should

perform a dedicated CMB data analysis for our shape of non-gaussianities.

Numerical analyses of three-point correlation functions in the CMB drastically simplify if

one can rewrite the theoretical momentum-space three-point function in a factorizable form,

that is, as a sum of a few terms that are just products of powers of the triangle sides k1, k2,

k3 [61]. If one is able to do so, the calculation time decreases by a factor of Npixel, which

is a huge improvement. We do so in the Appendix for the interested reader to aid in data

analysis

4.9 Why Is ζ Not Conserved?

We saw in sect. 4.6 that already at linear level, during our solid inflation phase neither ζ nor

R is conserved on large scales. One might be tempted to attribute this to the presence of

isocurvature modes in addition to adiabatic ones. However, in our model there is only one

scalar perturbation—parameterized by πL in the gauge we have been using—and usually

isocurvature modes are a luxury that only multi-field models can afford. To sharpen the

paradox, our ζ and R do not coincide on large scales—see eq. (4.112)—whereas usually they

do, even for fluctuations that are not purely non-adiabatic, that is, even when they are not

conserved. In fact, Weinberg proved a no-go theorem stating that all FRW cosmological

models—inflationary or not—feature two adiabatic modes of fluctuation, one of which has

constant and identical ζ and R on large scales, while the other has ζ = R = 0 [32, 64].

This theorem is manifestly violated by our model. But, in Weinberg’s own words, “no-go

theorems have a way of relying on apparently technical assumptions that later turn out to

have exceptions of great physical interest” [65]. We do not know whether our model will

ultimately turn out to be of great physical interest, but it certainly offers an exception to an

apparently technical assumption of ref. [64]. Before showing this, let us explain in physical
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terms why our solid system cannot sustain adiabatic modes.

By definition, an adiabatic mode is a perturbation that for very long wavelengths becomes

locally unobservable, being indistinguishable from a slight shift in time of the background

solution. An ordinary fluid offers a perfect example of this. Consider a long-wavelength

sound wave in a fluid, for the moment in the absence of gravity. For an observer making

measurements on scales much shorter than the wavelength, and working in the local rest

frame—which is slightly different from the background one—, the only observables are the

density and the pressure: neglecting gradients, a fluid is isotropic in its rest frame, and its

stress-energy tensor is characterized by ρ and p only, which are related by the equation of

state. Then, the only physical effect that is measurable on scales much shorter than the

wavelength is the local compression (or dilation) the sound wave induces. When we include

gravity into the picture, essentially the same considerations apply for the perturbation, but

now the time-evolution of the unperturbed FRW background already probes all possible

compression levels for the fluid (within some range), that is, all possible values of ρ and p

compatible with the equation of state. As a consequence, for wavelengths much longer than

the Hubble scale, within any given Hubble patch a sound wave will be indistinguishable

from a time-shift of the background solution, that is, it will become physically unobservable.

Different Hubble patches will then evolve as separate identical FRW universes, and it can

be shown that this translates into a conservation law for R [66].

For a solid, the situation is very different, already in the absence of gravity. A longitudinal

phonon—which is the only scalar fluctuation at our disposal—does not correspond to a purely

compressional deformation of the medium. Even for wavelengths that are much longer than

the observation scale, the anisotropic stress and the compression associated with the phonon

are of the same order of magnitude. This is evident from the form of the stress-energy tensor

(4.23), which expanded to first order in ~π yields schematically

δTij ∼ (~∇ · ~π) δij + (∂iπj + ∂jπi) , (4.143)
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with similar coefficients in front of the two tensor structures—related to suitable derivatives

of F w.r.t. X, Y, Z—whose precise values will not concern us here. For a longitudinal phonon

of momentum ~q, the anisotropic stress is proportional to q̂iq̂j, and is of the same order

of magnitude as the change in pressure. A local observer can detect this anisotropy if

he or she can detect the change in pressure. In other words, unlike a fluid, a solid with

small longitudinal deformations is not locally isotropic. Once we include gravity, these

scalar fluctuations will be locally distinguishable from the background solution, even for

super-horizon wavelengths, since the background is isotropic. One could probably apply a

‘separate universe’-like argument that includes anisotropic homogeneous backgrounds, to get

information about the time-evolution of these modes, even at non-linear order.18 We leave

this for future work. For the moment, we just notice that our scalar modes do not conform

to the standard characterization of adiabatic perturbations.

We can now go back to the no-go theorem of ref. [64], and see which assumptions we are

violating. The theorem is based on the following ingenious idea. Since an adiabatic mode is,

by definition, unobservable once the wavelength is very long, at zero momentum it should

reduce to a gauge transformation of the FRW background. Newtonian gauge is a complete

gauge-fixing at finite momentum, but it has a residual gauge freedom at zero momentum. By

exploiting this gauge freedom one can construct zero-momentum solutions of the linearized

perturbation equations. Most of these are pure-gauge, unphysical solutions. To be physical,

they have to be the zero-momentum limit of finite momentum solutions, which are physical

because there is no residual gauge-freedom at finite momentum. For this to be the case, one

needs the zero-momentum solution to obey the finite-momentum version of the (ij) and (0i)

linearized Einstein equations,

Φ = Ψ− (8πG) δσ Ḣ δu = Ψ̇ +HΦ , (4.144)

which singles out only two independent modes among the zero-momentum solutions. Here

18We thank Matias Zaldarriaga for this remark.
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δσ and δu are the scalar anisotropic stress and the velocity potential of eqs. (4.79), (4.80),

δTij ⊃ a2(t) ∂i∂jδσ , δT0i ⊃ −(ρ̄+ p̄) ∂iδu . (4.145)

One has to impose further that all equations of motion—for gravity and for the matter

fields—are regular for ~q → 0, including eq. (4.144). More precisely, if one rewrites all

linearized equations of motion in first-order form,

ẏa(~q, t) + Cab(~q, t) · yb(~q, t) = 0 , (4.146)

where the ya’s include the fields and their velocities, with constraints for the initial conditions

of the form

cb(~q ) · yb(~q, t0) = 0 , (4.147)

then one has to demand that all Cab and cb coefficients be regular for ~q → 0. This is the

only technical assumption of the theorem.19 If it is obeyed, then the two zero-momentum

gauge modes can be promoted to physical, finite-momentum solutions, which are adiabatic

by construction, and one of which turns out to have constant ζ and R.

From our physical argument above, we see that the culprit for us is the anisotropic

stress, which does not become negligible at long wavelengths. Indeed, comparing (4.145)

with (4.143) we get schematically

δσ ∼ ~q

q2
· ~π (4.149)

(we are neglecting factors of a(t), and corrections to (4.143) involving the metric, which

does not change our conclusion.) Once plugged into eq. (4.144), this gives us an equation

19There is also an implicit assumption—used to write down the zero-momentum pure gauge solutions—

that all background matter fields only depend on time, which is not obeyed in our case. However, this is

easily fixed by performing the correct gauge transformation, which, following the notation of ref. [64], in our

case yields the pure gauge solution

Ψ = Hε− λ , Φ = −ε̇ , ~π = λ~x , δρ = − ˙̄ρ ε , δp = − ˙̄p ε . (4.148)
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of motion that is not regular for ~q → 0, thus violating Weinberg’s technical assumption.

We get a similar singularity in the second equation of (4.144), since from T0i ∼ π̇i we get a

velocity potential

δu ∼ ~q

q2
· ~̇π (4.150)

Notice that we cannot reabsorb the annoying q−2 factors into a new ~π field, thus making δσ

and δu regular for ~q → 0, because one of the equations (4.146) is the equation of motion

for ~π itself, which is local in real space, thus analytic in ~q in Fourier space. If we were to

divide it by q2, to write an evolution equation for the new ~π/q2 field, we would introduce

singularities there.

4.10 Matching of correlation functions at reheating,

and post-inflationary evolution

Since our scalar perturbations are not adiabatic, our predictions for post-inflationary cor-

relation functions on large scales can in principle be affected by local physical processes

happening at reheating. It would be interesting to investigate how much model-independent

information about time-evolution across the reheating phase can be obtained by applying an

anisotropic parallel-universe argument, as mentioned in the last section. For the time being,

we adopt what appears to be a reasonable model for reheating. As motivated in sect. 4.4, we

postulate that inflation ends when B ≡ detBIJ reaches some critical value Be, after which

the matter content of the universe turns into a perfect fluid, which can be described by a

low-energy effective Lagrangian involving the same set of dynamical d.o.f.’s as our solid, but

with different (and more restrictive) symmetry requirements. Furthermore, we assume that

the transition (a.k.a. reheating) from solid to fluid occurs “smoothly” (in a sense that will be

made explicit) and instantaneously (the transition time being much shorter than the Hubble

time).
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Since it is the scalar quantity B that plays the role of the “clock” in our model, it is

easiest to work in unitary gauge (UG), in which constant time slices correspond to surfaces

of uniform B (the properties of this gauge are worked out in Appendix 6.10). Explicitly, our

model for reheating can be captured by the following statements:

• Inflation ends at te, with a(te)
−6 = Be, where t denotes the time in UG.

• The matter content in the post inflationary era takes the form of a perfect fluid, which

can be described by the effective action

Sfluid =

∫
d4x
√
−g F̃ (B) (4.151)

where B = det gIJ in UG. The change from one equation of state to the other is

effectively instantaneous. For an ultra-relativistic fluid with p = 1
3
ρ, one has

F̃ (B) ∝ B2/3 . (4.152)

• Energy transfer from the solid phase to the fluid phase during this short reheating

period is efficient, and the normalization of F̃ is restricted in such a way that energy

conservation is respected, i.e.

ρsolid = −F (X, Y, Z)
∣∣
te

= −F̃
(
a(te)

−6
)

= ρfluid . (4.153)

However, generally psolid 6= pfluid, since the equation of state has been changed. Conse-

quently, even though the Hubble parameter H remains continuous, Ḣ does not.

• Smoothness: the dynamical d.o.f.’s in unitary gauge—A (or χ), Ci, Dij—as well as

their first derivatives are continuous across the t = te surface 20. The second deriva-

tives will exhibit discontinuities since the equations of motions are altered due to the

instantaneous change in the equation of state.

20See Appendix 6.10 for the definition of these fields in terms of fluctuations of the metric.
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An immediate consequence following the smoothness requirement is that ζ transits continu-

ously from solid phase to post-inflationary fluid phase, while R does discontinuously. Indeed

notice that in UG, ζ and R are given by

ζ =
A

2
, R = − H

2Ḣ

Ȧ− ḢA/H
1− k2/3a2Ḣ

(4.154)

thus the discontinuity of R stems from that of Ḣ.

Given that the transition from the solid phase during inflation to the perfect fluid phase

during the post-inflationary era occurs effectively instantaneously, we can compute various

correlators (of A, Ci and Dij) at te and use them as the initial conditions of the post-

inflationary evolution. There are two subtleties:

1. How do we relate the correlators of quantities in UG to those in SFSG, which have

been computed in Section 4.6 and Section 4.7.

2. Given that the super-horizon modes of A and Dij are not adiabatic during inflation,

they start the post-inflationary evolution with a non-vanishing first derivative in time.

Although eventually these super-horizon modes become constant (time-independent)

before reentering the horizon, a natural question to ask is how much the eventual

constants could differ from the initial conditions these modes start with.

In order to address the first issue, let’s compute the scalar two- and three-point corre-

lators: 〈A1(t̄e)A2(t̄e)〉 and 〈A1(t̄e)A2(t̄e)A3(t̄e)〉, where the “¯” is to remind ourselves that

we are using time in UG, and Ai(t̄ ) is shorthand for A(~ki, t̄ ). Using the transformation rule

from SFSG to UG, we have that

t̄ = t− 1

3H
∂iπ

i(x) +O(π2) ,

and we can write

A(x) = A(1) + A(2) + . . . ,

where A(1)(x) = 2
3
∂iπ

i(x) = 2ζ, A(2) ∼ ∂π∂π , etc.
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It follows immediately that, schematically,

〈A2〉 = 〈A(1)A(1)〉+ 2〈A(1)A(2)〉+ ... ∼ 4〈ζ2〉+ 〈(∂π)3〉+ ... . (4.155)

The second term on the right can be neglected, since it is of higher order in the perturbative

expansion. Likewise, we have

〈A1(t̄e)A2(t̄e)〉 ' 〈A(1)
1 (t̄e)A

(1)
2 (t̄e)〉 = 4〈ζ1(t̄e)ζ2(t̄e)〉 ' 4〈ζ1(t)ζ2(t)〉 (4.156)

where the last (approximate) equality is justified as long as the perturbative expansion (in

fields) holds, since the difference between t and t̄ is of first order in the fields.

We can do the same for the 3-pt correlators:

〈A3〉 ' 〈A(1)A(1)A(1)〉+ 3〈A(1)A(1)A(2)〉 ∼ 8〈ζ3〉+ 〈ζ2∂π∂π〉 . (4.157)

Notice that 〈ζ2∂π∂π〉 ∼ 〈∂π∂π〉2 ∼ O(ε−2), while 〈ζ3〉 ∼ O(ε−3), thus if we restrict ourselves

to the leading order in slow-roll, this term can be safely neglected. It follows that

〈A1(t̄e)A2(t̄e)A3(t̄e)〉 ' 8〈ζ1(t̄e)ζ2(t̄e)ζ3(t̄e)〉 (4.158)

' 8〈ζ1(t)ζ2(t)ζ3(t)〉+
8k1

3H
〈ζ̇1(t) πL,1(t)ζ2(t)ζ3(t)〉+ perms.

' 8〈ζ1(t)ζ2(t)ζ3(t)〉+ ε · 32c2
T

3
〈ζ1(t) ζ1(t)ζ2(t)ζ3(t)〉+ perms. ,

where we have used that in the long wavelength limit ζ̇ ' ζ ′/a ' 4
3
c2
T εH ζ. In the last line,

the second term and its permutations are negligible at the leading order in slow roll, since

ε〈ζ4〉 ∼ ε〈ζ2〉2 ∼ O(ε−1) while 〈ζ3〉 ∼ O(ε−3).

Hence, as long as we focus only on the leading contribution in slow roll, the first issue

mentioned above can be easily resolved: the 2-pt and 3-pt correlators of scalar perturbations

in UG are related to those of (2 times) ζ in SFSG. Not surprisingly, similar relations for

tensor perturbations hold if we apply the same logic.

As for the second issue. It can be shown [67,68] that during the post inflationary era, when

the matter content of the universe is in the form of a perfect fluid, the scalar perturbation
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A is adiabatic in the long wavelength limit, i.e. it is a constant at nonlinear level as long as

it stays outside the horizon. However, unlike other inflationary models where there exists a

conserved scalar mode in the long wavelength limit during inflation, the scalar perturbation A

in our model evolves slowly outside the horizon, in the sense that A ' A(1) = 2ζ ∝ (−τ)
4
3
c2T ε.

Therefore, after the rapid transition from solid phase to perfect fluid phase, rather than

staying at its initial value, A(te), it approaches its eventual constant value. However the

relative difference between the two is only of order ε: the slow time-dependence of A during

inflation means that right after reheating the initial condition for the velocity is roughly

Ȧ(te) ∼ ε · HA(te). Since then, Ȧ decreases like 1/a3, thus making A(t) approach its

asymptotic value in a few Hubble times, during which A(t) moves by ∼ εA(te). At the

leading order in slow-roll, we can neglect this difference. Notice that this effect cannot

change the tilts that we have computed: all modes of interest are outside the horizon during

reheating and during the phase when A relaxes to its asymptotic value. As a result, this

small correction of order ε to the value of A is the same for all modes, i.e., independent of

k. By applying the same logic, we can reach the same conclusion for the transverse traceless

tensor perturbation Dij, which is not conserved in the long wavelength limit during inflation,

but approaches an asymptotic value in the post-inflationary fluid phase in a similar manner

as its scalar counterpart.

In conclusion, at the order we are working, we can take the correlation functions for ζ and

γ that we have computed during inflation in SFSG, evaluate them right before reheating,

and obtain in this way good approximations to the corresponding correlation functions in

UG in the post-inflationary phase. In particular, even though our scalar perturbations are

not adiabatic during inflation, at reheating they get converted to adiabatic ones, with the

same asymptotic constant value of ζ (up to O(ε) corrections) as they had at reheating.
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4.11 Summary & Outlook

Our model differs drastically from more standard ones in its symmetry breaking pattern.

In particular, time-translations are not broken: there are physical “clocks”—i.e., time-

dependent gauge-invariant observables—, but they inherit their time-evolution from the

metric, not from the matter fields. As a result, the systematics of the EFT for the associ-

ated Goldstone excitations is completely different than the standard effective field theory of

inflation. This has far reaching implications, some of which are directly observable.

The observational predictions of our model can be summarized as follows: (i) A nearly

scale-invariant spectrum of adiabatic scalar perturbations, in agreement with observations.

(ii) A nearly scale-invariant spectrum of tensor modes, with a slight blue tilt; the tensor-

to-scalar ratio r ∼ εc5
L ranges from somewhat smaller than in standard slow-roll inflation,

for ultra-relativistic longitudinal phonons with c2
L ' 1/3, to tiny, if they are non-relativistic.

(iii) A scalar three-point function with a novel shape—peaked in the squeezed limit, with

non-trivial angular dependence on how the limit is approached—and a potentially very large

amplitude, as big as fNL ∼ 1
ε

1
c2L

.

A fourth prediction, whose full analysis we leave for future work, is the presence of vector

modes. Unlike usual inflationary systems, our solid features transverse phonons, which

get excited during inflation. In Appendix 6.11 we show that the vector-to-scalar ratio at

the end of inflation scales as (c2
L/c

2
T )5/2, which, depending on the value of cL, ranges from

negligible to roughly 6%. After reheating, the universe is dominated by a perfect fluid, and

these vector modes should decay in the usual fashion, thus leaving no detectable imprint on

the CMB. However, they interact at non-linear order with scalar and tensor perturbations

during inflation and at reheating, thus affecting in principle their (higher point) correlation

functions.

Also for future work we leave a more thorough understanding of the time-evolution of

our perturbations. One should be able to get model-independent information by running a
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separate universe-type argument involving anisotropic background solutions. In particular,

this approach might elucidate whether and how super-horizon perturbations get affected by

local processes at reheating. We showed in sect. 4.10 that a quick phase-transition triggered

by detBIJ conserves ζ and the tensor modes. Moreover, we showed that for the two- and

three-point function, there is no difference between using unitary gauge time and SFSG time,

which implies that we would get the same post-inflationary correlation functions if reheating

were in fact triggered by another “clock”, say [B]. This gives us confidence that, at least for

these correlation functions, our predictions are robust. However it leaves open the possibility

that we would get different predictions if the reheating phase lasted longer, for an Hubble

time or more.

There are also a number of generalizations of our model that we feel deserve being studied.

