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ABSTRACT

Matching Spatially Diversified Suppliers

with Random Demands

Zhe Liu

A fundamental challenge in operations management is to dynamically match spatially

diversified supply sources with random demand units. This dissertation tackles this chal-

lenge in two major areas: in supply chain management, a company procures from multiple,

geographically differentiated suppliers to service stochastic demands based on dynamically

evolving inventory conditions; in revenue management of ride-hailing systems, a platform

uses operational and pricing levers to match strategic drivers with random, location and

time-varying ride requests over geographically dispersed networks.

The first part of this dissertation is devoted to finding the optimal procurement and in-

ventory management strategies for a company facing two potential suppliers differentiated

by their lead times, costs and capacities. We synthesize and generalize the existing liter-

ature by addressing a general model with the simultaneous presence of (a) orders subject

to capacity limits, (b) fixed costs associated with inventory adjustments, and (c) possible

salvage opportunities that enable bilateral adjustments of the inventory, both for finite and

infinite horizon periodic review models. By identifying a novel, generalized convexity prop-

erty, termed (C1K1, C2K2)-convexity, we are able to characterize the optimal single-source

procurement strategy under the simultaneous treatment of all three complications above,

which has remained an open challenge in stochastic inventory theory literature. To our

knowledge, we recover almost all existing structural results as special cases of a unified

analysis. We then generalize our results to dual-source settings and derive optimal policies

under specific lead time restrictions. Based on these exact optimality results, we develop

various heuristics and bounds to address settings with fully general lead times.

The second part of this dissertation focuses on a ride-hailing platform’s optimal control

facing two major challenges: (a) significant demand imbalances across the network, and (b)

stochastic demand shocks at hotspot locations. Towards the first major challenge, which is

evidenced by our analysis of New York City taxi trip data, the dissertation shows how the



platform’s operational controls—including demand-side admission control and supply-side

empty car repositioning—can improve system performance significantly. Counterintuitively,

it is shown that the platform can improve the overall value through strategic rejection of

demand in locations with ample supply capacity (driver queue).

Responding to the second challenge, a demand shock of uncertain duration, we show how

the platform can resort to surge pricing and dynamic spatial matching jointly, to enhance

profits in an incentive compatible way for the drivers. Our results provide distinctive

insights on the interplay among the relevant timescales of different phenomena, including

rider patience, demand shock duration and drivers’ traffic delay to the hotspot, and their

impact on optimal platform operations.
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4.1 Relationship between u̇t−δu(t) and ẋt when ut ≥ θ and t ≥ u0 − θ . . . . . . . . 121

B.1 Dual sourcing under fully general model: benefits of a salvage opportunity . . 170

vi



Acknowledgments

I have had the great privilege and fortune to have Professors Federgruen, Maglaras and
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Introduction

One of the fundamental challenges in supply chain and revenue management is the dynamic

matching of geographically dispersed supply sources and demand units.

In supply chains, production facilities or distribution centers function as the supply

sources, servicing a specific network of inventory points over time. Within the broad field

of revenue management, consider the area of ride-hailing networks, such as those run by

Uber, Lyft and Didi, with a combined revenue of $49.6 billion in the US and $53.5 billion in

China alone in 20191, here, the challenge is to match a pool of drivers, acting as suppliers

of ride capacity, with riders located at the nodes of a given geographically dispersed traffic

network.

While the above two planning areas are quite distinct, they share several key features.

First, the demand process at the demand points is stochastic. Second, the geographic

distance and associated travel time between supply and demand points is a key factor in

determining matching strategies, to be traded off with several other factors.

In the supply chain area, these travel times translate into lead times for orders placed

by the demand point(s); these lead times, in turn are a key determinant in establishing

safety stocks as proper hedges against the uncertainties, embedded in the demand process,

in particular when a high level of service is to be provided to service sensitive buyers at the

demand points.

Similarly, in ride-hailing systems, the customers (potential riders) are very delay sen-

sitive, as are the suppliers (drivers) for whom pickup times translate into lost earning

opportunities. And in both arenas, customers become ever more sensitive to time delays as

a key measure of service.

1Statista.com: https://www.statista.com/outlook/368/ride-hailing. Accessed on July 22, 2019.
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The first part of this dissertation (Chapters 1 and 2) address these problems in a context

where a company has access to multiple, geographically dispersed suppliers to procure a

single item, the demand for which is stochastic and, possibly, time-dependent. We focus

on systems with two potential suppliers (dual sourcing). Typically, one supplier charges a

lower purchase price but has a relatively large lead time, while the second supplier has a

shorter lead time but is more expensive. Besides for their lead time and price, the suppliers

may be differentiated by their capacity levels.

Some companies elect a single supplier based on aggregate cost and service consider-

ations; however, significant benefits can, often, be obtained when using the two suppliers

in parallel. This then raises the challenge of designing procurement strategies which select

when and how much to order from each as a function of the dynamically evolving inventory

information.

Chapter 2 develops a tractable planning model for this class of problems, incorporating

various practical complications and opportunities. More specifically, we study a finite hori-

zon, single product, periodic review inventory system with two supply sources and salvage

options. A challenging trade-off exists between the two sources because the expedited sup-

plier has a shorter lead time but charges a higher per-unit price, while the regular supplier

has a longer lead time but lower ordering costs. A further complication is the salvage option

that allows for bilateral inventory adjustments. All inventory adjustments involve a fixed

cost component in addition to variable costs or revenues and may be subject to capacity

limits.

In each period, we show that an optimal policy first determines the size of an order with

the expedited supplier, if any, or the size of any salvage quantity, based, exclusively, on the

regular full inventory position. Thereafter, the inventory position is adjusted upward (by the

expedited supplier order) or downward (by the salvage quantity); any order with the regular

supplier is then determined as a function of the adjusted inventory position. Moreover,

the dependence of the optimal order sizes and/or salvage quantity, on the period’s starting

inventory position follows a relatively simple structure. In the most general case, the optimal

policy is characterized by four critical threshold levels of the inventory position. As far as

the second stage ordering decision with the regular supplier is concerned, the optimal policy

2



is characterized by two threshold parameters partitioning the adjusted inventory position

line in up to three regions.

