Abstract

This document outlines the methodological approach and data sources used to construct the “GRID3 Cameroon Settlement Extents, Version 01 dataset.” The dataset consists of settlement extents across Cameroon, as well as accompanying population estimates for each settlement extent. Limitations and use constraints are provided.

Dataset citation

Data use constraints

Users are free to use, copy, distribute, transmit, and adapt the work for commercial and non-commercial purposes, without restriction, as long as clear attribution of the source is provided.

Copyright 2021. The Trustees of Columbia University in the City of New York.

The data and accompanying document is licensed under a Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0) and specified in legal code (http://creativecommons.org/licenses/by/4.0/legalcode).

Contacts and data queries

GRID3 appreciates feedback regarding this dataset, such as suggestions, discovery of errors, difficulties in using the data, and format preferences.

For dataset-related questions, please send an email to any of the following organisations:

GRID3: data.queries@grid3.org
Table of Contents

Introduction

Methodological approach
- Input data
- Methods
- Dataset description
- Dataset codebook
- Version History

Known data limitations and disclaimer

Acknowledgments

References
Introduction

Settlement extents are polygons representing areas where there is likely a human settlement based on the presence of buildings detected in satellite imagery. Settlement extents are not meant to represent the boundaries of an administrative unit or locality. A single settlement extent may be made up of multiple localities, especially in urban areas. Each settlement extent has an associated population estimate. This document details the methodology applied to produce the dataset “GRID3 Cameroon Settlement Extents, Version 01.”

This work has been undertaken as part of the Geo-Referenced Infrastructure and Demographic Data for Development (GRID3) programme. The programme is funded by the Bill & Melinda Gates Foundation and the United Kingdom's Foreign, Commonwealth & Development Office. It is implemented by the Flowminder Foundation, WorldPop at the University of Southampton, the United Nations Population Fund, and the Center for International Earth Science Information Network (CIESIN) at Columbia University.

Methodological approach

Input data

Settlement extents and associated population estimates are derived from two primary input datasets: building footprints and population estimates (Table 1).

Table 1. Input datasets

<table>
<thead>
<tr>
<th>Data</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southhampton. Units: Total population per pixel. Extent: Cameroon</td>
<td>disaggregated gridded population datasets for 51 countries across sub-Saharan Africa in 2020 using building footprints. WorldPop, University of Southampton, UK. doi:10.5258/SOTON/WP00682 (UN-adjusted)</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>https://www.worldpop.org/methods/populations</td>
<td>doi:10.5258/SOTON/WP00683 (UN-adjusted)</td>
<td></td>
</tr>
</tbody>
</table>

Methods

Both the settlements' extents and classification are derived solely from Ecopia’s building footprints. Data analysis and processing were achieved entirely using Esri’s ArcGIS software (Pro version 2.7.3), its native module arcpy, and open source python library pandas 1.3.0.

The center points of building footprint features are converted to a raster grid (3 arc-second resolution) of building densities (i.e. total number of building points within each cell), referred to throughout this document as “building densities.” The ArcGIS Pro “Contour” tool was used to generate shell-up contours from the building density grid to delineate settled versus non-settled areas. The shell-up method includes contours that start at the lower bounds, but includes all grid cells with building densities to the upper bounds of the grid. For example, a shell-up contour of 10 would include all grid cells with a building density of 10 or more. Contours with a building density of one or more are used to create the settlement extent polygons (see Figure 1).
Figure 1: Part 1: Illustration of methods used to generate settlement extents: 1) Building footprints (Ecopia/Maxar) are projected to map and 2) Building footprints are converted to points. 3) Building points are converted to a building density raster layer at 100m resolution. Values represent the total number of building points within each cell. 4) Shell-up contours are generated around building density cells, and building counts within each settlement extent are summed. Contour geometry is smoothed to produce final settlement extent polygons. Part 2: Illustration of methods to generate population estimates for each settlement extent: 5) A population raster (100m, WorldPop) is added to the map and 6) cells are converted to points. Each population point is assigned to the nearest settlement extent and population values are summed to produce population estimates. Steps 5 and 6 are performed once for a WorldPop raster and once for a UN-adjusted WorldPop raster. Bottom panel represents final
settlement extents with associated population count (rounded to nearest integer for clarity).

The GRID3 Cameroon settlement extents are then classified (based on building density) into three classes: built-up areas (BUA), small settlement areas (SSA), and Hamlets (Barau et al., 2014).