The first, would be to promote our solid to a ‘super-solid’. In physical terms, a super-solid

is a solid harboring a superfluid [69]. In our field-theory, symmetry-breaking terms, it is a

system of four derivatively coupled scalars, φ0 and φI , with a shift-symmetry on φ0, our solid

symmetries on the φI ’s, and a state that spontaneously breaks all space-time translations as

follows [70]:

〈φ0〉 = µ t , 〈φI〉 = αxI . (4.159)

This system then combines the symmetry-breaking pattern of standard inflationary models

with ours, and provides the minimal ingredients—the analog of ‘single-field’—for studying

the consequences of breaking all space-time translations during inflation, in a way that is

consistent with a residual physical homogeneity and isotropy. Cosmological systems of this

sort have been considered briefly in [10]. Notice that such a model will have two scalar

perturbations—roughly speaking, excitations of φ0 and longitudinal excitations of φI , al-

though in general they will be mixed, like it happens for instance in finite-temperature su-

perfluids [14], where the two resulting modes go under the names of first and second sound.

Notice also that, for inflationary purposes, one does not need to assume that the shift-
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symmetry on φ0 be exact. One can assume an approximate shift-symmetry, with symmetry-

breaking couplings suppressed by slow-roll parameters—in which case, to be consistent with

the literature, one should refrain from calling such a system a super-solid.

Another generalization that one should consider, is demoting our solid from isotropic

to crystalline. We say “demoting”, because it would entail lowering the degree of internal

symmetries acting on our φI fields, from the full SO(3) group to one of its discrete subgroups,

e.g. the cubic symmetry group. Then, in the background configuration with 〈φI〉 = αxI , only

that particular discrete subgroup will be preserved (now as a linear combination of internal

and spatial rotations), and one could have interesting, observable deviations from isotropy.

One of course needs to make sure that these deviations are absent from the background

evolution and from the spectrum of perturbations—which we know to be isotropic with

very good accuracy—but this might be automatic for certain subgroups of SO(3). As an

example, consider the background evolution. The potential anisotropy in it is determined

by the tensor structure of Tij. Let’s assume for definiteness that our discrete subgroup is

the cubic group—by which we also mean the individual inversions along the sides—and let’s

align the sides of the cube with x̂, ŷ, and ẑ. Then, Tij has to be invariant under permutations

of x̂, ŷ, and ẑ, and under the individual parities x̂ → −x̂, etc. The only two-index tensor

with these properties is

x̂ix̂j + ŷiŷj + ẑiẑj , (4.160)

which is nothing but δij. That is, at the two-index level, cubic symmetry accidentally implies

full SO(3) invariance. For the spectrum of perturbations to be accidentally isotropic in the

same fashion, one needs the phonons’ quadratic action to be accidentally isotropic. This

involves now four-index background tensors, contracted with the phonons’ derivatives. So,

the general mathematical question is, what are the discrete subgroups of SO(3) whose invari-

ant two-index and four-index tensors are all isotropic? If one finds one or more subgroups

with this property, and if their six-index invariant tensors are not all isotropic, one has a
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model of inflation, that, because of symmetry, has an isotropic background and spectrum of

perturbations, and a (potentially) maximally anisotropic three-point function.

Finally, it would be interesting to run a dedicated numerical analysis of CMB data for

our specific three-point function template, given its small overlaps with the more standard

templates that have been considered so far.

We hope to address all these questions in the near future.



Chapter 5

Dissipation

So far we have neglected a crucial feature of real-world hydrodynamics: the presence of

dissipative effects. Dissipation appears in the gradient expansion of hydrodynamics as a first

order correction to the perfect fluid equations, which are the continuity and the (relativistic

generalization of the) Euler equations. In fact, for fluids that do not carry anomalous charges

[71], all first order corrections are dissipative. It is then clear that for the EFT program to be

useful beyond zeroth order in the derivative expansion, one has to find a way to accommodate

dissipative effects.

In the standard parameterization, first order dissipative effects are characterized by three

coefficients: bulk viscosity, shear viscosity, and heat conduction. Physically, at least for

weakly coupled fluids, dissipation arises because of the fluid’s microscopic constituents’ diffu-

sion, which tends to erase any gradients the macroscopic quantities like temperature, velocity

field, etc., might have.1 This process effectively converts the mechanical energy carried by

long wavelength perturbations, like sound waves for instance, into thermal energy. Since dif-

fusion is essentially unobstructed when the microscopic constituents are weakly interacting,

very weakly coupled fluids are, from the viewpoint of their long-distance hydrodynamical

description, the most dissipative ones. This is the usual counterintuitive property of shear

1Bulk viscosity has a different physical origin. See e.g. [72].
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viscosity: at lowest order in perturbation theory, it grows linearly with the mean free path

(see [73] for a discussion about this point.) One could think that going in the opposite

direction—to very strong coupling—might make diffusion and thus dissipation completely

unimportant. But, apparently, this is not case. It has been conjectured that there exists an

absolute lower bound on the ratio of shear viscosity (η) to entropy density (s) [23, 74],

η

s
≥ 1

4π
. (5.1)

Interestingly, heavy ion collision data indicate that the quark-gluon plasma has an η to s

ratio of the same order as the proposed bound.

Systems violating such a bound have been proposed—see [75] for a recent review—but

it is still an open question whether there exists a fundamental bound that is just somewhat

lower than (5.1). For example, in [76] it has been argued that Eq. (5.1) can be violated for

theories with gravitational duals, but still there is a (somewhat weaker) bound: η
s
≥ 16

25
1

4π
,

which follows after enforcing causality in the bulk or micro-causality in the boundary CFT.

In any case, the mere existence of such a bound still defies a purely field-theoretic justifi-

cation. Therefore, part of our motivation to characterize dissipation in hydrodynamics in

an EFT language, is to derive—if it exists—a fundamental bound from sacred properties of

relativistic quantum field theory. For instance, it might follow from unitarity, via dispersion

relations [77,78]. It is sad to report that at this stage we make no progress in this particular

direction, and keep it open for future investigation, motivation, and inspiration.

Without further ado, we now discuss how to include dissipative effects in the EFT formu-

lation of hydrodynamics. We will paraphrase a method we learned from [79] where absorptive

phenomena in black hole physics were dealt with in an EFT fashion. (See also [80–82] for

generalizations, [83] for a somewhat different approach, and [84] for an application of the

same techniques in a different context.)



170

5.1 The general idea

Clearly, a field theory with a local action is non-dissipative by construction.2 But so is

Nature: In any physical system, we call ‘dissipation’ the transfer of energy from the degrees

of freedom we are interested in (collectively denoted by φ, in the following) to others which

we are not keeping track of (collectively denoted by χ), either because we are not concerned

about them, or because describing them is too complicated or impractical. So, the best way

to approach dissipation from a field theory viewpoint—at least conceptually—is to keep in

mind that these additional degrees of freedom should also appear in the action of the system.

That is, if we were to write the full action for φ and χ, we would have

S[φ, χ] = S0[φ] + Sχ[χ] + Sint[φ, χ] . (5.2)

S0 is the action we would write for φ alone, if we forgot about χ. Sχ governs the dynamics

of χ. Sint couples the two sectors, and is responsible for exchanging energy between them.

If we now compute observables involving our φ only, we can detect ‘dissipative’ effects—

corresponding to exciting the χ degrees of freedom—which cannot be reproduced by using

S0 alone. For instance, the S-matrix restricted to the φ-sector is non-unitary whenever

producing χ-excitations is energetically allowed.

In the particular case we are interested in, χ stands for the degrees of freedom of the

microscopic constituents making up the fluid. For instance, for a weakly coupled, non-

relativistic fluid made up of massive point-particles, χ stands for the positions of these

particles. On the other hand, φ stands for the collective degrees of freedom, like sound

waves for instance, which are those explicitly kept by the hydrodynamical description 3.

2The formal trick of adding an explicit time-dependence to a Lagrangian to make the energy not

conserved—see e.g. [85]—might work to reproduce the desired dissipative equations of motion, but (i) is

not systematic, i.e. it is not clear what the rules of the game are, and has therefore no predictive power,

and more importantly (ii) does not correspond to the physical origin of dissipation, which is that there are

additional degrees of freedom that have been ignored.
3Strictly speaking, to avoid double counting, one should remove from the χ’s the combinations of the
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Notice that at all times we are dealing with one and the same fluid, and its microscopic

constituents. The splitting in Eq. (5.2) is one of the key features of the EFT formalism

and the (emergent) dynamics in the long-wavelength limit. Hydrodynamics is about the

dynamics of φ.

To illustrate the general idea, in this section we will not commit to the hydrodynamical

case, nor will we go into many details. Rather, we will keep the discussion as general and

as schematic as possible. We will only assume that the interaction Lagrangian Sint can be

treated as a small perturbation. If this is not the case—if the two sectors are strongly coupled

to each other—then it is not even clear how to talk separately of the φ-sector and of the

χ-sector. In other words, we are assuming that as a first approximation, one can neglect

the χ’s when talking about the φ’s. For hydrodynamics, as will see, this will be guaranteed

by the symmetries: at low frequencies and momenta, all the interactions of the φ’s become

negligible, including those with the χ’s. Notice that we are not assuming anything about

interactions within the χ sector: they can be arbitrarily strong.

Now, the crucial question is how to make use of expression (5.2), without actually spec-

ifying what the χ’s and their dynamics really are. The idea is to make the dependence of

the interaction piece Sint on φ explicit, while keeping that on χ implicit. Schematically:

Sint =

∫
d4x

∑
n,m

∂nφm(x)On,m(x) . (5.3)

The O’s are ‘composite operators’ of the χ-sector—local combinations of the χ’s and their

derivatives. As usual, one expects all couplings allowed by symmetry to appear in the action.

So, in particular, the O’s should carry spacetime and possibly internal indices in order to

make the combinations appearing in Sint invariant under all the symmetries that act on the

φ’s. Apart from symmetry, as usual in EFT, the other organizational principle in the infinite

series (5.3) is the derivative expansion: terms with fewer derivatives acting on the long

distance/low energy degrees of freedom (φ) matter the most at low energies and momenta.

individual particle positions that make up the φ’s.
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Now, in any observable that involves measuring the φ’s only—like for instance a 〈φφ · · ·φ〉

correlation function, or a φφ → φφ scattering amplitude—all effects due to the presence of

the χ’s, dissipative or otherwise, are “mediated” by the correlation functions of these O

composite operators. As an example, consider a coupling (linear in φ) between the two

sectors of the form

Sint = λ

∫
d4xφO , (5.4)

where λ is a small coupling constant. For instance, suppose that we are interested in com-

puting the T -ordered two-point function of φ in the standard vacuum (i.e. the vacuum for

both the φ sector and the χ sector, for as we will see in a moment, computing this same

correlator with a non-vacuum dissipative χ sector will necessarily complicate the story).

This two-point function will receive contributions from S0 and from Sint. We can compute

the latter contribution in perturbation theory for λ. For instance, if φ’s only interaction

is that contained in Sint above, this would correspond to the Feynman diagram series of

fig. 1. In that case, neglecting combinatoric factors, powers of i, and momentum-conserving

delta-functions, we would have schematically

〈φ(p)φ(−p)〉 = 〈φ(p)φ(−p)〉0 (5.5)

+ λ2〈φ(p)φ(−p)〉02 〈O(p)O(−p)〉0

+ λ4〈φ(p)φ(−p)〉03 〈O(p)O(−p)〉02 + . . . ,

where T -ordering is understood, and the subscript zeroes denote that those two-point func-

tions are to be computed at zeroth order in λ, that is, in the absence of any interactions

between φ and χ. Once 〈φφ〉0 and 〈OO〉0 are known, the full 〈φφ〉 can be computed at any

order in λ, without any further explicit reference to the χ dynamics. This is analogous to

the standard Feynman-diagram expansion for a perturbative QFT, which involves the free

propagators only. Here the correlators on the r.h.s. are not the free ones—they are those

determined by S0 (for φ) and by Sχ (for O) separately. In a more general case, where φ has
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Figure 5.1: Feynman diagram representation of eq. (5.5): the solid lines represent the φ

propagators and the gray circles the two-point function of O.

non-trivial self-interactions and couples to the O’s in a more general way, the right-hand

side looks more complicated because it involves higher-point correlation functions of φ and

O as well. However, all the correlators are still evaluated at zero coupling (λ) between the

two sectors.

As hinted at before, this simple picture gets slightly more complicated for correlation

functions in more general states and in particular, thermal states. As we will discuss at

some length in the next section, we will be interested in a thermalized χ sector. Its real-time

correlation functions and the associated perturbative expansion then have to be handled via

the so-called In-In, or Schwinger-Keldysh, formalism (for extensive reviews, see e.g. [86–88]).

This entails a doubling of the fields in the path-integral, φ→ φ±, χ→ χ±, which complicates

somewhat the systematics of the Feynman-diagram expansion. However, for what we are

interested in, we can instead consider the effective (linearized) equations of motion for the

expectation value of φ that we get by “integrating-out” the χ sector via In-In path integrals,

which is essentially an In-In generalization of the quantum effective action formalism that is

appropriate for systems described by a density matrix.

Following the notation of [86] and utilizing the simple coupling given by (5.4), the In-In

generating functional for the correlation functions of φ is given schematically by

eiW [J+,J−] = const×
∫
Dφ±Dχ± (5.6)

ei(±Sφ[φ±]±J±φ±±Sχ[χ±]±λφ±O±) , (5.7)

where the functional integral over χ+ and χ− is understood to include a (thermal) density

matrix ρ(χ+
0 , χ

−
0 ) for the initial conditions, which are also integrated over [87,88]. As we will

see in a second, we will not need to be explicit about this.
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Let’s assume that 〈O〉 = 0 and confine ourselves to quadratic order in the φ± fields.

Noticing that, from the viewpoint of the χ sector, the φ± fields act as external sources for

the operators O±, we can formally perform the functional integration over χ+ and χ− and

obtain

eiW [J+,J−] = const×
∫
Dφ±ei(±S2[φ±]±J±φ±)e

iλ2

2
φaGabO φ

b

, (5.8)

where S2 is the quadratic action for φ, φa ≡ (φ+,−φ−), and GO is a matrix of OO correlators

[86]:

GO(x1, x2) =

 〈TO(x1)O(x2)〉 〈O(x1)O(x2)〉

〈O(x2)O(x1)〉 〈O(x1)O(x2)T 〉

 (5.9)

(the T to the right of a sequence of operators implies anti-time ordering.) These correlators

have to be understood as traces involving the density matrix that is appropriate for the χ

sector.

The In-In effective action Γ [φ+, φ−] is then just the Legendre transform of the In-In

generating functional W [J+, J−], from which the effective equations of motion for 〈φ〉 follow

simply as [86]

δΓ

δφ+(x)

∣∣∣∣
φ+=φ−=〈φ〉

= 0 , (5.10)

However, since we are working at quadratic order in φ±, the effective action Γ is just whatever

appears at the exponent in the path integral (5.8) after having set J± to zero:

Γ2[φ+, φ−] = S2[φ+]− S2[φ−] + λ2

2
φaGabO φb , (5.11)

where two convolutions are understood for the last term. We thus get that the linear equation

of motion for the expectation value of φ—which, to keep the notation light, we also call φ—is

simply

δS2

δφ
+ iλ2 〈OO〉R ∗ φ = 0 , (5.12)

where the second term involves precisely the retarded two-point function of O:

〈O(x1)O(x2)〉R ≡ θ(t1 − t2)〈
[
O(x1),O(x2)

]
〉 . (5.13)
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Note that the above conforms to the expectations of the usual “linear-response theory”

result. What’s nice about the In-In formalism is that it allows one to generalize such a result

to all orders in perturbation theory in a systematic fashion.

Keeping these qualifications in mind, and coming back to the main message of this

section: For generic Sint, in order to compute observables that involve the φ’s only—and

in particular the time-evolution of 〈φ(x)〉—we need not be explicit about the dynamics of

the χ’s. We ‘only’ need the n-point correlation functions of the operators the φ’s couple to.

Of course, knowing all such correlators is essentially equivalent to having solved the theory

defined by Sχ, which, as we stressed, can be arbitrarily complicated, strongly coupled, or

simply unknown. Fortunately, in our particular case of hydrodynamics, we are interested

in such correlators at very low frequencies and very long distances only. Moreover, we can

assume that the χ sector—whatever it is—is in a state of thermal equilbrium. As we will

see, this allows us to parameterize the leading low-frequency, long-distance behavior of the

relevant correlators by three coefficients only.

5.2 Low frequency, long distance behavior of correla-

tors

Consider the two-point function for a generic operator in the χ sector, 〈O(~x, t)O(~x ′, t′)〉.

If, in the absence of external perturbations—due for instance to our φ’s—, the χ sector is

thermalized, then the average 〈. . . 〉 has to be interpreted as a thermal trace with a density

matrix ρ ∝ e−βH , or, in the presence of a conserved charge, ρ ∝ e−β(H−µQ). (We will use a

quantum mechanical language, but everything we say applies straightforwardly to classical

statistical systems as well.) Now, we will assume that we identified correctly all the degrees

of freedom that can propagate at long distances and for long times–we called them φ–and

that we constructed the most general EFT for them, encoded by S0[φ]. We will be more
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explicit in the next section, but for the moment, it suffices to say that these φ’s correspond

to the degrees of freedom traditionally associated with hydrodynamics: long-wavelength

fluctuations in the energy density, in the velocity field, in the charge density, etc. Following

the traditional language, we have ‘hydrodynamic modes’—i.e. physical variables with non-

trivial long-range, late time correlators—for each conserved quantity: energy, momentum,

charge. It is usually believed that thermal equilibrium erases all other information that is

not associated with conserved charges. In particular, it is usually believed that in a thermal

system correlators for quantities that are not densities for conserved charges decay rapidly,

faster than any power, at very large distances and at very late times—roughly speaking, at

distances and times larger than the mean free path and the mean free time, respectively.

Following this intuition, we will assume that the χ-sector only features such rapidly

decaying correlators. As we will see, this does not imply that it does not feature gapless

excitations. Indeed: if there were no gapless χ-excitations, it would not be possible for very

low frequency φ fields to transfer any energy to the χ sector. That is: at frequencies lower

than the gap, there would be no dissipation whatsoever. Now, if an 〈OO〉 correlator decays

faster than any power at large space- and time-separations, then its Fourier transform

G(ω,~k ) ≡
∫
d3xdt ei(ωt−

~k·~x) 〈O(~x, t)O(0)〉 , (5.14)

is differentiable for real ω and ~k—infinitely many times—at ω = ~k = 0. In particular, it

admits a Taylor expansion in powers of ω and ~k about the origin. This means that at very

low frequencies and momenta, we can parameterize our two-point function by just a few

numbers—the coefficients of the leading terms in such a Taylor expansion.

To develop some physical intuition, it is useful to rephrase the above statement in terms

of the spectral density for the operator O. So far we have been cavalier about the ordering

of operators inside the two-point function. As pointed out in the last section, we will be

mostly interested in the retarded two-point function,

GR(~x, t) ≡ θ(t)〈[O(~x, t),O(0)]〉 , (5.15)
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which describes the causal response of the system to external disturbances, in the sense

that adding a term
∫
d3xJO to the Hamiltonian—where J(~x, t) is a given external source—

triggers a response in the expectation value of O

〈O(~x, t)〉J = −i
∫ ∞
−∞

dt′d3x′GR(~x− ~x ′, t− t′) J(~x ′, t′) +O(J2) (5.16)

(we have assumed that the background expectation value of O vanishes, i.e 〈O(~x, t)〉J=0 = 0).