The simultaneous treatment of capacitated inventory adjustments, bilateral inventory

adjustments and fixed costs incurred for any such adjustment, is a major challenge even

within traditional single sourcing problems. Indeed, since the initiation of stochastic inven-

tory theory by Arrow et al. (1951), various structural results have been identified for various

single item models. For example, base stock policies are optimal in the base model, where

order costs are linear in the order sizes, no capacity limits prevail and inventory levels can

only be adjusted upward via procurement orders. Double threshold, so-called (s, S) policies

were shown to be optimal in broad generality when there are additional fixed order costs.

However, the simultaneous treatment of all of the above complications has remained an

open challenge.

Chapter 1 synthesizes and generalizes the existing literature by addressing a general

model with the simultaneous presence of (a) orders subject to capacity limits, (b) fixed cost

component in addition to variable costs, and (c) possible bilateral adjustment of inventories,

both for finite and infinite horizon periodic review models. We provide a full characteri-

zation of the optimal procurement strategy by showing that in each period the inventory

position line is to be partitioned into (maximally) five regions: in the most far left (right)

region, it is optimal to place an order (initiate a salvage sale) of a specific easily calculable

magnitude. In the middle region, it is optimal to avoid any inventory adjustment. Finally,

in the second region from the left (right), the policy alternates between intervals where

one stays put and those where an order is to be placed (a salvage sale is to be initiated).

We provide a broad sufficient condition under which the second region from the left (right)

vanishes. So that, in particular, the optimal policy is characterized by three regions only.

Our results are obtained by identifying a novel generalized convexity property for the

value functions, which we refer to as (C1K1, C2K2)-convexity. To our knowledge, we recover

all existing structural results as special cases of a unified analysis.

In Chapter 3, we shift our attention to ride-hailing platforms such as Uber, Lyft and

Didi that match demand (riders) with service capacity (drivers) over a geographically dis-

persed network. This matching problem is complicated by two challenges. (i) There are

3



significant demand imbalances in the network. (ii) Drivers are self-interested and behave

strategically in deciding whether to join, and if so, how to reposition (route) themselves

when not transporting riders. To address these challenges, we study the value of two oper-

ational controlsdemand-side admission control and supply-side repositioning controlon the

performance of a revenue-maximizing ride-hailing platform.

Considering a fluid model of a two-location network in a game-theoretic framework,

we characterize the system equilibrium under three control regimes, ranging from minimal

control to centralized admission and repositioning control. The results contribute novel

insights on the interplay between the platform’s admission control and the drivers’ strategic

routing decisions. We also quantify the impact of control capabilities on platform revenue,

participating capacity and per-driver profits. We find that the value of control is largest at

moderate utilization and increases with demand imbalances.

Chapter 4, the last chapter of the dissertation, studies an online platform that operates

a ride-hailing network with price and delay sensitive riders and strategic drivers that supply

processing capacity. Our model jointly considers surge pricing (rider price and driver wage)

and dynamic spatial matching in the platform’s profit maximization problem, responding

to a demand shock at a hotspot with uncertain magnitude and/or duration. Surge pricing

is meant to a) moderate demand and b) incentivize supply to proactively reposition toward

the hotspot. Dynamic matching trades off non-hotspot local matches for more lucrative

hotspot matches, within service level constraints. Importantly, a surge in driver wages acts

after a delay that depends on the distance drivers need to cover until they can get matched

at the hotspot, and this heterogeneous repositioning delay may render the drivers’ future

expected benefit from the current wage surge uncertain, which affects their decisions to

react.

We obtain optimal pricing and matching policies under fixed and random shock du-

ration. Our results show the interplay between important timescales, e.g., rider patience,

demand shock duration, and drivers’ travel delay to the hotspot, and their impact on sys-

tem performance. The distinctive features of this work lie on the focus of system transient

under non-stationary demand, the network setting, and drivers’ strategic response to surge

signals given delayed incentives.
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Chapter 1

Synthesis and Generalization of Structural Results in Inventory

Management: A Generalized Convexity Property

1.1 Introduction.

The seminal papers by Arrow et al. (1951) and Dvoretzky et al. (1953) initiated the field of

stochastic inventory theory, more than 65 years ago. These authors proposed a single-item

base model with a finite planning horizon in which an order can be placed at the beginning

of each period to increase the inventory level. The base model assumes that orders of an

arbitrary, unlimited size may be placed and that the associated order costs are proportional

to the order sizes. Demands are random but independent across time. Additional costs

consist of inventory carrying and stockout or backlogging costs, assumed to be proportional

with the end-of-the-period inventory levels and backlogging sizes, respectively. In the base

model, it was shown that a so-called base-stock policy is optimal, in each period. Under

such a policy, the inventory level is increased to a “base-stock” level, whenever it is found

to be below that level; otherwise, it is optimal not to place any order. Scarf (1960) showed

that, under backlogging of stockouts, a base-stock policy continues to be optimal in the

presence of an order lead-time, except that the policy acts on a different inventory measure,

the so-called inventory position = inventory level plus all outstanding orders.

It was quickly understood that the base model needed to be generalized to address

various complications that arise in practice, for example fixed order costs or capacity limits

for individual order sizes. When fixed order costs are included to the base model, Scarf

(1960) and Iglehart (1963) showed that, under broad general conditions, an (s, S)-policy

is optimal, for finite and infinite horizon models, respectively. Under an (s, S)-policy, it is

optimal to elevate the inventory position to an order-up-to level, S, but only if the period’s

5



starting inventory position is at or below a second threshold s < S (as opposed to S itself

in the absence of fixed order costs). Federgruen and Zipkin (1986a,b) showed that order

capacity limits result in the optimality of a so-called modified base-stock policy: at the

beginning of each period, an order is placed to bring the inventory position as close to the

base-stock level as is feasible.

But, what if both complications (fixed order costs and capacity limits for individual

orders) prevail simultaneously? As Federgruen and Zipkin (1986b) wrote:

“If the production costs have a fixed (as well as a variable) component, it might
be reasonable to expect that the modified (s, S) policy would be optimal: when
the inventory level falls below a critical number s, produce enough to bring total
stock up to S, or as close as possible, given the production capacity; otherwise
do not produce.”