Table 2. Settlement extent classification

<table>
<thead>
<tr>
<th>Settlement class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Built-up areas (BUAs)</td>
<td>A built-up area (BUA) is generally an area of urbanisation with moderately-to-densely-spaced buildings and a visible grid of streets and blocks. BUAs are characterised as polygons that maintain a 100 m² building density of 13 or more across an area greater than or equal to 0.4 km².</td>
</tr>
<tr>
<td>Small Settlements (SSAs)</td>
<td>A small settlement (SSA) is a settled area of permanently inhabited structures and compounds of roughly a few hundred to a few thousand inhabitants. The housing pattern in SSAs is an assemblage of family compounds adjoining other similar habitations. Small settlement areas are characterised as polygons containing 50 or more buildings and not a BUA.</td>
</tr>
<tr>
<td>Hamlet</td>
<td>A hamlet is a collection of several compounds or sleeping houses in isolation from small settlements or urban areas. Hamlets are characterised as polygons containing between 1 and 49 buildings.</td>
</tr>
</tbody>
</table>

The population estimates for each settlement extent were calculated using population estimates from WorldPop. Individual, country-constrained population raster cells and their associated population estimate (100m resolution) were converted to individual points and joined to the nearest settlement extent. Finally, the values within a settlement extent were summed to obtain the total population for each settlement extent. Settlement extents from population estimates can be found in the “Population” and “Pop_UN_adj” fields.

Dataset description

The data are in geodatabase format and consist of a single-feature class. An example of data is shown on Figure 3.
Extent: Cameroon: Admin Level 0 Boundaries. The overall extent of the layer is limited to the overall extent of the building footprint dataset and may not reflect the extent of official administrative boundaries.

Coordinate system: GCS WGS 1984

Figure 3: Sample map depicting a settlement extent data layer, with building footprint layer for reference. Note: Building footprint layers are not included in this data product.
Dataset codebook

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJECTID</td>
<td>Default ESRI field: Unique sequential numeric identifier maintained by the database.</td>
</tr>
<tr>
<td>Shape</td>
<td>Default ESRI field: Geometry type</td>
</tr>
<tr>
<td>MGRS_Code</td>
<td>Unique name generated using the Military Grid Reference System</td>
</tr>
<tr>
<td>Country</td>
<td>Country name</td>
</tr>
<tr>
<td>ISO</td>
<td>Three-letter country ISO code</td>
</tr>
<tr>
<td>Type</td>
<td>The settlement type as defined by a built-up area, small-settlement area, or hamlet</td>
</tr>
<tr>
<td>Population</td>
<td>Total population estimate for settlement extent derived from constrained WorldPop raster</td>
</tr>
<tr>
<td>Pop_UN_adj</td>
<td>Total population estimate for settlement extent derived from constrained and UN-adjusted WorldPop raster</td>
</tr>
<tr>
<td>Shape_Length</td>
<td>Default ESRI field: The shape length in geographic coordinates (decimal degrees)</td>
</tr>
<tr>
<td>Shape_Area</td>
<td>Default ESRI field: The shape area in geographic coordinates (decimal degrees)</td>
</tr>
</tbody>
</table>

Version History

This data product contains all information contained in the previous “GRID3 Cameroon Settlement Extents, Version 01 Alpha” product, with updates. Updates in this version include: a single settlement extent feature class (alpha version contains the same data in three separate feature class layers: BUAs, SSAs, and hamlets) and new population estimate fields (Population and Pop_UN_adj) for each settlement extent.

Known data limitations and disclaimer

The “GRID3 Cameroon Settlement Extents, Version 01” has not been visually inspected for false negatives. A settlement may exist for a location where there is no building footprint data and consequently no settlement extent. This may lead to settlements not being identified. Likewise, the GRID3 settlement extents have not been visually inspected for false positives. A settlement polygon may have been falsely
identified as an actual settlement. The type or use of buildings (e.g. residential, non-
residential, mixed use, shed, etc) are not known.

CIESIN, Columbia University, and GRID3 follow procedures designed to ensure that
data disseminated by project are of reasonable quality. If, despite these procedures,
users encounter apparent errors or misstatements in the data, they should contact
GRID3 at data.queries@grid3.org. CIESIN, Columbia University, and their sponsors do
not guarantee the accuracy, reliability, or completeness of any data provided. We
provide these data without warranty of any kind whatsoever, either expressed or
implied, and shall not be liable for incidental, consequential, or special damages arising
out of the use of any data provided.

Acknowledgments

Funding for the development and dissemination of this dataset was provided by the
Bill & Melinda Gates Foundation and the United Kingdom's Foreign, Commonwealth &
Development Office.

References

Barau, I., et al. 2014. "Improving Polio Vaccination Coverage in Nigeria Through the
Use of Geographic Information System Technology, The Journal of Infectious Diseases,
Volume 210, Issue suppl_1, Pages S102–S110, https://doi.org/10.1093/infdis/jiu010

disaggregated gridded population datasets for 51 countries across sub-Saharan Africa
in 2020 using building footprints." WorldPop, University of Southampton, UK.
doi:10.5258/SOTON/WP00682; doi:10.5258/SOTON/WP00683

us/arcgis/products/arcgis-pro/overview

powered by Maxar, website - "DigitizeAfrica.ai".

Proceedings of the 9th Python in Science Conference, 51-56