Its Fourier transform admits the spectral representation

GR(ω,~k) =

∫ +∞

−∞

dω0

π

i

ω − ω0 + iε
ρ(ω0, ~k ) , (5.17)

where ρ(ω0, ~k )—the spectral density—is a real, non-negative function (for positive ω0) that

quantifies the density of states the system has at energy ω0 and momentum ~k, weighed by

the overlap the operator O has with them 4.

One is often interested in separating the real and imaginary parts of Fourier-space correla-

tion functions, because they contribute to different phenomena. In particular, the dissipative

effects we are after will be associated with the imaginary part of iGR, which, given the dis-

tributional identity

1

x+ iε
= P

1

x
− iπ δ(x) , (5.19)

is simply the spectral density:

Im
(
iGR(ω,~k )

)
= ρ(ω,~k ) . (5.20)

Our discussion following (5.14) thus implies that the spectral density should be infinitely

differentiable for real ω and ~k at ω = ~k = 0, and that it should admit a low-frequency,

4The finite-temperature spectral density is given by

ρ(ω,~k) = 1
2

(
1− e−βω

) (
Tr e−βH

)−1∑
n,m

e−βEn (5.18)

× (2π)4δ(ω + En − Em)δ3(~k + ~pn − ~pm)
∣∣〈n|O(0,~0)|m〉

∣∣2
from which the non-negativity (for positive ω) follows immediately.
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low-momentum Taylor expansion. Moreover, standard arguments (see e.g. [89]) imply that

the imaginary part of iGR is odd under ω → −ω (while the real part is even), so that in the

Taylor expansion of ρ we only have odd powers of ω. The dependence on ~k is constrained

by rotational invariance. If O is a scalar operator, it has to involve 1, |~k|2, |~k|4, . . . ; If

O carries a vector index i, the ~k-dependence of the tensor spectral density ρij will involve

the combinations δij, kikj, |~k|2δij, . . . ; And so on for higher rank tensors. Given these

properties, at very low frequencies and momenta, the spectral density of a tensor operator

that transforms irreducibly under rotations can be parameterized by just one number—the

first coefficient in its Taylor expansion:

ρ(ω,~k ) ' Aω × δ · · · δ , ω, k → 0 , (5.21)

where δ · · · δ stands for the combination of Kronecker-deltas with the right symmetries 5.

Notice that A has to be positive, because ρ is positive for positive ω.

We thus see that the absence of long-range, late-time correlations in the χ sector does not

forbid the existence of gapless excitations. These can exist, as long as the zero-momentum

density of states (i) is a regular continuum in a neighborhood of ω = 0, and (ii) goes to zero

at zero frequency, at least as fast as ω. For instance, a δ-function contribution to the spectral

density, peaked at ω = 0, is not allowed. This would correspond to a gapless ‘single particle’

pole in correlators—i.e. to an excitation with a power-law propagator at very long distances

5For any operator O of given spin s, there is only one possible such combination that can appear in the

〈OO〉 correlator. The reason is that in the tensor product of two spin s representations, the singlet (spin-0)

representation appears only once:

(2s+ 1)⊗ (2s+ 1) = 1⊕ 3⊕ · · · ⊕ (4s+ 1) . (5.22)

For instance, if Oij is symmetric and traceless, that is, spin 2, its two point function at zeroth order in ~k

has to take the form

〈OijOkl〉 ∝ δikδjl + δilδjk − 2
3δ
ijδkl . (5.23)
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and at very late times. According to our assumptions above, this should be included in the

φ sector.

5.3 The actual couplings: Sint to linear order

From Chapter 1 we know the S0—the fluid action. Let’s now be more specific about the

structure of Sint. There is one physical property of the χ’s that we have not yet been explicit

about: in a sense that we will try to make precise these degrees of freedom “live in the fluid”

simply because they “make up” the fluid—they are supposed to describe all the degrees of

freedom of the fluid’s microscopic constituents that are not explicitly taken into account

by the φ’s. This requirement alone should fix their transformation properties under all the

symmetries that act on the φ’s.

In what follows we will restrict ourselves to the lowest order in the derivative expansion

and, more importantly, to linear order in the π fluctuations where, as we shall see shortly, the

coupling to the χ sector can be read off from basic properties of Goldstone boson interactions.

In order to generalize our results to higher orders in the Goldstone fields, we would need

to apply systematically the so-called coset construction to our case. The coset construction

allows one to write the most general interactions of Goldstone fields among themselves and

with other degrees of freedom (χ, in our case). One only needs to specify the symmetry

breaking pattern and the transformation laws of the χ fields under the unbroken symmetries,

which in our case are suitably redefined translations and rotations. Our physical requirement

that the χ’s “live in the fluid” should correspond to very specific transformation laws under

such symmetries. The general coset construction for internal symmetries has been worked

out in [90–92]. It was later generalized to spontaneously broken spacetime symmetries in [93]

(see also [94,95] for recent applications). Our case presents yet another twist, in that certain

spacetime symmetries mix with internal ones upon spontaneous breaking, in the sense that

the unbroken symmetries are specific linear combinations of internal and spacetime ones. We
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leave addressing such a systematic construction to future work and content ourselves with

the correct linearized description, which we discuss next.

Let us focus first on the case of a fluid without conserved charges. Suppose we start from

an equilibrium configuration in which our Goldstones πI are set zero,

φI0(x) = b
1/3
0 xI . (5.24)

Then, let’s turn on a small πI perturbation,

φI(x) = b
1/3
0 ·

(
xI + πI(x)

)
, (5.25)

with very mild spatial gradients and time-derivatives. Since πI appears as an addition to xI ,

this is equivalent to performing a small spatial translation of the original equilibrium field

configuration (5.24), weakly modulated in space and time:

φI0
(
~x
)
→ φI(~x, t) = φI0

(
~x+ ~π(~x, t)

)
. (5.26)

We can now be precise about the meaning of “living in the fluid” for the χ sector: if

the comoving coordinates φI are subjected to a weakly modulated spatial translation as in

eq. (5.26), the χ degrees of freedom undergo the same spatial translation. But, following

standard Nöther theorem-type logic, under a modulated spatial translation with parameter

~π(~x, t), the χ action changes by

Sχ[χ]→ Sχ[χ]−
∫
d4x ∂µπ

i T µiχ , (5.27)

where T µiχ is, by definition, the χ sector’s contribution to the Nöther current associated

with spatial translations, that is, the spatial columns of the χ sector’s stress-energy tensor.

Therefore we conclude that, at linear order in πi,

Sint ' −
∫
d4x ∂µπ

i T µiχ (no charges.) (5.28)

Note that ∂µT
µi
χ 6= 0 and so the above interaction is non-trivial, since we are not including

in T µiχ the π-dependent pieces that are required for conservation of the total stress-energy

tensor.
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A couple of comments about this expression are in order. First, the coupling above, while

invariant under spatial translations, rotations, and π-shifts, does not seem to respect the

volume-preserving symmetry of eq. (1.5). At linear order this symmetry requires invariance

under

~π(t, ~x)→ ~π(t, ~x) + ~ε (~x) , ~∇ · ~ε = 0 . (5.29)

Since the ~ε parameters are time-independent, we note that the 0-component of eq. (5.28)

does respect the symmetry, whereas the spatial parts do not. At the moment we have no

satisfactory understanding of this issue, but we are confident that (5.28) describes the correct

linearized coupling of π to the χ sector, because, as we will see in the next section, it correctly

reproduces the first-order dissipative effects of hydrodynamics.

Second, the linear coupling of a Goldstone boson to the associated current—which we

motivated via our “living in the fluid” logic—is likely a very general feature of theories with

spontaneously broken symmetries 6. In the Appendix we show that the analog of our coupling

holds for a generic theory with a spontaneously broken internal U(1) symmetry, and the logic

of that example suggests that analogous results should apply for more generic (internal)

symmetry breaking patterns. For spontaneously broken spacetime symmetries there will be

additional subtleties, but ignoring them for the moment, we are led to postulate that in the

case of a fluid with conserved charges the leading order interaction Lagrangian will read

Sint
?' −

∫
d4x

[
∂µπ

i T µiχ + y0 ∂µπ
0 jµχ
]

(with charges), (5.31)

6This is not—and has no obvious relation with—the usual statement that the current for a spontaneously

broken symmetry interpolates the Goldstone particles, in the sense that given a single-Goldstone state |~p〉,

one has

〈0|jµ|~p〉 6= 0 . (5.30)

This interpolation property implies that the full current has terms that are linear in the Golstone field,

e.g. for relativistic theories jµ = f∂µπ + . . . Here instead we are focusing on the terms in the current that

depend on other fields—our χ’s—but not on π, and we are claiming that, in the Lagrangian, the linear

coupling of π to this other sector involves precisely this π-independent part of the current.
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where π0 is the Goldstone excitation of ψ, and the associated y0 factor comes directly from

its definition (6.2): jµχ is the current associated with shifts of ψ, and turning on a π0 field

corresponds to shifting ψ by y0π
0. As we will see, the second term in (5.31) will turn out

not to be the end of the story in this case—hence the question mark—but for the moment,

notice that, analogously to the first term, the second term is non-trivial (∂µj
µ
χ 6= 0), and not

invariant under one of the symmetries,

π0(t, ~x)→ π0(t, ~x) + a(~x) , (5.32)

which is the linearized version of (1.31). We will now check that the first term in (5.31)

reproduces correctly the first-order dissipative phenomena associated with bulk and shear

viscosity—including the celebrated Kubo relations. On the other hand, we will see that in

order to model heat conduction precisely the second term has to be corrected, both in its

overall coefficient and in its structure. We leave deriving these corrections from symmetry

considerations to future work.

5.4 Rediscovering Kubo relations

As advertised in sect. 5.1, we can now compute observables that involve our Goldstone

excitations, and the χ sector will contribute indirectly to these observables only via the

correlators of the composite operators that couple to our Goldstones. Since the only couplings

that we have so far are linear in the Goldstones, the observables we are able to compute at

this point have to do with the free propagation of Goldstone excitations. That is, we are

able to compute the Goldstone attenuation rates.

5.4.1 Fluid without charges

Consider first a fluid without conserved charges. Its excitation spectrum—neglecting dis-

sipative effects—is described by the action (6.3), with the π̃0 part omitted. We have a
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longitudinal mode ~πL with ω = csk, and two transverse modes ~πT with a degenerate disper-

sion relation ω = 0. Consider now one such excitation propagating in the fluid. Its coupling

to the χ sector via the interaction (5.28) will make it slowly decay away, eventually trans-

ferring all its initial energy to χ excitations. We can compute the rate at which this decay

process takes place at the level of the classical equations of motion for the Goldstones. We

could also do the computation at the level of Feynman-diagram perturbation theory, which

would be more in line with our field theoretical approach. In particular, since the atten-

uation rates we are after correspond to imaginary shifts in the excitations’ frequencies, we

should compute the χ-mediated corrections to the poles of the πI propagator. However, as

reviewed in sect. 5.1, in the in-in formalism each propagator gets replaced by a 2× 2 matrix

of propagators, which, at least for our simple computation, complicates unneccessarily the

systematics of perturbation theory.

Following sect. 5.1, the linearized eom for πI derived from the Goldstone quadratic action

(6.3), augmented by their interaction with the χ sector (5.28), is precisely what one would

naively expect from linear response theory 7:

w0

(
ω2 πi − c2

sk
ikj πj

)
+ iGij

R(ω,~k) πj = 0 , (5.33)

where Gij
R is the retarded two-point function of the combination that couples to πi in (5.28):

Gij
R(ω,~k) = kµkν

〈
T µiχ T

νj
χ

〉
, (5.34)

and from now on we will use simply 〈. . . 〉 to denote the Fourier transforms of retarded two-

point functions, evaluated at ω and ~k. Moreover, it will be understood that GR is evaluated

in Fourier space, and its ω,~k arguments will be omitted.

In the end we are interested in the imaginary parts of the eigenfrequencies of the system,

which—at leading order in perturbation theory—will be related to the imaginary part of iGR.

7We have assumed, as we did in Section 5.1, that 〈Tµiχ 〉π=0 vanishes. In our formalism, the equilibrium

expectation value for the fluid’s full stress energy tensor is given by (1.35), evaluated at the equilibrium

configuration (6.1), that is, it is fully captured by the φ’s sector action S0.
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At this point we could parameterize the infrared behavior of Im i ·
〈
T µiχ T

νj
χ

〉
as described in

sect. 5.2, but, before proceeding let us massage this quantity a little in order to rewrite it

in a form that the reader familiar with hydrodynamics will recognize. First, notice that

according to (5.20), such a quantity is the spectral density of a composite operator (T µiχ )

in the χ sector. We argued that all local operators in the χ sector should have very well

behaved spectral densities near ω = ~k = 0, at least for real ω and ~k, with a Taylor expansion

starting as const · ω, and continuing with higher powers of ω and ~k. At low energies and

momenta, we are interested in just that first term, which we can extract formally by taking

the nested limit

ω lim
ω→0

[
1
ω

lim
~k→0

(
Im i ·

〈
T µiχ T

νj
χ

〉)]
. (5.35)

Given the regularity of our spectral densities in the infrared, we can take the limits in any

order. However, taking the limits in the order we have written them allows us to replace

T µiχ with the total T µi, which includes contributions coming from the Goldstone bosons. The

reason is that at lowest order in the χ-π interactions and in the derivative expansion, the

Golstones’ contribution to any spectral density is a Dirac-delta peaked at on-shell values for

ω and ~k. But the limit in (5.35) carefully dodges such on-shell values, both for longitudinal

(ω = csk) and for transverse (ω = 0) excitations. At the order we are working we thus have

Im
(
iGij

R

)
' ωkµkν · lim

ω→0

1
ω

lim
~k→0

Im i ·
〈
T µiT νj

〉
. (5.36)

Then, using a standard trick—see e.g. [72]—we can use conservation of the full stress-energy

tensor to set to zero terms in the correlator above that have µ or ν equal to zero. The reason

is that, because of Tµν conservation, in Fourier space we have the operator equation

T 0α =
kk

ω
T kα , (5.37)

which yields zero if we take ~k to zero first, as we are doing in the limit above 8.

8The manipulations we just performed may seem dangerous: in fact, in the last section we insisted that
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We are thus left with

Im
(
iGij

R

)
' ωkkkl · lim

ω→0

1
ω

lim
~k→0

Im i ·
〈
T kiT lj

〉
. (5.38)

Following sect. 5.2, we can now split the stress tensor operator T ij into irreducible represen-

tations of the (unbroken) rotation group, spin 0 and spin 2,

T ij = T ij0 + T ij2 (5.39)

T ij0 = 1
3
δij T kk , T ij2 = T ij − 1

3
δij T kk , (5.40)

and parameterize the low-energy behavior of the associated spectral densities—in the nested

limit we are interested in—via two free parameters A0,2 as

Im i ·
〈
T ki0 T

lj
0

〉
' A0 ω · δkiδlj (5.41)

Im i ·
〈
T ki2 T

lj
2

〉
' A2 ω ·

(
δklδij + δkjδil − 2

3
δkiδlj

)
.

We should also mention that the mixed correlator 〈T0T2〉 vanishes at zero momentum, be-

cause of rotational invariance.

Plugging these parameterizations into eq. (5.38) we get

Im
(
iGij

R

)
' ω k2

[
(A0 + 4

3
A2)P ij

L + A2 P
ij
T

]
, (5.42)

where P ij
L,T are the longitudinal and transverse projectors

P ij
L = k̂ik̂j , P ij

T = δij − k̂ik̂j . (5.43)

The reason it’s convenient to split this contribution to the πi eom as a sum of a longitudinal

and a transverse part, is that the zeroth-order eom has a similar structure:

ω2πi − c2
sk

ikj πj →
[
(ω2 − c2

sk
2)P ij

L + ω2P ij
T

]
πj . (5.44)

is important that the πi does not couple to the full Tµi, but only to a non-conserved part of it, so that the

coupling (5.28) is actually non-trivial. There is no contradiction however: the divergence—or the kµ—one

needs to annihilate the full stress-energy tensor does not commute with our nested limit, so that the r.h.s. in

eq. (5.36) is actually non-zero.
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Then, putting everything back into eq. (5.33) we get immediately the imaginary parts of the

(low-momentum) eigenfrequencies:

∆ωL ' −i
(A0 + 4

3
A2)

2w0

k2 (5.45)

∆ωT ' −i
A2

w0

k2 . (5.46)

These are the attenuation rates for, respectively, the longitudinal and transverse modes. We

already see two important predictions of our field theoretical approach. First, the dissipative

nature of the coupling (5.28): these imaginary frequency shifts have the right sign to make

the Goldstone excitations decay in time, since the positivity of A0,2 is guaranteed by the

positivity properties of any spectral density, as reviewed in sect. 5.2. Second, the attenuation

rates scale as k2 at low momenta, which agrees with the standard dissipative hydrodynamics

results.

But we can go further. Comparing our attenuation rates to the standard ones in the

literature—see e.g. [72]—we find that our parameters A0,2 correspond to bulk and shear

viscosity, usually denoted by ζ and η:

ζ = A0 , η = A2 . (5.47)

Then, our definitions of A0,2 in eq. (5.41), match precisely the famous Kubo relations for bulk

and shear viscosity [72]. This is the main result of this chapter: an independent derivation

of the Kubo relations via effective field theory techniques.

From now on, we will refer to the nested limit that we used above as ‘the Kubo limit’,

and we will denote retarded correlators in that limit by

〈· · · 〉K ≡ ω lim
ω→0

1
ω

(
lim
~k→0
〈· · · 〉

)
. (5.48)

5.4.2 Fluid with charges

We can now extend the same analysis to the case of a fluid with conserved charges. However,

as anticipated, the interaction Lagrangian (5.31) now does not work equally well as for
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the case without charges. In particular, it yields the correct ∆ω ∼ ik2 scaling for the

attenuation rates, but it does not reproduce the correct numerical factors in the Kubo

relations for the corresponding transport coefficients. We blame this on the fact that in

order to guess the second term in (5.31), in the absence of a “living in the fluid”-type

argument we applied cavalierly the global symmetry lesson of Appendix 6.15 directly to

our case, which involves spontaneously broken space-time symmetries, and is therefore of a

slightly more subtle nature. We are confident that the coset construction will shed light on

this issue. For the moment, let’s see whether there exists a minimal generalization of (5.31)

that reproduces the correct physics of dissipation in this more general case.