However, Wijngaard (1972) and later on Shaoxiang and Lambrecht (1996) and Shaox-

iang (2004) identified counterexamples, both in finite and infinite horizon models. Indeed,

a more complex structure emerges.

Similarly, some authors, starting with Whisler (1967) and Constantinides and Richard

(1978), have considered settings where inventories may be adjusted downwards (as well as

upwards) via sales in secondary channels (jobbers, discounters, outlet stores, etc) or returns

to the supplier. Several authors have addressed inventory models with bilateral inventory

adjustment options, i.e., procurement orders along with salvage sales and/or returns to the

suppliers, for example Dai and Yao (2013) and Feinberg and Lewis (2005, 2007), see also

the references therein. However, to our knowledge, no one has considered settings where

the size of the inventory adjustments is subject to capacity limits, for example.

This chapter synthesizes and generalizes the existing literature with exogenously speci-

fied demands by addressing a general model with the simultaneous presence of the above-

mentioned complications, specifically,

(a) bilateral inventory adjustment options, via procurement orders and salvage sales or

returns to the supplier;

(b) fixed costs associated with procurement orders and downward inventory adjustments

(via salvage sales or returns);
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(c) capacity limits associated with upward or downward inventory adjustments.

We provide a full characterization of the optimal inventory adjustment strategy, both

for finite and infinite horizon periodic review models, by showing that in each period the

inventory position line is to be partitioned into (maximally) five regions: in the most far

left (right) region, it is optimal to place an order (initiate a salvage sale) of a specific easily

calculable magnitude. In the middle region, it is optimal to avoid any inventory adjustment.

Finally, in the second region from the left (right), the policy alternates between intervals

where one stays put and those where an order is to be placed (a salvage sale is to be

initiated) of a size specified by a given function.

Our results are obtained by identifying a novel generalized convexity property for the

value functions, which we refer to as strong (C1K1, C2K2)-convexity. To our knowledge,

we recover most existing structural results for models with exogenous demands as special

cases of a unified analysis. (To our knowledge, the exceptions are uncapacitated models

with non-linear order costs, of a type, different from the fixed-plus-linear structure.)

The remainder of this chapter is organized as follows: In Section 1.2 we review the

related literature. Section 1.3 introduces our general model and the associated notation.

Section 1.4 derives the structure of an optimal policy in a single period model. Section 1.5

covers a general finite horizon model; this Section also recovers existing structures in the

literature as special cases of our general results. Section 1.6 shows how our structural results

extend to stationary infinite horizon models, either under the discounted total cost or the

long-run average cost criterion. Section 1.8 ends the chapter with some concluding remarks.

1.2 (C1K1, C2K2)-convexity: A generalized convexity

property and review of existing literature.

The structural results obtained in this chapter are based on our identifying a new generalized

concept of convexity.

Definition 1.1 ((C1K1, C2K2)-convexity). Given constants C1 > 0,K1 ≥ 0 and C2 >

0,K2 ≥ 0, a real-valued continuous function f is called strongly (C1K1, C2K2)-convex if

7



for any x ≥ y, a ∈ [0, C1] and b ∈ (0, C2],

f(x+ a) +K1 ≥ f(x) +
a

b

(
f(y)− f(y − b)−K2

)
. (1.1)

Denote SCC1K1,C2K2 as the set of all strongly (C1K1, C2K2)-convex functions. When (1.1)

is required only for x = y, we refer to the property as weak (C1K1, C2K2)-convexity.

! − # $! $ + &

'(
')

*)*(
+

, +

Figure 1.1: Geometric illustration of strongly (C1K1, C2K2)-convex functions

Figure 1.1 provides an intuitive way of understanding the strong (C1K1, C2K2)-convexity

property. For any two points y ≤ x, select any point x + a with a ∈ (0, C1] and any point

y − b with b ∈ (0, C2]. Raise the function value at point x+ a by K1 and draw a ray from

(x, f(x)) to (x+a, f(x+a)+K1). Similarly raise the function value at point y−b by K2 and

draw a ray from (y− b, f(y− b)+K2) to (y, f(y)). Then f is strongly (C1K1, C2K2)-convex

if the slope of the former ray is bigger than or equal to the slope of the latter ray.

The (C1K1, C2K2)-convexity property generalizes many convexity properties, developed

since Scarf (1960) identified K-convexity as the key structural property to establish opti-

mality of the so-called (s, S)-policies. Below, we list these earlier convexity properties in

Table 1.1.
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It appears that the basic convexity property goes back to Archimedes, in his treatise “On

the sphere and cylinder” in the third century B.C.E., see also Heath (1912) and Dwilewicz

(2009). It arises as a special case of (C1K1, C2K2)-convexity with C1 = C2 = ∞ and

K1 = K2 = 0. It is, of course, well known that for basic convexity, the weak and strong

versions are equivalent: If the inequality in Table 1.1 holds for all x = y—which defines

“weak convexity”—it holds for all x ≥ y, as well. In other words, weak convexity implies

strong convexity, and vice versa.

K-convexity corresponds with the special case where C1 = C2 = ∞ and K1 ≥ 0,K2 =

0. The term was coined by Scarf (1960) to address models with fixed order costs, but

no capacity limits or salvage opportunities. Scarf (1960) used the property to show that

an (s, S)-policy is optimal under convex holding and backlogging costs. Veinott (1966)

subsequently showed this optimality result for holding and backlogging cost functions that

are quasi-convex only, but (nearly) increasing over time. See also the recent tutorial by

Feinberg (2016). Gallego and Sethi (2005) extended the K-convexity property to functions

that are defined on a general Euclidean space Rn, to address multi-product systems with

fixed order costs.

Gallego and Scheller-Wolf (2000) addressed models with fixed order costs and capacity

limits for individual orders (but no salvage opportunities). These authors introduced the

CK-convexity property, again a special case of our general structure where C2 = ∞ and

K2 = 0. Gallego and Scheller-Wolf (2000) also pioneered the above distinction between

“weak” and “strong” convexity properties.