Let’s assume that the χ sector still couples to our Goldstones only via the currents T µνχ

and jµχ . Then, by (unbroken) rotational and shift-invariance, the possible couplings at lowest

order in derivatives are

∂jπ
i T jiχ , ∂0π

i T 0i
χ , ∂iπ

i j0
χ , ∂0π

i jiχ , (5.49)

∂jπ
0 T j0χ , ∂0π

0 T 00
χ , ∂iπ

0 jiχ , ∂0π
0 j0

χ . (5.50)

However, given what we learned above by manipulating the 〈TχTχ〉 correlators in the Kubo

limit, we notice that correlators involving Tχ or jχ with a zero index will not contribute to

the imaginary parts that we are interested in. For the purposes of our computation, we can

thus discard the couplings involving those composite operators. Furthermore, among the

surviving couplings, the first is the only one involving the transverse Goldstones πiT : the

only other possibility is ∂0π
i jiχ, but recall that at lowest order in the derivative expansion

πiT has a degenerate dispersion relation ω = 0, which means that, for the transverse modes,

such a coupling has to be neglected at the order we are working. By rotational invariance,

the transverse modes cannot mix with either πiL or π0, and, given our success above in

determining their attenuation rate in the absence of conserved charges, we want to keep

their couplings to the χ sector unaltered, i.e., we want ∂jπ
i T jiχ to appear with the same

coefficient as in (5.28). For the other couplings, we introduce two arbitrary coefficients.
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We thus consider the interaction Lagrangian

Sint ' −
∫
d4x

[
∂jπ

i T jiχ +B ∂iπ
0 jiχ + C ∂0π

i jiχ
]
, (5.51)

and determine the values of B and C by computing the attenuation rates and matching

these to known results. We can focus on the πL-π0 sector only, since for the transverse

modes we have the same couplings as before, and the same analysis applies unaltered. On

the other hand, when we consider the πL and π0 equations of motion, we are sensitive to

new (retarded) correlators,

eom(πα) ⊃ iGαβ
R πβ , (5.52)

with

Im
(
iG00

R

)
' B2 kikj Im i · 〈jijj〉K (5.53)

Im
(
iG0L

R

)
' −BC ωkik̂j Im i · 〈jijj〉K (5.54)

Im
(
iGLL

R

)
' kkkl k̂ik̂j Im i · 〈T kiT lj〉K

+ C2 ω2k̂ik̂jIm i · 〈jijj〉K . (5.55)

Following the same logic as in the case without conserved charges, we have replaced the

χ-sector’s current and stress-tensor with the total ones. We have also used that the mixed

correlator 〈jiT jk〉 vanishes at zero momentum by rotational invariance.

According to the general discussion of sect. 5.2, the imaginary parts of the 〈jj〉K and

〈TT 〉K correlators have to scale as ω. As we already saw, in the TT case this matches the

Kubo relations that determine bulk and shear viscosity—see eqs. (5.41), (5.47). In the jj

case, there is an analogous Kubo relation [96], which relates the heat conductivity χ to the

coefficient of ω

Im i · 〈jijj〉K = χT
(

n
ρ+p

)2
ω · δij . (5.56)
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Putting everything together, we can rewrite the imaginary parts of the iGR entries as

Im
(
iG00

R

)
= χT

(
n
ρ+p

)2
B2 ωk2 (5.57)

Im
(
iG0L

R

)
= −χT

(
n
ρ+p

)2
BC ω2k (5.58)

Im
(
iGLL

R

)
=
(
ζ + 4

3
η
)
ωk2 + χT

(
n
ρ+p

)2
C2 ω3 . (5.59)

To find the imaginary shifts of the eigenfrequencies, it is convenient to re-express the

iGR matrix in the π̃0-πL basis that diagonalizes the lowest-order quadratic Lagrangian

(6.3). Given the definition of π̃0, eq. (6.4), and the structure of our interaction Lagrangian,

eq. (5.51), this amounts to just replacing

C → C −BA k2

ω2 , A ≡ Fbyb0−Fy
Fyyy0

(5.60)

in the expressions for iGR above:

Im
(
iG0̃0̃

R

)
= χT

(
n
ρ+p

)2
B2 ωk2 (5.61)

Im
(
iG0̃L

R

)
= −χT

(
n
ρ+p

)2
BC ω2k + χT B2Ak3 (5.62)

Im
(
iGLL

R

)
=
(
ζ + 4

3
η
)
ωk2 + χT

(
n
ρ+p

)2 (
C −BA k2

ω2

)2
ω3 . (5.63)

We thus get that the eigenfrequencies of the system—identified by the vanishing of the

determinant of the matrix defining the eom—get shifted by

∆ω0̃ ' −i · χT
(

n
ρ+p

)2
B2
(

1
Fyyy2

0
− A2

w0 c2s

)
k2 (5.64)

∆ωL ' −i ·
[
(ζ + 4

3
η) 1

2w0
+ χT

(
n
ρ+p

)2 (c2sC−BA)2

w0 c2s

]
k2 , (5.65)

where we have kept only the leading order in k.

We are now in a position to match our computations to the classic dissipative fluid results,

which, in the case of a fluid with conserved charges, are quite messy—see e.g. [97]. At low
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momenta, the attenuation rates for the scalar modes are 9

∆ωheat ' −i · χ n (∂p/∂n)T
(ρ+p)(∂ρ/∂T )n

k2 (5.66)

∆ωsound ' −i · 1
2(ρ+p)

[
(ζ + 4

3
η) + χ(∂ρ/∂T )−1

n (5.67)

×
(

(ρ+ p)− 2T ∂p
∂T

∣∣
n

+ c2
sT

∂ρ
∂n

∣∣
T
− n

c2s

∂p
∂n

∣∣
T

)]
k2

After a messy computation (see Appendix 6.16) one can see that, despite their complexity,

these expressions agree with ours above if we simply choose

B = −C = −y0w0

b0Fb
. (5.68)

That is, the two coefficients in (5.51) have in fact the same value (up to a sign), which

in hydrodynamical/thermodynamical terms is simply the combination µ(ρ+ p)/Ts. The

emergence of such a simple final result from a long series of fairly messy intermediate steps,

gives us confidence in the correctness of (5.51) with this particular choice of coefficients.

This completes our matching computation.

5.5 Summary & Outlook

From purely symmetry arguments and the principles of EFT, we were able to derive that

the coupling of hydrodynamical modes to a generic thermalized sector that “lives in fluid”

yields dissipation, with attenuation rates scaling as k2. This matches well known features

of dissipative effects in hydrodynamics, and is quite independent of the precise structure of

the couplings that we would write down, following essentially from the thermal nature of

this extra sector. For fluids without conserved charges, the living-in-the-fluid requirement

is strong enough to determine—via symmetry considerations—the precise structure of the

9In fact, ref. [97] computes only the attenuation rate for the sound mode. However, following that paper’s

derivation it is easy to spot another scalar mode, which corresponds to our π̃0 and which we call the “heat

mode,” with an attenuation rate as given below.
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interactions, thus allowing us to re-derive Kubo relations. For fluids with conserved charges,

we adopted a “symmetry-inspired” ansatz for the interactions, with two free parameters,

which we determined via matching a procedure. The emergence of a remarkably simple

value for them, eq. (5.68), from a long series of fairly cumbersome intermediate steps, gives

us confidence in the validity of the arguments behind our ansatz.

We feel that these are significant accomplishments. However, for our techniques to be

a useful tool rather than simply an alternative derivation of well-know features of hydrody-

namics, we need to extend our analysis beyond linear order, and, more importantly, we need

to understand the systematics of the symmetry structure of the dissipative couplings. As

we already emphasized, we believe that the coset construction will help us in these direc-

tions. Until then, we are left with a puzzle: Our couplings to the χ sector do not preserve

all the symmetries we started with, in particular the volume preserving diffs (5.29), and

the “modulated” shift (5.32). Because dissipation involves time derivatives—the factor of

ω determining the infrared behavior of spectral densities—, and the symmetries above are

time-independent, this was not an issue on the way to reproduce known results. However,

symmetry breaking terms can be generated, for example if we compute the effects associated

with the real parts of our correlators, e.g. Re i〈T ijχ T klχ 〉. If these have frequency-independent

pieces, they can yield symmetry-violating terms in the Goldstone effective action, like for

instance a gradient energy for the transverse modes, in contradiction with standard proper-

ties of hydrodynamics. Unfortunately, from standard analytic properties of retarded Green’s

functions one can derive a dispersion relation of the form (see e.g. [89])

Re
(
iGR(ω0, 0)

)
= −

∫ ∞
−∞

Im
(
iGR(ω, 0)

)
ω − ω0

dω

π
. (5.69)

The RHS is strictly negative-definite when we take ω0 → 0—because of the strict positivity

of spectral densities—which leads us to the result

lim
ω→0

Re
(
iGR(ω)

)
< 0 . (5.70)
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That is, the unwanted frequency-independent pieces are in fact forced to be there. One

could in principle add symmetry-violating local counter-terms to cancel out the undesired,

symmetry-violating contributions from the real parts of our Green’s functions (these are

analytic in frequency and momentum, and therefore local in position space). But this would

correspond to fine-tuning certain Lagrangian terms to zero, which would go against the whole

point of insisting on symmetries as the guiding principle to construct effective field theories:

the only robust properties of physical systems should be those ensured by symmetries.

We conclude with an intriguing application of our results to black-hole physics. Ref. [79]—

from which we borrowed the techniques of sect. 5.1—analyzed dissipative effects in the

dynamics of black holes, starting from a matching computation involving the absorption

of gravitational waves by a black hole in isolation. A classical GR computation for such

a process yields—in the language of sects. 5.1 and 5.2—a spectral density for the relevant

composite operator scaling as ω at low frequencies [79]. Our arguments of sect. 5.2 show that

such a behavior is characteristic of spectral densities for local operators in thermal systems.

That is, a black hole absorbs like a thermal system. This is yet another indication of the

thermal nature of black holes. What is remarkable is that such an implication here follows

from a purely classical computation in GR.



Outlook

We hope the reader feels that in the previous pages some amount of progress has been

made in understanding, utilizing, simplifying or calculating observables in fluid (and solid)

dynamics. Above all we hope that, if anything, the readers of this thesis view this body

of work as proof that effective field theory thinking applied to fluid dynamics can provide

us with new possible handles to investigate this ubiquitous and rich system. A detailed

Summary & Outlook section relevant to each individual subtopic is included in the ends of

Chapters 2-5. For particulars we refer the reader to these sections. By construction, such

discussions lacked a more global picture. We try and offer that here.

The arguments and discussions throughout this thesis can be organized into two cate-

gories: partial progress and sharp results.

In our mind, the sharp results are clear proof of the usefulness of our techniques. For

instance, for the solid inflation model introduced in Chapter 4 we were able to not only to

calculate everything, but we were able to confirm theoretical consistency all the way through

inflation. Yes we can add more ingredients like spectator fields and yes we can cook up a

more complicated phase transition into a hot big bang. But while we can freely complicate

the picture (we are pretty much always free to do this, of course) the point remains the

same. Our symmetry breaking pattern gives, in general, a completely different picture of the

possible dynamics of inflation. Really we have discovered, if that is an appropriate word,

an orthogonal EFT of inflation to the usual one. The question remains: does this have

193
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anything to do with nature? The model is restrictive enough that future data will hopefully

be able to tell us, but as far as theory is concerned solid inflation in its simplest form is

done—everything interesting has been computed and the theoretical consistency confirmed.

The EFT description was key in doing both of these things easily.

Similarly, our efforts collected in Chapter 3 make precise and systematic the expansion

around the incompressible limit. This has allowed us to easily recover some classic results

in the theory of vortex-sound dynamics in addition to calculating new ones. In fact, if we

can be so bold, we would argue that our construction is the way to understand sound-flow

interaction. Not only is it conceptually cleaner but it also comes prepackaged with the

powerful machinery of QFT. This allows us to deal with divergencies that naturally arise in

higher order perturbation theory. Divergencies that would not be easily handled from the

equation of motion perspective. Even just the simple fact that we easily extended the vortex

filament model to include interactions with sound would be nontrivial progress in its own

right. The real unanswered question here is: now that we have all this technology what can

we do with it?

What about the partial results? In Chapter 2 we asked a simple question “Why are

there no normal fluids at zero temperature?” and were greeted by a host of complications

and confusions. In some sense this was a completely natural thing to encounter. Our

expectation was that the answer to our question may be that we find no normal fluids at

zero temperature simply because something was quantum mechanically inconsistent about

such a theory. So while we have indications that this is indeed the case, unfortunately for us,

we have nothing completely precise. Sometimes we even had convincing arguments that were

seemingly contradictory; there clearly is lots more to think about. But aside from confirming

that our quantum mechanical confusions remain when we include a conserved charge we don’t

really offer a concrete next step. Should we be ashamed? We don’t think so. This is an

important question, and even though we ended our analysis with more questions than the
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one we began with, we uncovered previously unknown puzzles—and that is something! If

we demonstrated anything at all it is that as a quantum field theory perfect fluid dynamics

deserves much more study.

Similarly, there seems to be something deep happening in Chapter 5 when we try and

implement the usual program for incorporating dissipation in the EFT language. First, we

can’t seem to construct the necessary non-linear coupling. But even more interestingly, when

we gave up and restricted ourselves to first order couplings we found that we must introduce

terms that break the very symmetry which we were insisting on! Most likely this is not

a mistake however because it is precisely these uncomfortable terms which are necessary

to beautifully re-derive the Kubo relations. Contrary to the other simple models that we

have been considering (like the dissipative degrees of freedom in black holes and our U(1)

Goldstone) maybe there is something about the symmetry breaking pattern of the fluid that

forces higher order dissipative effects to explicitly break the very symmetries dictating the

lowest order dynamics. We do not know yet, but the author feels that this is the most

outstanding problem in this EFT description of fluid dynamics. We have made progress in

understanding dissipation, but that progress has led us to the position that something even

more interesting than we expected must be going on. The resolution of this important puzzle

is of great importance and justifies much more effort.

We are enamored by fluids. Their rich complicated structure seemingly holds endless

mysteries and beauty. But more importantly, fluids are real. The issues that we raise cannot

be explained away by concluding that the random theory we cooked up is just mathematically

bad. This is not an option for us. Fluids are there and at lowest order they are described by

these degrees of freedom and these symmetries. Period. We have to face these issues directly,

and we hope that the work described in this thesis represents a brave attempt. There is still

so much more to do and we are filled with excitement for the future.



Bibliography

[1] S. Endlich, A. Nicolis, R. Rattazzi and J. Wang, “The Quantum mechanics of perfect

fluids,” JHEP 1104, 102 (2011) [arXiv:hep-th/1011.6396].

[2] S. Endlich and A. Nicolis, “The incompressible fluid revisited: vortex-sound interac-

tions ,” [arXiv:hep-th/1303.3289].

[3] S. Endlich “Higher order computations in vortex-sound interactions, ” in preparation.

[4] S. Endlich, A. Nicolis, and J. Wang, “Solid Inflation,” [arXiv:hep-th/1210.0569].

[5] S. Endlich, A. Nicolis, R. A. Porto and J. Wang, “Dissipation in the effective field

theory for hydrodynamics: First order effects,” [arXiv:hep-th/1211.6461].

[6] S. Endlich, K. Hinterbichler, L. Hui, A. Nicolis, and J. Wang, “Derrick’s theorem

beyond a potential,” JHEP 05, 73 (2011) [arXiv:hep-th/1002.4873].

[7] S. Endlich and J. Wang, “Classical Stability of the Galileon ,” JHEP 1111 065 (2011)

[arXiv:hep-th/1106.1659].

[8] D. Soper “Classical Field Theory,” Wiley (1976) 259p.

[9] G. Herglotz, Ann. Phys. 36, 493 (1911).

[10] S. Dubovsky, T. Gregoire, A. Nicolis and R. Rattazzi, “Null energy condition and

superluminal propagation,” JHEP 0603, 025 (2006) [arXiv:hep-th/0512260].

196



197

[11] W. Israel and J. M. Stewart, “Transient relativistic thermodynamics and kinetic theory,

Annals Phys. 118, 341 (1979).

[12] S. Dubovsky, L. Hui, A. Nicolis and D. T. Son, “Effective field theory for hydrodynam-

ics: thermodynamics, and the derivative expansion,” Phys. Rev. D 85, 085029 (2012)

[arXiv:hep-th/1107.0731].

[13] S. Sibiryakov, unpublished.

[14] A. Nicolis, “Low-energy effective field theory for finite-temperature relativistic super-

fluids,” [arXiv:hep-th/1108.2513].

[15] E. M. Lifshitz and L. P. Pitaevskii, “Statistical physics. Part 2: Theory of the con-

densed state,” Oxford, UK: Butterworth-Heinemann (1980) 387p.

[16] D. Nickel and D. T. Son, “Deconstructing holographic liquids,” [arXiv:hep-

th/1009.3094].

[17] M. Edalati, J. I. Jottar and R. G. Leigh, “Transport coefficients at zero temperature

from extremal black holes,” JHEP 1001, 018 (2010) [arXiv:hep-th/0910.0645].

[18] N. Arkani-Hamed, H. C. Cheng, M. A. Luty and S. Mukohyama, “Ghost condensation

and a consistent infrared modification of gravity,” JHEP 0405, 074 (2004) [arXiv:hep-

th/0312099].

[19] M. E. Peskin and D. V. Schroeder, “An introduction to quantum field theory,” Reading,

USA: Addison-Wesley (1995) 842 p.

[20] S. R. Coleman, “There are no Goldstone bosons in two-dimensions,” Commun. Math.

Phys. 31, 259 (1973).

[21] E. Witten, “Chiral symmetry, the 1/N expansion, and the SU(N) Thirring model,”

Nucl. Phys. B 145, 110 (1978).



198

[22] S. Dubovsky and S. Sibiryakov, “Superluminal travel made possible (in two dimen-

sions),” JHEP 0812, 092 (2008) [arXiv:hep-th/0806.1534].

[23] P. Kovtun, D. T. Son and A. O. Starinets, “Viscosity in strongly interacting quantum

field theories from black hole physics,” Phys. Rev. Lett. 94, 111601 (2005) [arXiv:hep-

th/0405231].

[24] L. D. Landau and E. M. Lifshitz, “Fluid Mechanics,” Pergamon Press (1987) 539p.

[25] M. J. Lighthill, “On sound generated aerodynamically I. General theory,” Proc. Roy.

Soc. London A211, 564-587 (1952).

[26] M. J. Lighthill, “On sound generated aerodynamically II. Turbulence as a source of

sound,” Proc. Roy. Soc. London A222, 1-32 (1954).

[27] Y. Auregan, A. Maurel, V. Pagneux, and J. -F. Pinton (Eds), “Sound-Flow Interac-

tions,” Springer-Verlag Berlin Heidelberg (2002) 286p.

[28] M. S. Howe, “Theory of Vortex Sound,” Cambridge Texts in Applied Mathematics

(No. 33) (2002) 232p.

[29] S. Weinberg, “Gravitation and Cosmology,” John Wiley & Sons (1972) 657p.

[30] W. D. Goldberger and I. Z. Rothstein, “An Effective Field Theory of Gravity for

Extended Objects,” Phys. Rev. D 73: 104029 (2006) [arXiv:hep-th/0409156v2].

[31] C. F. Barenghi and R. J. Donnelly, “Vortex rings in classical and quantum systems,”

Fluid Dyn. Res. 41 (2009) 051401.

[32] S. Weinberg, “The Quantum theory of fields. Vol. 1: Foundations,” Cambridge, UK:

Univ. Pr. (1995) 609 p.



199

[33] W. D. Goldberger and A. Ross, “Gravitational radiative corrections from effective field

theory,” Phys. Rev. D 81:124015 (2010).

[34] F. Lund and C. Rojas, “Ultrasound as a Probe of Turbulence,” Physica D 37: 508-514

(1989).