Chen and Simchi-Levi (2004a,b) addressed a periodic review combined inventory control

and pricing model in which each period’s demand distribution may be controlled by selecting

a unit retail price from a closed price interval. The remaining assumptions are identical

to those in the Scarf model, i.e., the base inventory model with fixed order costs. Chen

and Simchi-Levi (2004a) covers the finite horizon case, while Chen and Simchi-Levi (2004b)

address the long-run average and discounted profit criterion; the models are confined to

the case where the order lead time is zero. The authors consider affine price-dependent
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demand functions, specified as:

Dn(p) = αndn(p) + βn, n = 1, 2, . . . , N, (1.2)

where dn(p) is a deterministic demand function and {αn} and {βn} are sequences of in-

dependent random variables whose distributions are independent of the chosen retail price

pn. In the finite horizon model of Chen and Simchi-Levi (2004a), the authors show that the

value functions continue to be K-convex but only in the special case of an additive demand

model, i.e., when αn = 1 for all n. This implies that an (s, S) policy continues to be optimal

in that case. However, K-convexity fails to apply in the general affine demand model (1.2).

Indeed, no (s, S) policy is necessarily optimal, contrary to a conjecture by Thomas (1974).

For the more general model, the authors identify the sym-K-convexity property and

show that the value functions satisfy this generalized K-convexity property, see Table 1.1.

On that basis, they showed that, in each period n, there are two threshold levels sn < Sn

such that no order is placed when the beginning inventory level is above Sn and the inventory

level is increased to Sn when it is found to be below sn. However, when the beginning

inventory level is between the two thresholds, it is optimal to either refrain from ordering

or to elevate the inventory level to Sn. In Chen and Simchi-Levi (2004b), the author showed

that in infinite horizon settings, with stationary parameters and distributions, an (s, S)-

policy is optimal in the general affine model (1.2), following a different approach, aligned

with that of Zheng (1991).

Returning to inventory models with exogenously specified demand variables, Chen and

Simchi-Levi (2009) addressed a model with bilateral inventory adjustments and fixed costs

for each adjustment (but no capacity limits). Their analysis is based on a further gen-

eralization of K-convexity, introduced by Ye and Duenyas (2007) which the authors refer

to as (K1,K2)-convexity. To avoid confusion, we label the property as “YD-(K1,K2)-

convexity” with YD the initials of the authors. In the special case where K1 = K2 = K,

YD-(K1,K2)-convexity reduces to sym-K-convexity. The authors show that all value func-

tions are YD-(K1,K2)-convex under minor restrictions for the time-dependence of the fixed

adjustment costs K1 and K2. Chen and Simchi-Levi (2009) follow Neave (1970) who had

addressed the same model but failed to provide a complete analysis for the case where the

11



two fixed costs K1 and K2 differ from each other. Similarly, Feinberg and Lewis (2007)

employed the Y D − (K1,K2)-convexity property to analyze the infinite horizon version of

the stochastic cash balance problem.

Ye and Duenyas (2007) had introduced their YD-(K1,K2)-convexity property to ana-

lyze a capacity adjustment model, with similar results to those in Chen and Simchi-Levi

(2009). Semple (2007) introduced the “weak (K1,K2)-convexity” property as a further gen-

eralization of YD-(K1,K2)-convexity. The author showed, again under the same parameter

restrictions as in Ye and Duenyas (2007), that all value functions are weakly (K1,K2)-

convex if the terminal value function has this property; moreover, all structural results

obtained in Ye and Duenyas (2007) can be obtained under this more general convexity

property. Clearly, weak (K1,K2)-convexity is a special case of our “strong (C1K1, C2K2)-

convexity” property under the special parameter choices C1 = C2 =∞ and weakening the

definitional inequality (1.1) to hold only for y = x. Unbeknownst to Semple, Gallego and

Özer (2001) had, six years earlier, introduced the same “weak (K1,K2)-convexity”, under

the name C(a, b)-convexity. The authors used this property to establish optimality of a

state-dependent (s, S) policy in an inventory model with advanced demand information.

Caliskan-Demirag et al. (2012) introduced a new convexity property that includes the

strong CK-convexity property of Gallego and Scheller-Wolf (2000), Shaoxiang and Lam-

brecht (1996) and Shaoxiang (2004), and the sym-K convexity property of Chen and Simchi-

Levi (2004a) as special cases. The authors replace on the right side of inequality (1.1), the

fixed cost K, by a general function σ(K, a):

f(x+ a) + σ(K, a) ≥ f(x) +
a

b
(f(y)− f(y − b) for any y ≤ x, a ∈ [0, C], b > 0.

The authors employ this property, which they refer to as σ(K, z)-convexity, to characterize

the structure of an optimal policy, when there are two possible fixed order costs, K1 < K2 ≤

2K1, with the lower fixed cost K1 applicable iff the order size is below a given threshold.

(The model is uncapacitated and inventory adjustments are in the upward direction only.)

Lu and Song (2014), subsequently, identified another variant of σ(K, z)-convexity for a

model with a convex piecewise-linear order cost function and a fixed cost. These authors

refer to their structure as strong (K, c, q)-convexity. K-approximate convexity, introduced

12



in Lu et al. (2016, 2018) is a related approach, in approximate rather than exact dynamic

programming. The fundamental idea is to approximate the exact one-period cost structure

and the cost-to-go functions, respectively, with a convex function such that the maximal

approximation error is at most K, and derive bounds for the distance between the exact

and approximate value functions. See Caliskan-Demirag et al. (2012) and Lu and Song

(2014) for a review of other models with a non-linear order cost function, different from the

standard fixed-plus-linear structure.

Chapter 2 employs the strong (C1K1, C2K2)-convexity properly to characterize the

structure of the optimal inventory adjustment strategy in a dual sourcing setting with

salvage opportunities, fixed inventory adjustment costs and capacity limits for orders and

salvage batches.

Proposition 1.1 summarizes the above relationships among the various convexity prop-

erties.

Proposition 1.1. (a) convexity ⇒ K-convexity ⇒ sym-K-convexity

⇒ YD-(K1,K2)-convexity⇒ weak (K1,K2)-convexity⇒ strong (C1K1, C2K2)-convexity

(b) convexity ⇒ strong K-convexity ⇒ strong CK-convexity

⇒ strong (C1K1, C2K2)-convexity

Lemma 1.1 establishes various preservation properties for strongly (C1K1, C2K2)-convex

functions.

Lemma 1.1 (Properties of SCC1K1,C2K2).

(i) If f(x) ∈ SCC1K1,C2K2, then f(−x) ∈ SCC2K2,C1K1.

(ii) If f(x) ∈ SCC1K1,C2K2, then f(x) ∈ SCC′1K′1,C′2K′2 for any C ′1 ≤ C1, C
′
2 ≤ C2, K ′1 ≥

K1,K
′
2 ≥ K2.

(iii) If f(x) ∈ SCC1K1,C2K2 and g(x) ∈ SCC1K′1,C2K′2
, then for any α, β ≥ 0, αf(x) +

βg(x) ∈ SCC1(αK1+βK′1),C2(αK2+βK′2). As a special case, when g(x) is convex, hence

g(x) ∈ SCC10,C20, αf(x) + βg(x) ∈ SCC1(αK1),C2(αK2) for any β ≥ 0.
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(iv) If f(x) ∈ SCC1K1,C2K2, then f(x−a) ∈ SCC1K1,C2K2 for any real number a. Moreover,

for any random variable Y with E|f(x− Y )| <∞, Ef(x− Y ) ∈ SCC1K1,C2K2.

Proof. Parts (i) and (ii) are immediate.

(iii) Let h(x) = αf(x) + βg(x), for any x ≥ y, a ∈ [0, C1], b ∈ (0, C2] we have

∆ = αK1 + βK ′1 + h(x+ a)− h(x)− a

b

(
h(y)− h(y − b)− αK2 − βK ′2

)
= αK1 + βK ′1 + αf(x+ a) + βg(x+ a)− αf(x)− βg(x)

− a

b

(
αf(y) + βg(y)− αf(y − b)− βg(y − b)− αK2 − βK ′2

)
= α

[
K1 + f(x+ a)− f(x)− a

b

(
f(y)− f(y − b)−K2

)]
+ β

[
K ′1 + g(x+ a)− g(x)− a

b

(
g(y)− g(y − b)−K ′2

)]
≥ 0

(iv) Using (iii) this is immediate.

1.3 Model.

We consider a single-item periodic review model with a single supplier. Extensions with

multiple suppliers are addressed in Chapter 2. At the beginning of each period, an order

may be placed with the supplier, possibly subject to a time-dependent capacity limit. In

each period, there may also be a (limited) salvage option to reduce inventory by sales to a

secondary channel (discounters, jobbers, outlet stores, etc.) or returns to the supplier. The

lead time is L periods, both for ordering and for salvaging, when available as an option. The

cost associated with any given order has a fixed and variable component; similarly, a fixed

cost is incurred when a salvage sale is initiated, along with revenues that are proportional

with the size of the salvage batch. All stockouts are backlogged. In addition to the ordering

and salvaging costs and revenues, there are standard holding and backlogging costs, assumed

to be proportional or convexly increasing with the end-of-the-period inventory levels and

backlog sizes.
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We consider a planning horizon of N ≤ ∞ periods and our objective is to minimize

the total expected discounted costs over the full planning horizon. We index the periods

backward from 1 to N . (Section 1.6 covers the long-run average cost criterion)

The sequence of events in period n is as follows: at the beginning of the period, any order

placed [salvage batch initiated] in period n + L is added to [removed from] the inventory.

Based on the inventory position (= inventory on hand – backlogs + all outstanding orders),

the firm then decides on a new order size, or a salvage quantity to be initiated, if it wants

to reduce the inventory position. Stochastic demand is then realized and satisfied with

on-hand inventory. At the end of the period, any leftover inventory is carried forward to

the next period, while any unsatisfied demand is fully backlogged.

We show below that the single inventory position measure suffices to make optimal

decisions; moreover, it is never optimal to simultaneously place an order and initiate a

salvage batch.

We now state the notation employed in our model:

Kn, Cn = fixed cost and capacity limit for an order placed in period n,

Kv
n, C

v
n = fixed cost and capacity limit for any salvage quantity initiated in period n,

L = order lead time,

cn = unit price charged by the supplier in period n,

cvn = unit revenue received when salvaging inventory in period n,

α = discount factor, 0 ≤ α ≤ 1.

The sequence of demands {Dn} represents independent random variables with general

distributions. We make the following assumption.

Assumption 1.1. cn ≥ cvn, n = N, . . . , 1.

This ranking is satisfied in all practical settings and precludes it ever being optimal to

place an order and initiate a salvage batch in the same period. (Assume, to the contrary,

that in some period n, it is optimal to place an order of size qn, along with the initiation of

a salvage batch of size q̄n. Under Assumption 1.1, money is saved by reducing the order to
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(qn − q̄n) and canceling the salvage batch, if qn ≥ q̄n; alternatively, if q̄n > qn, money may

be saved by reducing the salvage batch to (q̄n − qn) and canceling the order.)

Settings without actual salvage opportunities may be represented as having such op-

portunities, however, with cvn = −M , where M denotes a sufficiently large constant. This

representation allows for a unified treatment of models with and without salvage opportu-

nities.

For n = N, . . . , 1, let

xn = the inventory position at the beginning of period n, before any inventory adjustement;

yn = the inventory position at the beginning of period n, after any inventory adjustmenet.

Inventory and backlogging related costs are assumed to depend on the end-of-period

inventory levels only, it is well known since Scarf (1960) that under full backlogging, an

equivalent representation of the controllable parts of the total expected discounted cost

over the planning horizon is obtained by charging to period n+L, the expected value of the

actual costs incurred at the end of period n. This follows from the sample path relationship

between yn, the inventory position at the beginning of period n, and the inventory level

In−L at the end of period n− L:

In−L = yn −D(L)
n ,

where D
(L)
n = Dn +Dn−1 + · · ·+Dn−L is the aggregate demand in time interval [n, n−L].