[35] W. D. Goldberger, “Les Houches Lectures on Effective Field Theories and Gravita-

tional Radiation,” (2006) [arXiv:hep-ph/0701129].

[36] D. Kleckner and W. T. M. Irvine, “Creation and dynamics of knotted vortices,” Nature

Physics (2013) DOI: 10.1038/NPHYS2560.

[37] See video at http://www.youtube.com/watch?v=TMCf7SNUb-Q.

[38] http://travel.aol.co.uk/2012/12/13/dolphins-blowing-bubbles-italy/ .

[39] http://www.linc.ox.ac.uk/Undergraduates-SubjectsMathematics .

[40] K. W. Schwarz, “Three-dimensional vortex dynamics in supefluid He4: lineline and

lineboundary interaction,” Phys. Rev. B 31 5782-5804 (1985).

[41] K. W. Schwarz, “Three-dimensional vortex dynamics in superfluid He4: homogeneous

superfluid turbulence,” Phys. Rev. B 38 2398-2417 (1988).

[42] W. Thomson (Lord Kelvin), Philos Mag. 10, 155 (1880).

[43] M. Ruderman, “Pulsar Spin, Magnetic Fields, and Glitches,” in Neutron Starts and

Pulsars, W. Becker editor, Springer Berlin Heidelberg (2009).

[44] M. Srednicki, “Quantum field theory,” Cambridge, UK: Univ. Pr. (2007) 641 p.

[45] M. E. Peskin and D. V. Schroeder, “An Introduction to quantum field theory,” Reading,

USA: Addison-Wesley (1995) 842 p.

http://www.youtube.com/watch?v=TMCf7SNUb-Q
http://travel.aol.co.uk/2012/12/13/dolphins-blowing-bubbles-italy/
http://www.linc.ox.ac.uk/Undergraduates-SubjectsMathematics


200

[46] P. Creminelli, M. A. Luty, A. Nicolis and L. Senatore, “Starting the Universe: Stable

Violation of the Null Energy Condition and Non-Standard Cosmologies,” JHEP 0612

(2006) 080 [arXiv:hep-th/0606090].

[47] C. Cheung, P. Creminelli, A. L. Fitzpatrick, J. Kaplan and L. Senatore, “The Effective

Field Theory of Inflation,” JHEP 0803 (2008) 014 [arXiv:hep-th/0709.0293].

[48] D. Babich, P. Creminelli and M. Zaldarriaga, “The Shape of non-Gaussianities,” JCAP

0408, 009 (2004) [arXiv:astro-ph/0405356].

[49] A. Gruzinov, “Elastic Inflation,” Phys. Rev. D 70 (2004) 063518 [arXiv:astro-

ph/0404548].

[50] M. Bucher and D. N. Spergel, “Is the dark matter a solid?,” Phys. Rev. D 60, 043505

(1999) [arXiv:astro-ph/9812022].

[51] P. W. Graham, B. Horn, S. Kachru, S. Rajendran and G. Torroba, “A Simple Harmonic

Universe,” [arXiv:hep-th/1109.0282].

[52] H. Leutwyler, “Phonons as goldstone bosons,” Helv. Phys. Acta 70, 275 (1997)

[arXiv:hep-ph/9609466].

[53] R. Rattazzi and A. Zaffaroni, “Comments on the holographic picture of the Randall-

Sundrum model,” JHEP 0104, 021 (2001) [arXiv:hep-th/0012248].

[54] J. Polchinski, “Scale And Conformal Invariance In Quantum Field Theory,” Nucl.

Phys. B 303, 226 (1988).

[55] M. A. Luty, J. Polchinski and R. Rattazzi, “The a-theorem and the Asymptotics of

4D Quantum Field Theory,” [arXiv:hep-th/1204.5221].



201

[56] A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, “Causal-

ity, analyticity and an IR obstruction to UV completion,” JHEP 0610, 014 (2006)

[arXiv:hep-th/0602178].

[57] N. Arkani-Hamed, P. Creminelli, S. Mukohyama and M. Zaldarriaga, “Ghost inflation,”

JCAP 0404, 001 (2004) [arXiv:hep-th/0312100].

[58] S. L. Dubovsky, “Phases of massive gravity,” JHEP 0410, 076 (2004) [arXiv:hep-

th/0409124].

[59] J. Maldacena, “Non-Gaussian features of primordial fluctuations in single field infla-

tionary models,” JHEP 0305 (2003) 013 [arXiv:astro-ph/0210603v5].

[60] P. Creminelli and M. Zaldarriaga, “Single field consistency relation for the 3-point

function,” JCAP 0410, 006 (2004) [arXiv:astro-ph/0407059].

[61] L. -M. Wang and M. Kamionkowski, “The Cosmic microwave background bispectrum

and inflation,” Phys. Rev. D 61, 063504 (2000) [arXiv:astro-ph/9907431].

[62] P. Creminelli, A. Nicolis, L. Senatore, M. Tegmark and M. Zaldarriaga, “Limits on non-

gaussianities from wmap data,” JCAP 0605, 004 (2006) [arXiv:astro-ph/0509029].

[63] L. Senatore, K. M. Smith and M. Zaldarriaga, “Non-Gaussianities in Single Field

Inflation and their Optimal Limits from the WMAP 5-year Data,” JCAP 1001, 028

(2010) [arXiv:astro-ph/0905.3746].

[64] S. Weinberg, “Adiabatic modes in cosmology,” Phys.Rev. D67 (2003) 123504

[arXiv:astro-ph/0302326].

[65] S. Weinberg, “The Cosmological Constant Problem,” Rev. Mod. Phys. 61, 1 (1989).



202

[66] J. M. Bardeen, P. J. Steinhardt and M. S. Turner, “Spontaneous Creation of Almost

Scale - Free Density Perturbations in an Inflationary Universe,” Phys. Rev. D 28, 679

(1983).

[67] D. H. Lyth, K. A. Malik, M. Sasaki “A general proof of the conservation of the curva-

ture perturbation” JCAP 0505:004, 2005 [arXiv:astro-ph/0411220v3].

[68] D. Langlois, F. Vernizzi “Conserved nonlinear quantities in cosmology” Phys. Rev. D

72 (2005) 103501 [arXiv:astro-ph/0509078v3].

[69] A. F. Andreev and I. M. Lifshitz, Sov. Phys. JETP 29 (1969) 1107.

[70] D. T. Son, “Effective Lagrangian and topological interactions in supersolids,” Phys.

Rev. Lett. 94, 175301 (2005) [arXiv:cond-mat/0501658].

[71] D. T. Son and P. Surowka, “Hydrodynamics with Triangle Anomalies,” Phys. Rev.

Lett. 103, 191601 (2009) [arXiv:hep-th/0906.5044].

[72] S. Jeon, “Hydrodynamic Transport Coefficients in Relativistic Scalar Field Theory,”

Phys. Rev. D 52 (1995) 3591 [arXiv:hep-ph/9409250].

[73] D. T. Son and A. O. Starinets, “Viscosity, Black Holes, and Quantum Field Theory,”

Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:hep-th/0704.0240].

[74] P. Danielewicz and M. Gyulassy, “Dissipative Phenomena in Quark Gluon Plasmas,”

Phys. Rev. D 31, 53 (1985).

[75] S. Cremonini, “The Shear Viscosity to Entropy Ratio: a Status Report,” Mod. Phys.

Lett. B 25 (2011) 1867 [arXiv:hep-th/1108.0677].

[76] M. Brigante, H. Liu, R. C. Myers, S. Shenker and S. Yaida, “The Viscosity Bound and

Causality Violation,” Phys. Rev. Lett. 100 (2008) 191601 [arXiv:hep-th/0802.3318].



203

[77] A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, “Causal-

ity, analyticity and an IR obstruction to UV completion,” JHEP 0610, 014 (2006)

[arXiv:hep-th/0602178].

[78] J. Distler, B. Grinstein, R. A. Porto and I. Z. Rothstein, “Falsifying Models of

New Physics via WW Scattering,” Phys. Rev. Lett. 98, 041601 (2007) [arXiv:hep-

ph/0604255].

[79] W. D. Goldberger and I. Z. Rothstein, “Dissipative effects in the worldline approach

to black hole dynamics,” Phys. Rev. D 73, 104030 (2006) [arXiv:hep-th/0511133].

[80] R. A. Porto, “Absorption effects due to spin in the worldline approach to black hole

dynamics,” Phys. Rev. D 77, 064026 (2008) [arXiv:hep-th/0710.5150].

[81] D. Lopez Nacir, R. A. Porto, L. Senatore and M. Zaldarriaga, “Dissipative effects in the

Effective Field Theory of Inflation,” JHEP 1201, 075 (2012) [arXiv:hep-th/1109.4192].

[82] D. Lopez Nacir, R. A. Porto and M. Zaldarriaga, “The consistency condition for

the three-point function in dissipative single-clock inflation,” JCAP 1209, 004 (2012)

[arXiv:hep-th/1206.7083].

[83] C. R. Galley, “The classical mechanics of non-conservative systems,” [arXiv:ar-

qc/1210.2745].

[84] P. Meade, N. Seiberg and D. Shih, “General Gauge Mediation,” Prog. Theor. Phys.

Suppl. 177, 143 (2009) [arXiv:hep-ph/0801.3278].

[85] H. Goldstein, C. Poole and J. Safko, “Classical mechanics,” San Francisco: Addison

Wesley (2002) 638 p.

[86] R. D. Jordan, “Effective Field Equations for Expectation Values,” Phys. Rev. D 33,

444 (1986).



204

[87] J. Maciejko, “An Introduction to Nonequilibrium Many-Body Theory,” available for

download at:

http://www.physics.arizona.edu/∼stafford/Courses/560A/nonequilibrium.pdf.

[88] E. Calzetta and B. L. Hu, “Nonequilibrium Quantum Fields: Closed Time Path Effective

Action, Wigner Function and Boltzmann Equation,” Phys. Rev. D 37, 2878 (1988).

[89] S. A. Hartnoll, “Lectures on holographic methods for condensed matter physics,” Class.

Quant. Grav. 26, 224002 (2009) [arXiv:hep-th/0903.3246].

[90] S. Weinberg, “Nonlinear realizations of chiral symmetry,” Phys. Rev. 166, 1568 (1968).

[91] S. R. Coleman, J. Wess and B. Zumino, “Structure of phenomenological Lagrangians. 1.,”

Phys. Rev. 177, 2239 (1969).

[92] C. G. Callan, Jr., S. R. Coleman, J. Wess and B. Zumino, “Structure of phenomenological

Lagrangians. 2.,” Phys. Rev. 177, 2247 (1969).

[93] D. V. Volkov, “Phenomenological Lagrangians,” Fiz. Elem. Chast. Atom. Yadra 4, 3 (1973).

[94] C. Armendariz-Picon, A. Diez-Tejedor and R. Penco, “Effective Theory Approach to

the Spontaneous Breakdown of Lorentz Invariance,” JHEP 1010, 079 (2010) [arXiv:hep-

ph/1004.5596].

[95] G. Goon, K. Hinterbichler, A. Joyce and M. Trodden, “Galileons as Wess-Zumino Terms,”

[arXiv:hep-th/1203.319].

[96] D. T. Son and A. O. Starinets, “Hydrodynamics of r-charged black holes,” JHEP 0603, 052

(2006) [arXiv:hep-th/0601157].

[97] S. Weinberg, “Entropy generation and the survival of protogalaxies in an expanding uni-

verse,” Astrophys. J. 168, 175 (1971).



Chapter 6

Appendix

6.1 Perturbations in a fluid with conserved charge

In the following, we will consider small perturbations about a homogeneous equilibrium

configuration, which, generalizing (1.2) to arbitrary pressure and to the case with charge, is

described in our language by the field configuration

φI0(x) = b
1/3
0 xI , ψ0(x) = y0 t , (6.1)

where b0 and y0 are the fluid’s equilibrium entropy density and chemical potential. Such

a configuration spontaneously breaks many of our symmetries: Lorentz boosts, completely;

Spatial translations and internal φI-shifts (eq. (1.3)), down to the diagonal combination; Spa-

tial and internal φI-rotations (eq. (1.4)), down to the diagonal combination; Internal volume-

preserving diffs (eq. (1.5)), completely; Time-translations and internal ψ-shifts (eq. (1.30)),

down to the diagonal combination; φI-dependent ψ-diffs (eq. (1.31)), completely. Associated

with this spontaneous symmetry breaking pattern there are Goldstone excitations, which

are simply fluctuations of our fields about the equilibrium configuration,

φI(x) = b
1/3
0

(
xI + πI

)
, ψ(x) = y0

(
t+ π0

)
. (6.2)
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Not all the π’s feature propagating wave solutions. Indeed, after expanding the La-

grangian (1.33) to quadratic order in fluctuations and diagonalizing it, we get [14]

L ' 1
2
w0

(
~̇π2
L − c2

s(~∇ · ~πL)2
)

+ 1
2
w0 ~̇π

2
T + 1

2
Fyyy

2
0 ( ˙̃π0)2 , (6.3)

where ~πL and ~πT are the longitudinal (curl-free) and transverse (divergence-free) components

of πI , and π̃0 is a suitable linear combinations of π0 and ~πL,

˙̃π0 = π̇0 +
Fbyb0−Fy
Fyyy0

~∇ · ~πL . (6.4)

Moreover, w0 ≡ (Fyy0 − Fbb0) is the equilibrium enthalpy density (ρ+ p)0, c2
s is a somewhat

complicated expression involving various derivatives of F—which corresponds precisely to

the standard
(
dp/dρ

)
S,N

—and all derivatives of F are computed at the equilibrium values

y0 and b0.

We thus see from (6.3) that only one of our Goldstones—the longitudinal part of πI—has

a standard quadratic Lagrangian for a gapless field, and wave solutions propagating at some

finite speed cs, with ω = csk. This Goldstone field corresponds to ordinary sound waves.

The other Goldstones—~πT and π̃0—do not have a gradient energy. As a result, at the order

we are working, they have degenerate dispersion laws, ω = 0.

6.2 Expanding the Lagrangian about a homogeneous

and isotropic background: φI = xI

We begin with the field theoretical description for a relativistic perfect fluid [8,10]. Its action

is given in eq. (1.7), which we reproduce here for completeness:

S =

∫
d4xF (b) , with b ≡

√
detBIJ , (6.5)

where BIJ = ∂µφ
I∂µφJ and where F is a generic function. A particular functional form of F

corresponds to a particular equation of state. However, in order carry out the expansion of
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the Lagrangian in fluctuations about a homogeneous and isotropic background (or for that

matter, as we will see in Appendix 6.5, a background incompressible flow), there is a slightly

more convenient starting point than eq. (6.5). Manipulating b we can pull out the Jacobian

determinant for the equal-time ~x↔ ~φ mapping:

b2 = det ∂µφ
I∂µφJ

= det
(
∂φT · ∂φ− ~̇φ⊗ ~̇φ

)
= det

(
∂φT ·

(
1− ((∂φT )−1 · ~̇φ)⊗ ((∂φT )−1 · ~̇φ)

)
· ∂φ

)
= (det ∂φ)2 det

(
1− ~v ⊗ ~v

)
, (6.6)

where we defined the matrix (∂φ)ij ≡ ∂iφj, and the vector

~v ≡ −(∂φT )−1 · ~̇φ . (6.7)

Notice that, by the implicit function theorem, ~v is precisely the usual fluid velocity field—

hence the name:

~v =
∂~x(~φ, t)

∂t

∣∣∣
φ
. (6.8)

The second determinant in (6.6) is easy to compute by going to a basis where, locally,

the x axis is aligned with ~v. We get

b2 = (det ∂φ)2
(
1− |~v|2) (6.9)

and therefore we can rewrite the Lagrangian in the form:

L = −w0f
(

det ∂φ
√

1− |~v|2
)
. (6.10)

Notice that we are essentially reproducing eq. (88) of [10]. We now have to expand f in

powers of its argument, and its argument in powers of π. The benefit of doing the expansion

this way is that one now only has to expand in π functions of ∂φ = 1 + ∂π, rather than of
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∂µφ∂
µφ = 1 + ∂π + ∂πT + ∂πT∂π + π̇π̇. This simplifies the algebra considerably. We just

need

(∂φ)−1 ' 1− ∂π + ∂π2 (6.11)

det ∂φ = 1 + [∂π] + 1
2

(
[∂π]2 − [∂π2]

)
+ 1

6

(
[∂π]3 − 3[∂π][∂π2] + 2[∂π3]

)
(6.12)

(the determinant of an n×n matrix stops at n-th order.) A straightforward Taylor-expansion

of (6.10) up to fourth order then yields eq. (2.5).

It is worth pointing out two sources of non-trivial cancellations, with important physical

consequences. The first forces all Lagrangian terms that do not involve time-derivatives to

be weighed by c2
s = f ′′(1) or by higher derivatives of f , as manifest in eq. (2.5). That is, no

such term is coming from the expansion of (6.41) at first order in f ’s argument, i.e. with a

coefficient f ′(1) = 1. The reason is simple: neglecting time-derivatives, the term proportional

to f ′(1) would be

L ⊃ −w0f
′(1)
(

det ∂φ− 1
)
, (6.13)

which is a total derivative:

det ∂φ = ε ε ∂φ ∂φ ∂φ = ∂
(
ε ε φ ∂φ ∂φ

)
(6.14)

Since one expects higher derivatives of f to be naturally of order c2
s, for a non-relativistic fluid

this cancellation has the effect of weakening the interactions considerably, or equivalently

of raising the strong-coupling scale compared to what one may have naively guessed before

carrying out the expansion.

The second cancellation involves the transverse phonons only, and has also the effect

of weakening some interactions and correspodingly raising the vortex strong-coupling scale.

Consider an interaction term with spatial derivatives only, and assume that at least one

of the phonons entering the corresponding vertex is transverse. As not manifest from the

Lagrangian (2.5), such a vertex yields zero. The reason is that we can perform a non-

linear field redefinition that makes vortices disappear from all Lagrangian terms without
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time-derivatives. The trick is to define ~π so that

det ∂φ = 1 + ~∇ · ~π (6.15)

exactly. That this is possible follows from eq. (6.14)—we may as well call the total derivative

on the r.h.s. 1 + ~∇ · ~π. This matches our original definition of ~π at linear order, and as a

consequence it does not affect the S-matrix. But now it is clear that vortex interactions will

only come from the |~v|2 part of (6.10), and will thus involve at least two time-derivatives. The

downside is that in these variables the structure of the Lagrangian will be more complicated

than eq. (2.5); in particular we will not have exactly one derivative acting on each field. For

this reason we stick to the original definition of the phonon field and to eq. (2.5), but we

should expect non-trivial cancellations when computing S-matrix elements involving vortices,

as we indeed find in sect. 2.3.

6.3 The S-matrix, cross-sections, and decay rates

Here we briefly review the standard relativistic formulae for the S-matrix and related phys-

ical quantities like cross sections and decay rates, and derive the modifications needed for

applying them to our c 6= 1 case. The rules we will derive are straightforwardly generalizable

to the case of different fields with different propagation speeds.