For all n = N, . . . , 1, let

Ln(xn + qn) = the expected value of all inventory and backlogging related costs

at the end of period n− L discounted back to period n

and impose a standard assumption regarding these functions, satisfied for most common

cost structures.

Assumption 1.2. (i) The function Ln(·) is convex and Ln(y) = O(|y|p) for some p ≥ 1,

n = N, . . . , 1. Also, E(Dp
n) <∞ for n = N, . . . , 1.
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(ii) cvn ≤ −
∂−Ln(x)

∂x for n = N, . . . , 1, where ∂−Ln(x)
∂x denotes the left derivative of the

function Ln(·).1

Assumption 1.2 (ii) ensures that, in every period n, the marginal backlogging cost is in

excess of the unit salvage value.

Beyond Assumptions 1.1 and 1.2, we need a few additional parameter restrictions.

Assumption 1.3. For n = N, . . . , 1,

Kn ≥ αKn−1, Kv
n ≥ αKv

n−1, (1.3)

Cn ≤ Cn−1, Cvn ≤ Cvn−1. (1.4)

The inequalities (1.3) were already recognized as essential in the base model with fixed

order costs, see Scarf (1960) and Zipkin (2000). The inequalities (1.4) indicate that capacity

limits for order and salvage quantities may not decline over time; this is typically the case

in practical applications.

To introduce the dynamic programming formulation, define the following value func-

tions:

fn(x) = the optimal expected discounted total costs in the last n periods, assuming period

n is started with an inventory position of x units;

f1
n(x) = the optimal expected discounted total costs in the last n periods, assuming period

n is started with an inventory position of x units and no salvage batch is initiated;

f2
n(x) = the optimal expected discounted total costs in the last n periods, assuming period

n is started with an inventory position of x units and a salvage batch is initiated.

Clearly, since, as shown, it is never optimal to place an order and to initiate a salvage

1A convex function has left and right derivatives everywhere.

17



sale in the same period, we have for n = N, . . . , 1:

fn(x) = min{f1
n(x), f2

n(x)}, (1.5)

f1
n(x) = min

xn≤yn≤xn+Cn
{Knδ(yn − xn) + cn(yn − xn) + Ln(yn) + αEfn−1(yn −Dn)}, (1.6)

f2
n(x) = min

min{[xn−Cvn]+,xn}≤yn≤xn
{Kv

nδ(xn − yn) + cvn(yn − xn) + Ln(yn) + αEfn−1(yn −Dn)},

(1.7)

for a given terminal value function f0(·) satisfying:

Assumption 1.4. The terminal value function f0(·) ∈ SCC0K0,Cv0K
v
0

and is non-increasing

on the negative half-line.

The dynamic programming formulation exploits the fact that it is never optimal to

simultaneously place a procurement order and to initiate a salvage sale. It also utilizes

the simple state dynamics xn−1 = yn − Dn. The lower bound for yn in (1.7), i.e., yn ≥

min{[xn − Cvn]+, xn}, reflects the fact that, at least in physical inventory models, there

are no salvage opportunities when xn ≤ 0, while salvage opportunities are bounded by

min{xn, Cvn} when xn > 0. Instead of analyzing the DP (1.5)–(1.7) directly, we relax the

feasible action set in (1.7) to xn − Cvn ≤ yn ≤ xn, giving rise to the relaxed DP:

f̃n(x) = min{f̃1
n(x), f̃2

n(x)}, (1.8)

f̃1
n(x) = min

xn≤yn≤xn+Cn
{Knδ(yn − xn) + cn(yn − xn) + Ln(yn) + αEf̃n−1(yn −Dn)}, (1.9)

f̃2
n(x) = min

xn−Cvn≤yn≤xn
{Kv

nδ(xn − yn) + cvn(yn − xn) + Ln(yn) + αEf̃n−1(yn −Dn)}. (1.10)

We first show that this relaxation can be adopted without affecting the optimal policies.

Theorem 1.1. For i = N, . . . , 1, let y∗i (xi) denote the optimal inventory policy in the

relaxed dynamic program (1.8)–(1.10) when the inventory position at the beginning of period

i is xi, then

(a) If xi ≤ 0, then y∗i (xi) ≥ xi, i.e., it is optimal not to salvage;

(b) If xi > 0, then y∗i (xi) ≥ 0, i.e., it is optimal to maintain a non-negative inventory

position.
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Proof. (a) Suppose, to the contrary, that 0 < a = xi−y∗i (xi). We show that a cost improve-

ment can be achieved on any sample path ω, by perturbing the time series {y∗i (xi), ȳj =

y∗j (xj), j = i − 1, . . . , 1} to {ȳi = xi, ȳj = y∗j (xj), j = i − 1, . . . , 1}. In other words, the

perturbation involves the cancellation of the salvage batch in period i, and reducing the

inventory adjustment in period i− 1 by a units. Note that after the inventory adjustment

in period i − 1, the remaining sample path until the end of the planning horizon, remains

unaltered. Let ∆ denote the incremental costs incurred due to the perturbation,

∆ ≤
[
−Kv

i + acvi + a
∂−Li(0)

∂x

]
+ α[Kv

i−1 + amax{−ci−1,−cvi−1}]

= −(Kv
i − αKv

i−1) + a

(
cvi +

∂−Li(0)

∂x

)
− amax{ci−1, c

v
i−1} < 0 (1.11)

To justify the first inequality, note that the first term to its right denotes the cost savings

in the first period due to the cancellation of the salvage batch in period i. This cancellation

results in a saving of Kv
i , the fixed cost of this batch and a reduction of the backlog size at

the end of period i, by a units, at a per-unit saving of at least ∂−Li(0)
∂x ; on the other hand,

a loss of revenues, hence an increase in costs of acvi emerges from the canceled salvage

transaction.

The second term to the right of the first inequality in (1.11) is an upper bound for the

additional costs incurred in period i − 1; here, the decrease in the inventory adjustment

may save the fixed cost Ki−1, in case this decrease cancels an order or, at worst, it may

initiate a salvage batch in period i − 1, thus adding αKv
i−1 to the total cost. In addition,

the modified inventory adjustment results in either a reduction of the variable cost ci−1 or

an additional revenue cvi−1 per unit. The total additional variable cost in period i − 1 are

therefore bounded from above by −amax{ci−1, c
v
i−1}.

The second inequality in (1.11) follows from Assumptions 1.2 and 1.3.

(b) Suppose, to the contrary, that y∗i (xi) < 0. Let b = −y∗i (xi) > 0. Define

zj = −
i∑

k=j+1

Dk(ω) ≤ 0, j = i, i− 1, . . . , 1.

Consider the following modification to the optimal policy δ∗: in period i reduce the size of

the salvage batch by b units; thereafter, stay put until the first period in which y∗j ≥ zj , if

any. Let l = max{j ≤ i − 1 : y∗j (xj) ≥ zj}, where l = 0 when this index set is empty. If
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l ≥ 1, place an order in period l for y∗j − zj units. We distinguish between two cases: (b1)

l ≥ 1 and (b2) l = 0.

Proof for case (b1): after period l, the modified policy implements the same actions as

the original policy δ∗. Let ∆ denote the incremental cost due to the policy perturbation.

By part (a) and the definition of the time period l, we have for all j = i− 1, . . . , l + 1 that

xj ≤ y∗j < zj . (1.12)

Note that the sample paths of the modified and the original policies coincide from period

l on. Thus, the cost differential ∆ arises due to cost differences in the interval [i, l] only.

Thus, let ∆ = ∆1 + ∆2 + ∆3, where

∆1 = difference in procurement and salvage costs in periods i− 1, . . . , l;

∆2 = lost revenues in period i due to the reduction of the salvage batch in that period

by b units;

∆3 = difference in backlogging and holding costs in the entire interval [i, l].

Note that, by the definition of the period index l:

ql = y∗l − xl = y∗l − (y∗l+1 −Dl+1) > y∗l − zl+1 +Dl+1 = y∗l − zl > 0.

Thus, the original as well as the modified policy initiate a salvage batch in period i and

place an order in period l, and the salvage batch and order size under the modified policy

are smaller than their counterparts under the original policy δ∗. Since the modified policy

avoids inventory adjustments in the intermediate periods in (i, l), it follows that ∆1 ≤ 0.

Also ∆2 = bcvi , while ∆3 ≤ b∂
−Li(0)
∂x , since the backlog size at end of period i is b units

smaller under the modified policy and at the end of all remaining periods j = i−1, . . . , l+1,

the modified policy has a smaller backlog size than the original policy δ∗, see (1.12). Thus,

∆ ≤ b
(
cvi + ∂−Li(0)

∂x

)
< 0 by Assumption 1.2.

Proof for case (b2): In this case, the modified policy reduces the salvage batch in period

i by b units and stays put for the remainder of the planning horizon, ending the planning

horizon with an inventory level z1 −D1, as opposed to an ending inventory level y∗1 −D1

under the original policy. The proof for case (b1) shows that the modified policy incurs a

lower total of procurement, salvage, holding and backlogging costs. However, in this case,
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∆ contains the additional differential f0(z1 − D1) − f0(y∗1 − D1) ≤ 0, by Assumption 1.4

and y∗1 < z1.

In view of Theorem 1.1, we proceed without loss of optimality, with the relaxed dynamic

program (1.8)–(1.10), omitting the ∼ sign on top of the value functions f̃(·), f̃1(·), f̃2(·).

1.4 The single period problem.

It follows from the dynamic programming recursions (1.8)–(1.10) that, in each period n, we

face an optimization problem of the following structure

g1(x) = min
y∈[x,x+C1]

{K1δ(y − x) + β1(y − x) + g(y)}, (1.13)

g2(x) = min
y∈[x−C2,x]

{K2δ(x− y) + β2(y − x) + g(y)}, (1.14)

g0(x) = min{g1(x), g2(x)} (1.15)

with g1(·) = f1
n(·), g2(·) = f2

n(·), g0(·) = fn(·), β1 = cn, β2 = cvn,K1 = Kn,K2 = Kv
n, C1 =

Cn, C2 = Cvn and g(y) = Ln(y) + αEfn−1(y −Dn).

We now analyze this single stage optimization problem (1.13)–(1.15), under the assump-

tion that the terminal cost formulation g(·) has the strong (C1K1, C2K2)-convexity property

for specific parameter values C1,K1, C2,K2.

Define auxiliary functions

g̃1(x) = K1 + min
y∈[x,x+C1]

{β1(y − x) + g(y)}, (1.16)

g̃2(x) = K2 + min
y∈[x−C2,x]

{β2(y − x) + g(y)}, (1.17)

as counterparts of g1(x) and g2(x), under definitive inventory adjustment, i.e., definitively

incurring fixed costs for ordering or salvaging, respectively, and let Ai(x) = g̃i(x)− g(x) be

the increase in minimal cost if forced to order (for i = 1) or salvage (for i = 2).

To characterize the structure of an optimal policy, we need to define some critical points,

with the convention that the infimum (supremum) of an empty set equals +∞ (−∞).
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Definition 1.2 (Critical Points). For a continuous function g(·) ∈ SCC1K1,C2K2 and any

β1, β2, define

B = inf
{

arg min
y
{β1y + g(y)}

}
, b = inf{x : A1(x) ≥ 0}, b̄ = sup{x : A1(x) < 0},

(1.18)

S = sup
{

arg min
y
{β2y + g(y)}

}
, s = sup{x : A2(x) ≥ 0}, s = inf{x : A2(x) < 0}.

(1.19)

These critical points play important roles in the structure of the optimal strategy. By

its definition, B is the (smallest) global minimizer of g̃1(x) if C1 = ∞, i.e., the smallest

order-up-to level for sufficiently small x if ordering is better than staying put. Similarly,

S is the (largest) global minimizer of g̃2(x) if C2 = ∞, .i.e., the biggest salvage-down-to

level for sufficiently large x if salvaging is better than staying put; b is the smallest among

all inventory levels where ordering is not better than staying put; b̄ is the largest among

all inventory levels where ordering is better than staying put; s is the largest among all

inventory levels where salvaging is not better than staying put; s is the smallest among all

inventory levels where salvaging is better than staying put.