We will borrow the conventions of Peskin-Shroeder [19]. In particular, we use the so-called

relativistic normalization for one-particle states:

〈~p |~q 〉 = (2E) (2π)3δ3(~p− ~q) , (6.16)

(we are suppressing spin labels—their inclusion is straightforward) and of course the vacuum

state |0〉 is normalized to one. This way, a relativistic canonically normalized scalar field

φ(x) obeys

〈0|φ(x)|~p 〉 = e−i(Et−~p·~x) , (6.17)
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and consequently the momentum-space Feynman rules assign a wavefunction one to external

spin-0 states. One thus has that for a 2→ nf scattering process the infinitesimal cross section

is

dσ =
1

2EA

1

2EB

1

|vA − vB|
∣∣MAB→f

∣∣2 dΠnf . (6.18)

HereMi→f is the amplitude computed according to the standard relativistic Feynman rules,

and defined by

〈~q1 . . . ~qnf |(S − 1)|~p1 . . . ~pni〉 = (2π)4 δ3(momentum) δ(energy) · iMi→f , (6.19)

and the dΠnf is the relativistic final-state phase-space:

dΠnf = (2π)4 δ3(momentum) δ(energy) ·
(∏

f

d3qf
(2π)3

1

2Ef

)
(6.20)

Finally, |vA− vB| is the relative velocity between the two colliding beams as measured in the

lab frame. Likewise for a 1→ nf decay process, the infinitesimal rate is

dΓ =
1

2EA

∣∣MA→f
∣∣2 dΠnf . (6.21)

First, let us check the dimensions of these quantities, by keeping ~ dimensionless but the

speed of light dimensionful. That is, let’s give energy = 1/time and momentum = 1/length

different units. From their definitions, eqs. (6.19, 6.20), for the amplitude and phase-space

element we get

[
M
]

= Ek3
(
E/k3

)ni+nf
2 ,

[
dΠ
]

= (Ek3)−1
(
E/k3

)−nf . (6.22)

The cross-section and decay rate thus have dimensions

[
dσ
]

= k−2 = area ,
[
dΓ
]

= E = 1/time , (6.23)

as they should. This means that the above fomulae are already dimensionally correct with

no need of explicit powers of the speed of light.
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Next, we notice that nowhere is Lorentz invariance assumed in deriving the Feynman

rules and the above expressions for σ and Γ. This is evident e.g. in the derivation of ref. [19],

apart from the relative velocity factor in the cross section. However that too is independent

of Lorentz invariance, for it arises from the integral of an energy delta-function over the

longitudinal (w.r.t. to the collision direction) momenta of the incoming wave-packets:∫
dkzA dk

z
B δ(k

z
A + kzB − P z

f ) δ(EA + EB − Ef ) =

∫
dkzA δ(EA + EB − Ef )

∣∣
kzB=P zf−k

z
A

(6.24)

=
∣∣∣∂EA
dkzA

− ∂EB
∂kzB

∣∣∣−1

. (6.25)

For each wave-packet, the derivative of the energy w.r.t. the corresponding momentum is the

wave-packet’s group-velocity, independently of the actual form of the dispersion law E(k).

The above thus yields the factor 1/|vA − vB| in the cross section, regardless of Lorentz-

invariance.

The bottom line is, much ado about nothing. We can use the standard relativistic

Feynman rules and formulae for infinitesimal cross-sections and rates for our non-relativistic

case as well, with no modifications, even when different fields have different speeds. The

only subtlety we should keep in mind is that canonically normalized fields obey eq. (6.17),

times possible polarization factors for non-scalar particles. This means that a scalar field φ

thus normalized should appear in the action as

S =

∫
d3xdt 1

2
φ̇2 + . . . , (6.26)

so that single-particle states are eigenstates of the free Hamiltonian with the right energy:

w0|~p 〉 =
(∫

d3x 1
2
φ̇2 + . . .

)
|~p 〉 = E(~p )|~p 〉 . (6.27)

As a check that these conclusions make sense, we estimate the cross section for sound

wave-sound wave elastic scattering and show that, indeed, we have strong-coupling at the

correct energy. From Feynman rules applied to the Lagrangian (2.5) we have

M∼ c2
s

k4

w0

(6.28)
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where the factor of w0 comes from the non-canonical normalization of πI . The final state

phase space (6.20) is of order

Πf ∼
1

k3

1

E

(
k3/E

)2
, (6.29)

and the relative velocity is of course 2cs, so that the cross-section (6.18) is

σ ∼ 1

k2

(
k4

w0cs

)2

. (6.30)

This agrees with our estimates of sect. 2.2.2—see the last paragraph of sect. 2.3.1.

6.4 Phase space

We are mostly interested in a two-particle final state, possibly with two independent propa-

gation speeds. The infinitesimal phase space is

dΠ2 = (2π)4 δ3(~P − ~q1 − ~q2) δ(E − E1 − E2) · d
3q1

(2π)3

d3q2

(2π)3

1

2E1

1

2E2

, (6.31)

where E and ~P are the total energy and momentum. The integral in ~q2 eliminates the

momentum-conservation delta-function. Then we are left with

dΠ2 =
dΩ

(2π)2
q2

1dq1
1

2E1 2E2

δ(E − E1 − E2) , (6.32)

with the understanding that E2 be evaluated at ~q2 = ~P − ~q1. We have

δ(E − E1 − E2) =
δ(q1 − q̄1)∣∣∂E1

∂q1
+ ∂E2

∂q2

∂q2
∂q1

∣∣ (6.33)

and

∂q2

∂q1

≡
∂
∣∣~P − ~q1|
∂q1

=
q1 − P cos θ

q2

, (6.34)

where θ is the angle between ~q1 and ~P . On the other hand, the derivatives of the energies

w.r.t. the corresponding momenta are the particles’ group velocities. Integrating over q1 we

thus get

dΠ2 =
dΩ

16π2

q2
1q2

E1E2

1∣∣c1q2 + c2q1 − c2P cos θ
∣∣ (6.35)
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For a linear dispersion law like in our case, Ea = caqa, we finally have

dΠ2 =
dΩ

16π2

1

c1c2

q1∣∣c1q2 + c2q1 − c2P cos θ
∣∣ . (6.36)

In special circumstances there are further simplifications:

i) For scattering processes at zero total momentum, we can set P = 0 and q1 = q2. We

get

dΠ2 =
dΩ

16π2
· 1

c1c2(c1 + c2)
(~P = 0) . (6.37)

ii) For decay processes at finite total ~P , but when one of the final particles is much slower

that the other, barring an hierarchy between q1 and q2 we have

dΠ2 '
dΩ

16π2

1

c2
1c2

q1

q2

(c2 � c1) . (6.38)

Of course the ratio q1/q2 depends non-trivially on the angle θ we are supposed to

integrate over—which we can take to be the angle between ~q1 and ~P . We have:

q1

q2

' 1

2 sin θ/2
(c2 � c1, ~P 6= 0) . (6.39)

Overall we thus get

dΠ2 '
dΩ

32π2

1

c2
1c2

1

sin θ/2
(c2 � c1, ~P 6= 0) . (6.40)

Notice that this is regular at θ = 0, thus making our ‘barring an hierarchy . . . ’ ap-

proximation under control. That is, eq. (6.40) is the correct phase-space element at

lowest order in c2/c1.

6.5 Systematic expansion of the Lagrangian about in-

compressible flow

Here we make more explicit the steps taken to arrive at the foundation of all of the work in

Chapter 3.
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Following Appendix 6.2, but including explicitly powers of c in order to better keep track

of relativistic effects we begin with

L = −w0c
2f
(

det ∂φ
√

1− |~v|2/c2
)
, (6.41)

where f and w0 are defined in eqs. (3.6), (3.7). As ~φ(x, t) is one-to-one with ~x for all t, we

can change coordinates to those of the comoving volume elements and we have arrived at

equation (3.3):

S = −w0c
2

∫
d3φdt det J f

(
(det J−1)

√
1− v2/c2

)
. (6.42)

J ij is the Jacobian matrix ∂xi/∂φj, and ~v = ∂t~x(φ, t).

We now expand this action in powers of v/cs—which is small by assumption—and of the

compressional field ~ψ, which, as explained in sect. 3.1, describes the small deviations from a

purely volume-preserving time evolution:

~x(φ, t) = ~x0(φ, t) + ~ψ(φ, t) , det (J0) ≡ det

(
∂xi0
∂φj

)
= 1 , ~ψ = ~∇0Ψ . (6.43)

For ~v and det J the expansion in ~ψ truncates at finite order (the determinant of a 3 × 3

matrix is a cubic function of that matrix):

~v = ~v0 + ∂t ~ψ
∣∣
φ
, ~v0 ≡ ∂t~x0

∣∣
φ

(6.44)

det J = 1 + [∇0ψ] + 1
2

(
[∇0ψ]2 − [∇0ψ

2]
)

+ 1
6

(
[∇0ψ]3 − 3[∇0ψ][∇0ψ

2] + 2[∇0ψ
3]
)
, (6.45)

where [...] means the trace, ∇0ψ
n means the n-th power of the matrix ∂ψi/∂xj0, and we have

used the identity

J ij ≡
∂xi

∂φj
=
(
δik +

∂ψi

∂φl
∂φl

∂xk0

)
J0

k
j =

(
δik +

∂ψi

∂xk0

)
J0

k
j . (6.46)

Of course, for the inverse determinant and the square root entering the action (6.42) the
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expansion does not truncate, and goes on to all orders. Up to cubic order in ~ψ we get

S = w0

∫
d3φ dt

{
+ 1

2
v2 + (c2−c2s)v4

8c4
(6.47)

+ 1
2

(
(∂tψ)2 − c2

s[∇0ψ]2
)

+ vi ∂tψ
i − 1

2
c2s
c2
v2 [∇0ψ]

+
1

2c4
(c2 − c2

s)v
2vi ∂tψ

i +
1

8c2
f3 v

4 [∇0ψ]

− c2
s

c2
vi∂tψ

i[∇0ψ] +
1

4c2

(
c2
sv

2([∇0ψ]2 + [∇0ψ
2]) + c2 f3 v

2[∇0ψ]2
)

+
1

6c2

(
−3c2

s[∇0ψ]
(
(∂tψ)2 − c2[∇0ψ

2]
)

+ c4 f3 [∇0ψ]3
)

+ . . .
}
.

We have used f ′(1) = 1, f ′′(1) = c2
s/c

2, f3 ≡ f ′′′(1), and for notational simplicity we

have dropped the subscript zero in v0, and so, from now on, v ≡ v0 is the underlying

incompressional velocity field. Even though f3 is a free parameter, as pointed out in [1] one

typically expects

f3 ∼ c2
s/c

2 . (6.48)

We have dropped total derivative terms, most notably the term −w0c
2 f(1) det J , since det J

itself is a total derivative—schematically:

det J = det ∂φx ∝ εε · ∂φx ∂φx ∂φx = ∂φ ·
(
εε · x ∂φx ∂φx

)
. (6.49)

We have also dropped terms that are total derivatives with respect to ~x0, even though the

integral is in d3φ, for reasons that will become clear in a moment. Notice that for different

powers of ψ, we have stopped the expansion at different orders in v0. The reason is that the

two expansion parameters are not entirely independent, as we will explain below. Notice

also that the first line is just the action for the incompressible fluid flow, in the absence

of compressional perturbations. To be used in this sense, it should be supplemented by a

volume-preserving constraint for ~x0(~φ, t), as explained in the main text. However that is not

our goal, since we are interested in solving for the dynamics of ~ψ in the presence of a given
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background incompressible fluid flow ~v0. We will therefore discard the first line for what

follows.

We are not finished yet. We want to now go into the ~x0 coordinate system. The reason is

that in an experiment it is much more convenient to parameterize a velocity field in terms of

its dependence on the physical ~x coordinates rather than on the comoving ones. Since the ~x

and ~x0 coordinate systems coincide at lowest order in ~ψ, using ~x0 will suffice for lowest order

computations. This is an easy transformation for most things in the action: The Jacobian

J0 has unit determinant, and all the spacial partial derivatives are with respect to ~x0 already

(this is the reason why above we were allowed to neglect total x0-derivatives). The non-

trivial pieces are the partial time derivatives as they are taken at constant φ values. We can

write the time derivatives in a more compatible form:

∂tψ
i(x0(φ, t), t)|~φ = ∂tψ

i(x0, t)|x0 + vj0
∂

∂xj0
ψi(x0, t) . (6.50)

So, changing coordinates from ~φ to ~x0 and inserting the expanded time derivatives in the

action above we arrive at an action which can be organized in the following way:

S = Sψ2 + Sψ3 + · · ·+ Sψ vn + Sψ2 vn + . . . , (6.51)

where the n’s above mean ‘positive powers of v’ (1, 2, 3, etc.). Dropping for notational

convenience all the subscript 0’s, and denoting partial time-derivatives by overdots, we have
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explicitly:

Sψ2 = w0

∫
d3xdt

1

2

(
~̇ψ 2 − c2

s[∂ψ]2
)

(6.52)

Sψ3 = w0

∫
d3xdt

{c2
s

2
[∂ψ][(∂ψ)2] +

c2f3

6
[∂ψ]3 − c2

s

2c2
~̇ψ 2[∂ψ]

}
(6.53)

...

Sψ vn = w0

∫
d3xdt

{
~v · ~̇ψ + vi(v · ∇)ψi − c2

s

2c2
v2[∂ψ]

+
(c2 − c2

s)

2c4

(
v2~v · ~̇ψ + v2vi(v · ∇)ψi

)
+

f3

8c2
v4[∂ψ] + · · ·

}
(6.54)

Sψ2 vn = w0

∫
d3xdt

{
ψ̇i(v · ∇)ψi − c2

s

c2

(
~v · ~̇ψ

)
[∂ψ] +

1

2

(
(v · ∇)ψi

)2

− c2
s

c2
vi(v · ∇)ψi[∂ψ] +

(
c2
s

4c2
+
f3

4

)
v2[∂ψ]2 +

c2
s

4c2
v2[(∂ψ)2]

1

2c4

(
c2 − c2

s

) (
~v · ~̇ψ

)2
+

1

4c4

(
c2 − c2

s

)
v2 ~̇ψ 2 + · · ·

}
(6.55)

...

While all of the above looks like a total mess (and of course there is an infinite tower of

terms), it is both easy to generate and easy to interpret perturbatively. In particular:

• Sψ2 describes the free propagation of compressional modes (sound waves); cs is indeed

their propagation speed. The associated (Feynman) propagator is

〈T (ψiψj)〉 =
p̂ip̂j

w0

i

ω2 − c2
s~p

2 + iε
. (6.56)

• Sψ3 describes the sound waves’ trilinear self-interactions; in a Feynman diagram these

will correspond to a vertex with three lines attached.

• Sψ vn corresponds to ‘tadpole’ diagrams for ψ—diagrams with a single ψ line attached

to the external source ~v0: In the presence of a non-trivial background incompressional

velocity field, ψ = 0 is not a consistent solution. Terms in the action that are linear

in ψ describe, at lowest order in ψ, how a non-trivial ψ field is generated by such a

background velocity field.
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• Sψ2 vn corresponds to interaction vertices where two ψ lines attach to the external

source ~v0, describing for instance the scattering of sound waves by vorticose motion,

as in sect. 3.3.

• And so on.

As discussed throughout the text, note that the terms with the additional c2
s/c

2 factors scale

like many of the others in terms of powers of v/cs, derivatives, and so forth. These terms

are the relativistic corrections, and will be necessary to correctly describe ultra-relativistic

fluids.

By comparing Sψ2 and Sψ vn we see that, for small v/cs, the ψ field generated by the

background fluid flow scales like ψ ∼ v2 (we are implicitly assuming that v̇ scales like v2,

keeping the typical length scales fixed.) According to this power-counting scheme, the terms

explicitly displayed in (6.52)–(6.55) are all the terms in the action up to order v6. Things

become more complicated when not all of the ψ’s appearing in a diagram are “generated”

by the background v0, like for instance in a scattering process. Also, in general there are

important power-counting differences between highly off-shell internal lines with ω � csp,

and on-shell external lines with ω = csp. These subtleties for power counting in classical

perturbation theory are addressed systematically for general relativity in ref. [30]. It would

be interesting to derive analogous power counting rules for our case. An attempt at this will

appear soon in a paper by the author of this thesis [3].

6.6 Scattering cross section and emission rate from the

amplitude, in the presence of sources

For the benefit of the reader we derive the scattering cross section formula for one-to-one

scattering. Following Srednicki’s [44] quick construction—which avoids the use of wave



219

packets—we start with the probability of scattering:

P =

∣∣ 〈f ∣∣i〉 ∣∣2〈
f
∣∣f〉 〈i∣∣i〉 ≡

∣∣M∣∣2〈
f
∣∣f〉 〈i∣∣i〉 . (6.57)

Note that our M here is different then the usual one because we have not yet removed any

delta-functions. Assume that we are performing our experiment in a large box of volume

V and over a time T . The norm of a single particle state is given by (with the so-called

relativistic normalization, which is in fact still convenient for non-relativistic systems, see

Appendix 6.3) 〈
k
∣∣k〉 = 2E (2π)3δ3(0) = 2EV . (6.58)

For our 1→ 1 scattering off external sources of sect. 3.3, let’s take the incoming momen-

tum and energy to be p1 and E1, and the outgoing ones to be p2 and E2. Additionally, we

want to sum over final momentum states We then have

P =
∑
~p2

∣∣M(p1, p2)
∣∣2

2E12E2V 2
, (6.59)

which is in the continuous limit becomes

P → V

(2π)3

∫
d3p2

∣∣M(p1, p2)
∣∣2

2E12E2V 2
. (6.60)

To get the total cross section we need to divide by the incoming flux (which for an

incoming particle moving at speed cs is simply (cs/V )) and divide by the total time T .

Finally, we arrive at the general expression

dσ(1→1) =
1

cs

1

2E1

d3p2

(2π)32E2

∣∣M(p1, p2)
∣∣2

T
(6.61)

M can be computed following the standard relativistic Feynman rules [1], with the caveat

that whenever an external source J(x) appears in a Lagrangian term, its (four-dimensional)

Fourier transform should appear as a factor in M. As a consistency check, notice that

for Lagrangian terms with no external sources, we formally have J(x) = 1, whose Fourier

transform is the usual (2π)4 δ(energy)δ3(momentum).
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Now, if our vorticose source is time-independent, then we have an energy-conserving delta

function in our M, such that

M → M′(2π)δ(E1 − E2) (6.62)

⇒
∣∣M∣∣2 → ∣∣M′∣∣2(2π)δ(E1 − E2)(2π)δ(0) (6.63)

=
∣∣M′∣∣2(2π)δ(E1 − E2)T (6.64)

and thus, in this time-independent limit we have that

dσ(1→1)(time independent source) =
1

cs

1

2E1

d3p2

(2π)32E2

∣∣M′(p1, p2)
∣∣2(2π)δ(E1 − E2) (6.65)

which, as a good check, matches Peskin and Schroeder’s Rutherford scattering problem in

their fourth chapter [45].

Similar considerations apply to the emission process discussed in sect. 3.2, and yield

eq. (3.25).

6.7 Scattering sound waves off sources: Checks

6.7.1 Discrepancy with previous results

The results found in [34] were developed in the context of classical scattering theory with

the same set of assumptions as ours: in particular, low Mach number of the source flow, low

intensity and high frequency relative to the typical source frequency of the incoming sound

waves. Moreover, the computations of ref. [34] are appropriate for non-relativistic fluids only,

so for the purposes of this comparison we will set cs/c→ 0 in our results.

The first step in the comparison is to note that the vorticity field, defined as ~w = ∇×~v,

satisfies

(p̂1 × p̂2) · w̃(∆pµ) = i
[
(p̂1 · ~∆p)(p̂2 · ṽ)− (p̂2 · ~∆p)(p̂1 · ṽ)

]
(6.66)
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where w̃(∆pµ), ṽ(∆pµ) are four-dimensional Fourier transforms, and for brevity we are using

a relativistic notation, ∆pµ ≡ (∆ω,∆~p )). Defining the scattering angle through the usual

p̂1 · p̂2 = cos θ, we can write

(p̂1 × p̂2) · w̃(∆pµ) = i (1− cos θ) p1 [(p̂1 + p̂2) · ṽ] +O
(

∆ω

csp1

)
. (6.67)

Here ∆ω/csp1 is small—see sect. 3.3—and so we will neglect it in the following.

Now, using (6.67) we can re-express (3.45) as

dσ

dΩ d(∆ω)
' 1

4c4
s

· ω2

(2π)3
· 1

T
· cos2 θ

(1− cos θ)2
|(p̂1 × p̂2) · w̃(∆pµ)|2 +O

(
∆ω

csp1

)
(6.68)

Using our notation for the Fourier transform (which is different than that of [34]) we can

express

w̃k(∆p
µ)w̃∗l (∆p

µ) =

∫
d4x d4y e−i∆p

µxµ+i∆pµyµ wl(y
µ)wk(x

µ) (6.69)

=

∫
d3R d∆ ei(∆ω·∆− ~∆p·~R) (6.70)

×
∫
d3x

∫ ∞
−∞

dτ wl(~R + ~x, τ + ∆/2)wk(~x, τ −∆/2)

where we have shifted the integral variables appropriately. Using the notation of [34] we can

write our final scattering cross section as

dσ

dΩ2dν
=

(2π)ν2

4c4
· cos2 θ

(1− cos θ)2
AkAl S̃kl(~q, ν − ν0) (6.71)

where ν = ω2, ν0 = ω1, ~q = ~∆p, dΩ2 = dΩ, Ak = (p̂1 × p̂2)k,

S̃kl(~q, ν − ν0) =
1

(2π)4

∫
d3r d∆ ei(∆E·∆− ~∆p·~R)

∫
d3x

〈
wk(~R + ~x,∆/2)wl(~x,−∆/2)

〉
,

(6.72)

and where

〈f(∆/2)f(−∆/2)〉 ≡ 1

T

∫ T/2

−T/2
dτf(τ + ∆/2)f(τ −∆/2) . (6.73)

When we compare (6.71) to that of equation (19) in [34] we see that there is a factor of 2

discrepancy.



222

6.7.2 Agreement with optical theorem

The optical theorem as expressed in quantum field theory is a consequence of the unitarity

of the S-matrix. In our case, it relates the imaginary part of the one-to-one amplitude in the

forward scattering limit, to the sum over the squares of the one-to-anything amplitudes1:

2 Im M(i→ i) =
∑
f

∫
dΠf |M(i→ f)|2 . (6.74)

It is a statement about full amplitudes, but perturbatively it can be expressed as a relation

between particular graphs. To lowest order (in the coupling) the relationship is simply given

by:

2 Im

  =

∫
d3q

(2π)32ω

∣∣∣∣∣∣
∣∣∣∣∣∣
2

. (6.75)

We can rewrite the right hand side of the above equation as the one-to-one scattering cross-

section using (6.61). Written this way, we have

2 Im M(~p1, ~p1) = 2ω1csT σ(1→1) . (6.76)

Eq. (3.45) provides us with the right hand side of this equation. We need to calculate the

left hand side.

The imaginary part of the amplitude comes from the iε prescription in the internal prop-

agator of sound modes. Using generating functional methods to ensure that all symmetry

factors are correct, we have

〈
0
∣∣Tψi(x1)ψj(x2)

∣∣ 0〉
v

=
1

i

δ

δJ i(x1)
· 1

i

δ

δJ j(x2)
· 1

2!

(
i

∫
d4y Lψ2v

(
1

i

δ

δ ~J(y)

))2

× 1

3!
·
(
i

2

∫
d4xd4x′Jk(x)∆kl(x− x′)J l(x′)

)3

. (6.77)

1We use the conventions given in [44] and [45], which should be noted are different than those given

in [32].
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Upon taking all the functional derivatives it is easy to see that one is left with four terms.

Inserting this correlation function into the LSZ formula the amplitude is

iM(~p1 → ~p2) = i

∫
dωq
2π

d3q

(2π)3

1

−ω2
q + c2

s~q
2 − iε

∫
y1y2

eiy1(p1−q)eiy2(q−p2)

× [ω1 (~v(y1) · ~q) + ωq (~v(y1) · ~p1)] (q̂ · p̂1)

× [ω2 (~v(y2) · ~q) + ωq (~v(y2) · ~p2)] (q̂ · p̂2) , (6.78)

where we have suppressed relativistic corrections for algebraic simplicity; their inclusion is

straightforward.

Taking the forward scattering limit, p2 → p1, and performing the y integrals which yield

Fourier transforms of the velocity fields we arrive at

iM(~p1 → ~p1) = i

∫
dωq
2π

d3q

(2π)3

1

−ω2
q + c2

s~q
2 − iε

ṽi(q − p1)ṽj(p1 − q)V iV j, (6.79)

where V i = (q̂ · p̂1) [ω1q
i + ωqp

i
1]. In this form it is easy to see that the only contribution to

the Im M comes from the iε, we have

Im M(p1, p1) =

∫
dωq
2π

d3q

(2π)3

π

2cs|~q|
[
δ(ωq − cs|~q|) + δ(ωq + cs|~q|)

]
× ṽi(p1 − q)ṽj(q − p1)V iV j , (6.80)

where we have isolated the imaginary part with the standard formula

1

x± iε
= P 1

x
∓ iπδ(x) , (6.81)

where P is the principal value.

Only the first delta-function in (6.80) is going to overlap with the support of ṽi(p1 − q).

This is because ṽi(p1−q) offers a narrow width around zero frequency relative to the incoming

frequency (as the time scale of the velocity flow is much longer than the incoming frequency).

For instance, in the static limit ṽi(p1 − q) ∝ δ(ω1 − ωq)ṽi(~p1 − ~q). For the same reason, as

discussed in Section 3.3, to lowest order in the energy transfer we can take ω1 = ω2 = ω.
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Evaluating this final delta function, relabeling our variables of integration and performing

some trivial algebra we have:

2 Im M(p1, p1) = (2ωcsT )

∫
dΩ d(∆ω)

(2π)3

ω4

4c6
sT

(p̂1 · p̂2)2
∣∣∣ṽi(∆ω, ~∆p) · (p̂i1 + p̂i2

)∣∣∣2 (6.82)

Inserting this into the left-hand side of (6.76) and comparing with our scatting cross section

(3.45) calculated in the bulk of the paper we see that indeed the optical theorem is satisfied.

6.8 Collection of momentum integrals

In performing the calculations of section 3.4 we encountered integrals of the form∫
~k

ki1ki2 ....kim

kn
ei
~k·~x . (6.83)

These integrals will often contribute power law UV divergences. These are trivial diver-

gences that can simply be absorbed into bare couplings in using the standard renormaliza-

tion program and will not yield any physical consequences. Operationally we regulate these

divergences by taking the ki’s out of the numerator by expressing the as derivatives acting

on ~x. That is ∫
~k

ki1ki2 ....kim

kn
ei
~k·~x = (−i)m∂i1∂i2 ...∂im

∫
~k

1

kn
ei
~k·~x . (6.84)

The particular powers of n that we need are 6, 4, 3, 2, 1, and −1. For n > 2 we use an IR

regulator and keep the lowest order terms in that regulator. When the derivatives are taken

all dependence on the regulator vanishes validating its use. They are collected below:
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∫
~k

1

k2(k4 + a4)
ei
~k·~x =

1

4π2

(
π√
2a3
− π |~x|2

6
√

2a
+
π |~x|3

24
+O(a)

)
(6.85)∫

~k

1

k2(k2 + a2)
ei
~k·~x =

1

4π2

(
π

a
− π |~x|

2
+O(a)

)
(6.86)∫

~k

1

k2(k + a)
ei
~k·~x =

1

4π2

(
2− 2γ − 2 log(a)− 2 log(|~x|) +O(a)

)
(6.87)∫

~k

1

k2
ei
~k·~x =

1

4π2

(
π

|~x|

)
(6.88)∫

~k

1

k
ei
~k·~x = −∇2 · 1

4π2

(
− 2 log(|~x|)

)
=

1

4π2

(
2

|~x|2

)
(6.89)∫

~k

k ei
~k·~x = −∇2 · 1

4π2

(
2

|~x|2

)
=

1

4π2

(
−4

|~x|4

)
(6.90)

where γ is the Euler-Mascheroni constant.

6.9 Time dependence of background quantities in solid

inflation

In order to solve the classical equations of motion for scalar and tensor perturbations, we

need know the explicit time dependence of quantities such a(τ), H(τ), ε(τ), . . . ; the goal of

this section is obtaining this time dependence. For the computations we are interested in,

it suffices to derive these temporal functions up to the first order in slow roll. To make the

notation lighter, we will mostly drop the τ argument: a(τ) → a, etc. Primes will denote

derivatives with respect to τ .

Recall the definition of the first slow roll parameter ε, (4.24), and rewrite it as

ε = − H ′

aH2
=

d

dτ

(
1

aH

)
+ 1 . (6.91)

Integrating the above equation once and choosing some suitable additive constant 2, one has

1

aH
= −(1− εc) τ +O(ε2) (6.92)

2The integration constant is chosen by demanding a(τ)� a(τc), for τ/τc → 0.
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where the subscript “c” denotes evaluation at some reference conformal time τc, which we find

most convenient to choose to be the (conformal) time when the longest mode of observational

relevance today exists the horizon, i.e. |cL,ckminτc| ' |cL,cτcHtoday| = 1.

The reason ε(τ) is being treated as a constant in integration is that the higher order

terms in the Taylor series of ε(τ) = ε(τc) + ε′(τc)(τ − τc) + . . . are suppressed by powers of

slow roll, for instance ε′(τc)τc ∼ O(ε2). Of course this also depends on the choice of reference

time; we don’t want the perturbative expansion in slow roll to be contaminated by large

values of τ/τc − 1. Since |τ(t)| is a decreasing function during inflation, and +∞ > −τ > 0,

we ought to choose early times (like τc) as the reference.

Using the definition of the Hubble parameter, we can extract the time dependence of the

scale factor a(τ) from the above equation (6.92):

aH =
a′

a
= −1 + εc

τ
=⇒ a(τ) = ac

(
τ

τc

)−1−εc
+O .(ε2) (6.93)

Furthermore, we obtain

H(τ) =
a′

a2
= −1 + εc

acτc

(
τ

τc

)εc
+O(ε2) . (6.94)

Finally, the time dependence of ε, cL and cT can be revealed by invoking the definitions of

other slow roll parameters. For instance,

ε′

ε
= aHη = −η

τ
+O(ε2) =⇒ ε(τ) = εc

(
τ

τc

)−ηc
+O(ε3) . (6.95)

Similarly we obtain

cL(τ) = cL,c

(
τ

τc

)−sc
+O(ε2), cL(τ) = cT,c

(
τ

τc

)−uc
+O(ε2) . (6.96)

Notice that, because of the all-order relation between c2
T and c2

L of footnote 4, cT,c and uc

are not independent parameters—they can be expressed in terms of cL,c and of the slow-roll

parameters. The equations (6.93)–(6.96) are frequently used in solving the classical equations

of motion.
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6.10 Unitary gauge vs. spatially flat slicing gauge in

solid inflation

In performing calculations throughout this paper two gauge choices are particularly useful:

• Spatially Flat Slicing Gauge (SFSG) is defined by setting to zero the scalar and vector

perturbations in gij, i.e. by imposing

gij = a(t)2 exp γij , (6.97)

where γij denotes the transverse traceless tensor mode, satisfying

γii = 0 , ∂iγij = 0 . (6.98)

Then the fluctuations in our φI scalars are unconstrained:

φI = xI + πI . (6.99)

The three πI(x) fields can be split into a transverse vector and longitudinal scalar as in

(4.16), according to their transformation properties under the residual rotation group.

This gauge choice is of particular convenience for computations of the two- and three-

point functions because in the demixing (with gravity) limit the π Lagrangian will

contain all the scalar (or longitudinal) and vector (or transverse) degrees of freedom.

• Unitary Gauge (UG) is defined by setting to zero the fluctuations in the φI fields and

in the “clock” field:

φI = xI , det(BIJ) = a(t)−6 . (6.100)

Then the spatial metric is unconstrained. And can be parameterized in general as

gij = a(t)2 exp(Aδij + ∂i∂jχ+ ∂iCj + ∂jCi +Dij) , (6.101)

where ∂iCi = 0 and Dij is transverse-traceless.
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From the above form of the metric it seems that in UG there are too many degrees of

freedom; there is an extra scalar in addition to the scalar, transverse vector, and transverse

traceless tensor that we expect. However, when the metric is expressed in terms of the ADM

parameters defined by (4.63), the second condition in (6.100) can be rewritten as

3A+∇2χ = log(1−N iNi/N
2) . (6.102)

As N i and N can be expressed in terms of A, χ, Ci, and Dij by solving the constraint

equations given by (4.66), (4.67) we can see that (6.102) implies that the two scalar functions

A(x) and χ(x) are not independent in UG. Hence the dynamical d.o.f. in question can be

chosen to be A(x) (the scalar mode), Ci(x) (the transverse vector mode), and Dij (the

transverse traceless tensor mode). The number of which matches our physical intuition and

properly agrees with SFSG. UG is particularly useful in following our degrees of freedom

through the reheating surface.

As we find it convenient to calculate correlation functions in SFSG, and yet utilize UG to

most easily describe the surface of sudden reheating, we need to develop the transformation

rules to go from one gauge to the other. Let’s denote by {xµ} the coordinate system in

SFSG and by {x̄µ} that in UG. A gauge transformation relating SFSG to UG is given by

x̄µ = xµ + ξµ(x), where

ξ0(x) = − 1

3H
∂iπ

i(x) +O(π2), ξI(x) = πI(x) +O(π2) (6.103)

and the scalar perturbations are related by

A =
2

3
∂iπ

i +O(π2) . (6.104)

6.11 Vector perturbations in solid inflation

In this section we will derive the spectrum for the vector modes πiT (in SFSG), in the same

manner as for scalar perturbations and tensor perturbations. Let’s begin by writing the
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vector modes as

πiT (~k, t) =
∑
λ=±

εiλ(
~k)πT,λ(~k, t) , (6.105)

where the polarization vectors satisfy the transverse condition kiε
i(~k) = 0 and they form an

orthonormal and complete set εiλ(
~k)εiλ′(

~k)∗ = δλλ′ . As before, writing

πT,λ(~k, t) = πclT (~k, t) dλ(~k) + πclT (~k, t)∗ d†λ(−~k) (6.106)

the creation and annihilation operators obey the usual commutation relation [dλ(~k), dλ′(~k
′)†] =

(2π)3δλλ′δ
3(~k − ~k′) and the classical equations of motions for πclT follow from varying the

quadratic πT action (4.84), which is given by

Ṅ cl
T + 3HN cl

T + 4H2ε c2
Tπ

cl
T = 0 (6.107)

N cl
T =

π̇clT
1 + k2/4a2H2ε

(6.108)

where the second one follows from (4.75) (after N i
T is expressed in terms creation and an-

nihilation operators in the same manner as πiT ). Eliminating πclT , we reach a second order

differential equation for N cl
T ; using conformal time and keeping terms only up to the first

order in slow roll, it reads

d2

dτ 2
N cl
T −

2 + 4εc − ηc − 2uc
τ

d

dτ
N cl
T +

[
3εc − 3ηc − 6uc + 4c2

T,cεc

τ 2
+ k2cT (τ)2

]
N cl
T = 0 (6.109)

where u ≡ ċT/HcT =
3c2L,c
4c2T,c

s + O(ε2). The general solution for the equation above takes the

form

N cl
T = (−τ)β

[
EH(1)

νV

(
(1 + uc)cT,c k|τc|

(
τ

τc

)1−uc
)

+ FH(2)
νV

(
(1 + uc)cT,c k|τc|

(
τ

τc

)1−uc
)]

= (−τ)−β
[
EH(1)

νV
(−cT (τ)kτ(1 + uc)) + FH(2)

νV
(−cT (τ)kτ(1 + uc))

]
(6.110)

where β = −3
2
− 2εc + 1

2
ηc + uc and νV = 3

2
+ 5

2
uc − c2

L,cεc + 1
2
ηc. The constants E and F are

determined via the initial condition, which is specified by

lim
τ→−∞

N cl
T (~k, τ) = lim

τ→−∞

4H2aε

k2

d

dτ
πclT = −i

√
4εcTH

MPla

1

k3/2
e−icT (τ) kτ(1+uc) (6.111)
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where in the second equality we have used the fact that the mode function of the canonically

normalized transverse vector field πcan.
T,cl should match that in the flat space vacuum at early

times, that is

πclT =

[
2a2M2

Plk
2

4
(
1 + k2

4a2H2ε

)]−1/2

πcan.
T,cl

kτ→−∞−→ 1√
2εMPlHa2

e−icT (τ)kτ(1+uc)

√
2cTk

. (6.112)

Therefore, F = 0 and

E = −i
√

2πεc
cT,cH

2
c

kMPl

(
1 +

uc
2
− εc

)
e
iπ
2

(νV +1/2) (−τc)−2εc+ηc/2+uc +O(ε5/2) . (6.113)

Then, by (6.107), we can derive the expression for πclT ; in particular, its asymptotic behavior

at very late time when the mode exits the horizon is given by

lim
kτ→0−

πclT (~k, τ) =

(
τ

τc

) 4
3
c2T,cεc

(−cT,c k τc)c
2
L,cεc−

ηc
2
− 5uc

2

(
−3Hc√

4εcMPlc
5/2
T,ck

5/2
+O(ε1/2)

)
,

(6.114)

the time dependence of which is the same as the tensor (4.98) and scalar (4.111) perturba-

tions. The vector-to-scalar ratio simply

lim
kτ→0−

∣∣πclT (~k, τ)
∣∣2∣∣πclL (~k, τ)
∣∣2 =

(
c2
L,c

c2
T,c

)5/2

+O(ε) . (6.115)

Given the relation (4.36), this is always smaller than (1/3)5/2 ' 6%, which is reached only

in the ultra-relativistic case with c2
L ' 1/3 and c2

T ' 1, or equivalently when |FY + FZ | ∼

O(ε2)|F |.
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6.12 Full trilinear action in SFSG

Expanding the Lagrangian to third order in fluctuations about the FRW background in

SFSG we have after a straightforward but lengthy computation 3

L(3) = a(t)3

{
3M2

PlH
2

(1)

δN3 +2M2
PlH

(1)

∂iN
i

(1)

δN2 +2M2
PlḢa

2
(1)

N j ∂jπ
i(π̇i−

(1)

N i)

−M2
Pl

(1)

δN
(

1
4

(1)

∂iN
j

(1)

∂jN
i +1

4

(1)

∂jN
i

(1)

∂jN
i −1

2
(

(1)

∂iN
i)2
)

−
(1)

δN M2
PlḢ

(
− a2(π̇i−

(1)

N i)2 − c2
T [ΠTΠ] + (1− c2

T )[Π2]− (1 + c2
L − 2c2

T )[Π]2
)

+ [Π]3
(

4
3
FXXXa

−6 − 8
27

(FXZ + FXY )a−2 + 64
243
FZ + 16

81
FY
)

+ [Π][Π2]
(

4
9
(FXZ + FXY )a−2 − 4

9
FZ − 8

27
FY
)

+ [Π][ΠTΠ]
(
2FXXa

−4 + 4
9
(FXZ + FXY )a−2 − 16

27
FZ − 4

9
FY
)

+ 2
27
FZ [Π3] +

(
2
3
FZ + 4

9
FY
)

[ΠTΠΠ]− 4
9
(FY + FZ)a2(π̇i−

(1)

N i)∂iπ
j(π̇j−

(1)

N j)

+ a2[Π](π̇i−
(1)

N i)2
(
−2FXXa

−4 + 4
27

(FY + FZ)
)}

, (6.116)

where Π denotes the 3× 3 matrix ∂iπ
j and [· · · ] indicates the trace; for instance, [ΠTΠΠ] ≡

∂jπ
i∂jπ

k∂kπ
i.

Now, as discussed in Section 4.5 one only needs to solve the constraint equations δS/δN =

0 and δS/δN i = 0 to linear order in perturbations. We therefore don’t need to worry about

terms in N , N i that are quadratic in the fluctuations contributing to the cubic Lagrangian.

The solutions to these equations are given by (4.73), (4.74), and (4.75).

In particular, we are interested in two separate limits for computing the three-point

function. The first is the de-mixing regime where k � aHε1/2. In this limit, to lowest order

in slow roll, we can effectively set δN and NL to zero. Furthermore, note that all terms

that are not of the form Π3 (like the final [Π]π̇2 term) are explicitly suppressed by slow roll

3Since we are after the three-point function for scalar perturbations, we ignore the interaction between

the tensor mode γ and the π fields.



232

parameters. We are left with

L3 = a(t)3M2
PlH

2FY
F

{
7
81

(∂π)3 − 1
9
∂π∂jπ

k∂kπ
j − 4

9
∂π∂jπ

k∂jπ
k + 2

3
∂jπ

i∂jπ
k∂kπ

i
}
, (6.117)

where we neglected boundary terms. We have freely used the Friedmann equations (4.25),

various definitions of slow roll parameters, and the the total derivative

det(∂π) = 1
6
εijkεlmn∂

iπl∂jπm∂kπn = 1
6

(
[∂π]3 − 3[∂π][∂π2] + 2[∂π3]

)
(6.118)

(which is a total derivative because of the ε-tensor structure).

The second limit is in the strong mixing (with gravity) regime. This occurs when k �

aHε1/2. In this limit we can write to lowest order in slow roll

δN =
k

a

d

dτ

(πL
H

)
' kε πL , (6.119)

NL = π̇L , (6.120)

N i
T = π̇iT , (6.121)

where we have estimated the time dependence of π via the explicit classical solution to the

first order equation of motion given by (4.124a). When we insert the above expressions

into the full cubic Lagrangian we see that all the terms involving these auxiliary fields are

going to vanish, as the reccurring combination (π̇i − N i) vanishes to lowest order in slow

roll and δN is explicitly of order ε(∂π). So, surprisingly, we see that to lowest order in slow

roll we recover the same expression (6.117) for the cubic Lagrangian in the strong mixing

limit. This is a convenient fact, as it allows us to effectively use the same expression for the

cubic interactions during the whole inflationary phase in our calculation of the three-point

function in Section 4.7.

6.13 Three point function integral for general triangles

For momenta configurations that are not roughly equilateral, we need to be a little more

careful in computing the integral (4.122), as there are many different regions in the integral,
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each of which will necessitate the use of different expressions of πL(τ, k) given by (4.124a)

and (4.124b).

Assume for the general case that k1 > k2 > k3 and define three separate times τ1, τ2, and

τ3 by

− cLk1τ1 = ε , −cLk2τ2 = ε , −cLk3τ3 = ε , (6.122)

and for the observation time τ require |τ | < |τ1|—that is, all modes are very long at the time

of observation.

Splitting the object in question into regions defined by the times given above we can

write schematically:

I(τ ;−∞) =
3∏
i=1

πL(τ, ki) ·
(∫ τ3

−∞
dτ ′ +

∫ τ2

τ3

dτ ′ +

∫ τ1

τ2

dτ ′ +

∫ τ

τ1

dτ ′
)

×
(
−i

H2
0τ
′4

) 3∏
j=1

π∗L(τ ′, kj) + c.c. (6.123)

We can do each integral separately, and will find that provided that the the triangle does

not become “too squeezed” (which will become precise in a moment) only the first integral

contributes to leading order in slow roll. For each integral there is, of course, going to be an

overall H−2
0

∏3
i=1 |Bki |2(−cLkiτ)c

2
Lε+ε as |τ | < |τ1|.

6.13.1 Integrating from −∞ to τ3:

Ignoring for a moment the overall factor, we need to compute∫ τ3

−∞
dτ ′

(
−i
τ ′4

) 3∏
i=1

(
1− icLkiτ ′ −

1

3
c2
Lk

2
i τ
′2
)
eicLkiτ

′
+ c.c ≡ I3 . (6.124)

In order to ensure convergence of the integral and project onto the right vacuum the integral

is computed over a slightly tilted contour, that is τ ′ → (1− iε)(τ ′ + τ3), with ε > 0, and the
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limits of integration are from −∞ to 0. Performing the integral and expanding in τ3 we have

I3 = −c
3
Lk1k2k3U(k1, k2, k3)

27
+
c5
L

45

(
k5

1 + k5
2 + k5

3

)
· τ 2

3

+
c7
L

3780

(
−3(k7

1 + k7
2 + k7

3) + 7(k5
1k

2
2 + 5 perms)

)
· τ 4

3 +O(τ 6
3 ) , (6.125)

where U(k1, k2, k3) is the scale invariant function given by (4.129). Now, as τ3 = −ε/cLk3 we

can see that provided k1/k3 < (
√
ε)−1 only the zeroth order term in τ3 contributes to leading

order in slow roll. That is, for a not “too squeezed” triangle the first integral in (6.123) is

given by

− c3
Lk1k2k3U(k1, k2, k3)

27H2
0

3∏
i=1

|Bki |2 × (1 +O(ε)) , provided
k1

k3

<
1√
ε
. (6.126)

6.13.2 Integrating from τ3 to τ2:

Again, dropping the overall factor, first note that∫ τ2

τ3

dτ ′
(
−i
τ ′4

)(
(−cLk3τ

′)εc
2
L+ε
) 2∏
i=1

(
1− icLkiτ ′ −

1

3
c2
Lk

2
i τ
′2
)
eicLkiτ

′
+ c.c

<
(

(−cLk3τ3)εc
2
L+ε
)[∫ τ2

τ3

dτ ′
(
−i
τ ′4

) 2∏
i=1

(
1− icLkiτ ′ −

1

3
c2
Lk

2
i τ
′2
)
eicLkiτ

′
+ c.c

]

'
∫ τ2

τ3

dτ ′
(
−i
τ ′4

) 2∏
i=1

(
1− icLkiτ ′ −

1

3
c2
Lk

2
i τ
′2
)
eicLkiτ

′
+ c.c ≡ I2 . (6.127)

This final form of the integral is straightforward to compute and yields

I2 = −c
3
L(k5

1 + k5
2)(k2 − k3)(k2 + k3)

45k2
2k

2
3

· ε2 +O(ε4) (6.128)

which, provided that k1/k3 < (
√
ε)−1 is first order in slow roll. That is, for a not “too

squeezed” triangle the second integral in (6.123) is given by

c3
Lk

3

H2
0

3∏
i=1

|Bki |2 ×O(ε) , provided
k1

k3

<
1√
ε
. (6.129)
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6.13.3 Integrating from τ2 to τ1:

The exact same logic follows for this piece. The meat of the integral,∫ τ1

τ2

dτ ′
(
−i
τ ′4

)(
1− icLk1τ

′ − 1

3
c2
Lk

2
1τ
′2
)
eicLk1τ ′ + c.c ≡ I1 , (6.130)

yields

I1 =
c3
L

45
k3

1

(
1− k2

1

k2
2

)
· ε2 +O(ε4) . (6.131)

Which, provided that k1/k2 < (
√
ε)−1 is first order in slow roll. And so, once again, for a

not “too squeezed” triangle the third integral in (6.123) is given by

c3
Lk

3

H2
0

3∏
i=1

|Bki |2 ×O(ε) , provided
k1

k2

<
1√
ε
. (6.132)

6.13.4 Integrating from τ1 to τ :

As done in the main body of the text, we once can immediately see that this integral is going

to be of the form:

3∏
i=1

|Bki |
2 (−cLkiτ)c

2
Lε+ε

[∫ τ

τ1

dτ ′ (−i)g(τ ′) + c.c.

]
(6.133)

where g(τ) is pure real. And thus, the final integral in (6.123) simply vanishes.

6.13.5 Summary:

And so, for not “too squeezed” triangles, I(τ ;−∞) is completely dominated by the portion

of the integral where all the modes are in the de-mixed regime, that is:

I(τ ;−∞) = −c
3
Lk1k2k3U(k1, k2, k3)

27H2
0

3∏
i=1

|Bki |2 × (1 +O(ε)) , provided
ki
kj
>
√
ε .

(6.134)
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6.14 A factorizable template for non-gaussianities in

solid inflation

Apart from isolated examples—most notably the so-called local form of non-gaussianities—

factorization of a three-point function is typically possible only approximately.

We present here a factorizable form that is a very good approximation to our three-

point function. As for other forms of non-gaussianities, finding an adequate factorizable

approximation is a matter of trial and error. The zeroth order desiderata are: (i) it should

have an overall k−6 scale dependence; (ii) it should be totally symmetric in k1, k2, k3; (iii)

it should have the correct squeezed limit. Notice that our squeezed limit, eq. (4.139), is

factorizable, since

cos θ =
~k1 · ~k2

k1k2

, (6.135)

and the dot product can always be rewritten, using ~k1 + ~k2 + ~k3 = 0, in terms of absolute

values,

2~k1 · ~k2 = k2
3 − k2

1 − k2
2 . (6.136)

So our first (and final) guess, is to take the squeezed limit behavior and rewrite it in a totally

symmetric form:

ffactor(k1, k2, k3) ≡ −20

27

[
k2

1k
2
3 − 3

(
~k1 · ~k3

)2

k5
1k

5
3

+ 2 permutations

]
, (6.137)

where the factor of 2 difference with eq. (4.139) takes into account that for k3 � k1, k2 we

are getting the same contribution from the terms explicitly displayed and from one of the

permutations.

This ansatz obeys all the properties above, and performs surprising well in approximating

our f away from the squeezed limit. Quantitatively, for flattened configurations (k1 =

k2+k3)—where our three-point function has quite non-trivial features—the relative difference

is very small, reaching a maximum of roughly 3% for ‘folded’ triangles (k2 = k3 = k1/2). For
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Figure 6.1: Our factorizable approximation to the three-point function. The flat triangular surface

is the difference with our exact three-point function. As clear from the picture, this is maximized

for equilateral configurations (x2 = x3 = 1), and is always quite small.

equilateral configurations the difference is more substantial, but still quite small in absolute

terms, given that our signal is small there. We plot this factorizable form in fig. 6.1, alongside

its difference with the exact three-point function. The cosine between the two shapes is

cos(f, ffactor) ' 97% . (6.138)

If this level of precision is not enough, one can improve (6.137) by adding to it the right

admixture of the equilateral factorizable form of [62], to make up for the small difference in

the equilateral limit:

ffactor → ffactor(k1, k2, k3) + fequil(k1, k2, k3) · f − ffactor

fequil

∣∣∣∣
k1=k2=k3

. (6.139)

This way the cosine with f rises to roughly 99.5%.
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6.15 Linear couplings of a U(1) Goldstone

Consider a pair of complex scalar fields charged under a U(1) global symmetry. For con-

sistency of notation with our fluid case, let us denote them as φ and χ. Then we have a

Lagrangian of the sort

L = Lφ[φ] + Lχ[χ, φ] , (6.140)

invariant under the U(1) transformation

φ→ eiαφ , χ→ eiqαχ (6.141)

(we are allowing for different charges for φ and χ.) Notice that for the moment we are using

a slightly different notation from the main text: we are including in Lχ both the χ-sector’s

dynamics, and its interactions with the φ sector. For instance, Lχ might contain interactions

of the form

Lχ ⊃ λ
(
φ2qχ∗ 2 + h.c.

)
. (6.142)

As in the case of spatial translations for our fluid, let us imagine now that this U(1)

symmetry is spontaneously broken by the vev of φ: 〈φ〉 = v. Then, as it is standard, we can

parameterize φ as

φ = (v + ρ)eiπ, (6.143)

with π being the Goldstone boson associated with the symmetry breaking, and ρ the (gener-

ically) heavy radial excitation, which can be ignored at very low energies. For the sake of

argument, let us thus set ρ to zero from now on. Note that the symmetry is now realized

non-linearly on π, i.e. π → π + α.

We can expand the action as

L = Lφ[v eiπ] + Lχ[χ, v eiπ] (6.144)

the same way we expanded φI = xI + πI for the fluid. However, in this parameterization

of the fields it is not obvious that π is derivatively coupled, as guaranteed from standard
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soft-pion theorems for the emission of a single soft π quantum. For instance, from (6.142)

we get a coupling

Lχ ⊃ λv2
(
ei 2qπχ∗ 2 + h.c.

)
, (6.145)

which does not involve derivatives of π. This stems from a suboptimal choice of the field

variables, and is easily remedied via a non-linear redefinition of the χ field, which as usual

does not change the S-matrix:

χ = χ′eiqπ . (6.146)

Notice that the new χ′ field is invariant under the U(1) symmetry—the transformation of χ

is now carried solely by the eiqπ factor—and the action becomes:

L = Lφ[v eiπ] + Lχ[χ′eiqπ, v eiπ] (6.147)

Let’s focus on the Lχ part. By the U(1) symmetry—which now only acts on π—this

action must be invariant under constant π shifts, π → π + α. Then, interpreting the π

in Lχ[χ′eiqπ, v eiπ] as a weakly spacetime-dependent U(1) transformation parameter, from

Nöther’s theorem we get

Lχ[χ′eiqπ, v eiπ] = Lχ[χ′, v]− ∂µπ Jµχ + . . . , (6.148)

where Jµχ is the χ-sector’s contribution to the U(1) Nöther current, and we omitted terms

with more π’s or more derivatives. In other words, at linear order in π and at lowest order

in the derivative expansion, the interaction between π and the χ sector has to take the form

Lint ' −∂µπ Jµχ , (6.149)

which is exactly the U(1) analog of our eq. (5.28). Notice that, at this order, it does not

matter whether we evaluate Jµχ at χ or χ′, since their difference is of first order in π. Notice

also that we never really used that χ is scalar. Clearly our proof is completely general and

holds for any set of charged fields χ, of any spin.
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As an alternative, quicker derivation of the same result, we can go back to eq. (6.144) and

use the following trick (a version of Stückelberg’s trick): We promote the global symmetry

to a gauge symmetry by introducing an auxiliary gauge field Aµ which transforms as Aµ →

Aµ − ∂µα(x), and replace standard derivatives by covariant ones. Expanding the action to

linear order in Aµ we have

L[φ, χ,Aµ] = L[φ, χ] + JµAµ +O(A2), (6.150)

where Jµ[φ, χ] is the conserved current (in the absence of Aµ) for the U(1) global charge.4

Since we promoted this symmetry to a gauge transformation we are guaranteed that π

disappears from the action, because it can be absorbed into Aµ by choosing α = −π. This

means that, to linear order in π, we wind up with the coupling

Jµχ∂µπ, (6.151)

where Jµχ is the χ-dependent component of the full current at zeroth order in π.5 Hence

we conclude that, at leading order in the perturbations, the Goldstone boson couples to the

π-independent part of the current associated with the broken symmetry.

The introduction of Aµ is equivalent to working in the so called unitary gauge, where the

Goldstones are set to zero and their interactions are encoded in the gauge field. The previous

analysis suggests that one could perform similar manipulations in the case of our fluid, where

the Goldstone fields πI are associated with the breaking of spatial translations. Now, to go

to the unitary gauge we must introduce the gauge field associated with spatial translations,

namely the metric perturbation hµI , and the broken generators are the T µI components of

the stress energy tensor. Hence, the coupling must read: T µIχ hµI . To introduce the pions we

4Note we included all the gauge-field dependence explicitly (in the O(A2) terms), so that there is no Aµ

in Jµ, which would be necessary to make it a gauge invariant expression.
5The alert reader may have already recognized this is the way longitudinal gauge bosons couple to matter.
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do as before, which in our case entails schematically

hµI = ∂(µαI) → ∂(µπI). (6.152)

This viewpoint might prove useful in extending our results to non-linear order.

6.16 Matching the attenuation rates

In order to match our computed attenuation rates for the sound and heat modes given by

(5.64) and (5.65) with the known values given by (5.66) and (5.67) and fix our free parameters

B and C we must express many thermodynamic quantities such as c2
s, (∂ρ/∂T )n, etc. in

terms of our effective theoretical variables b, y and various derivatives of F . Explicitly they

are as follows:

c2
s =

d(F − Fbb0)

d(Fyy0 − F )

∣∣∣
d(Fy/b)=0

=
(Fy − Fbyb0)2 − b2

0FyyFbb
w0Fyy

, (6.153)

∂ρ

∂T

∣∣∣
n

=
d(−F + Fyy0)

d(−Fb)

∣∣∣
dFy=0

= − FyyFb
(F 2

by − FbbFyy)
, (6.154)

∂p

∂T

∣∣∣
n

=
d(F − Fbb0)

d(−Fb)

∣∣∣
dFy=0

= b0 +
FyFyb

FbbFyy − F 2
by

, (6.155)

∂p

∂n

∣∣∣
T

=
d(F − Fbb0)

d(Fy)

∣∣∣
dFb=0

= − FyFbb
F 2
by − FbbFyy

. (6.156)

(For c2
s, the Fy/b = n/s = const constraint is equivalent to the usual one, S = const,

N = const [14].) Along with the relations (1.38)-(1.41) this is all we need to perform the

matching. We find that for the two computations to coincide

B = −C with |B| = −y0w0

b0Fb
=
µ(ρ+ p)

Ts
(6.157)

as quoted in the text.
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