Note that b = b̄ [s = s] if the function A1(·) [A2(·)] has a single root. We have

observed this single root property to hold in all problem instances we have encountered, see

Section 2.6. It can, however, not be guaranteed, for general (C1K1, C2K2)-convex functions,

which may have many local optima, see Figure 1.1.

The Proposition below characterizes the ranking of the critical points, which is impor-

tant when developing the optimal policy structure.

Proposition 1.2 (Critical Points). Assume β1 ≥ β2 and g(·) ∈ SCC1K1,C2K2, then

(i) −∞ ≤ b ≤ b̄ ≤ s ≤ s ≤ ∞;

(ii) −∞ ≤ b ≤ B ≤ S ≤ s ≤ ∞;

(iii) If C2 =∞ and K1 ≥ K2, then b̄ ≤ B; if C1 =∞ and K1 ≤ K2, then S ≤ s;

(iv) If C1 = ∞ and K2 = 0, then b = b̄; if C2 = ∞ and K1 = 0, then s = s. If

C1 = C2 =∞ and K1 = K2 = 0, then b = b̄ = B,S = s = s.
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In this Proposition, (i) ranks four critical points. (ii) ranks and locates the global

minimizers B and S between b and s. (iii) and (iv) lead to simple policy structures, in

certain special cases, which will be discussed later.

To prove this Proposition, we first need some auxiliary lemmas. Note that by definition

we have

g1(x) = min{g(x), g̃1(x)}, A1(x) < 0 ∀x < b, A1(x) ≥ 0 ∀x > b̄, (1.20)

g2(x) = min{g(x), g̃2(x)}, A2(x) < 0 ∀x > s, A2(x) ≥ 0 ∀x < s. (1.21)

The following lemma shows that all regions where it is optimal to order (order regions)

are to the left of all regions where it is optimal to salvage inventory (salvage regions).

Lemma 1.2 (Separation of Order/Salvage Regions). Assume β1 ≥ β2 and

g(·) ∈ SCC1K1,C2K2, then

(i) if g̃2(y) < g(y) for some y, then g(x) ≤ g̃1(x) for any x ≥ y;

(ii) if g̃1(y) < g(y) for some y, then g(x) ≤ g̃2(x) for any x ≤ y.

Proof. (i) Given g̃2(y) < g(y), by the definition of g̃2(·) we have

g̃2(y) = K2 + β2(−b) + g(y − b) < g(y) for some b ∈ (0, C2],

where b cannot take the value of 0 because K2 ≥ 0. Equivalently,

g(y)− g(y − b)−K2 > −β2b.

Hence by strong (C1K1, C2K2)-convexity of g(·), for any x ≥ y and a ∈ [0, C1] we have

K1 + g(x+ a)− g(x) ≥ a

b

(
g(y)− g(y − b)−K2

)
≥ −β2a ≥ −β1a,

where the last inequality follows from β1 ≥ β2. Equivalently,

K1 + β1a+ g(x+ a) ≥ g(x).

As this holds for any a ∈ [0, C1], we obtain g̃1(x) ≥ g(x). It can also be verified that if

K1 > 0, we have strict inequality as g̃1(x) > g(x). Case (ii) can be proved in a similar way

and the details are omitted here.
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Intuitively, (i) shows that if salvaging is better than staying put at a given level y, then

staying put is better than ordering at or above y. In other words, ordering is never optimal

above a “salvaging” point. Similarly, (ii) shows that if ordering is better than staying put

at a given level y, then staying put is better than salvaging at or below y, i.e., salvaging is

never optimal below an “ordering” point.

The following corollary shows that if at a given level y, salvaging is strictly preferred,

it is optimal not to order for any inventory level x > y. Similarly, if at a given level y,

ordering is strictly preferred, it is optimal not to salvage for any inventory level x < y.

Corollary 1.1. Assume β1 ≥ β2 and g(·) ∈ SCC1K1,C2K2, then

(i) if g2(y) < g1(y) for some y, then g2(x) ≤ g1(x) for any x ≥ y;

(ii) if g1(y) < g2(y) for some y, then g1(x) ≤ g2(x) for any x ≤ y.

Proof. To verify (i), notice that g2(y) < g1(y) implies g̃2(y) < g(y) since g1(y) ≤ g(y)

and g2(y) = min{g(y), g̃2(y)}. By Lemma 1.2 (i), g(x) ≤ g̃1(x), which implies g2(x) ≤

g1(x) since g2(x) ≤ g(x) and g1(x) = min{g(x), g̃1(x)}. Similarly, we can prove (ii):

g1(y) < g2(y) implies g̃1(y) < g(y) since g2(y) ≤ g(y) and g1(y) = min{g(y), g̃1(y)}. By

Lemma 1.2 (ii), g(x) ≤ g̃2(x), which implies g1(x) ≤ g2(x) since g1(x) ≤ g(x) and g2(x) =

min{g(x), g̃2(x)}.

Certain monotonicities of the functions concerned play an important role in formulating

optimal policy structure, as are shown in the lemma below.

Lemma 1.3 (Monotonicity). Assume g(·) ∈ SCC1K1,C2K2 and finite |b̄|, |s|, 2 then

(i) if K2 = 0, β1x+ g(x) is strictly decreasing on (−∞, b̄);

(ii) if K1 = 0, β2x+ g(x) is strictly increasing on (s,∞).

Proof. Here we prove (i) as (ii) can be shown similarly, and we prove the general case where

K2 ≥ 0 noted by the footnote. Consider x1 < x2 < b̄ with x2 − x1 ≤ C2, then there exists

2Finite |b̄| and |s| can be implied by A1(x) < 0 for some x and A2(y) < 0 for some y, respectively.
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b0 ∈ (x2, b̄) such that A1(b0) < 0 by the definition of b̄ and the continuity of A1(·). Hence

we have

g(b0) > g̃1(b0) = K1 + β1(z − b0) + g(z),

for some z ∈ (b0, b0 + C1]. Note that z cannot take the value of b0 since otherwise K1 < 0.

Equivalently,

β1b0 + g(b0) > K1 + β1z + g(z).

Then by the strong (C1K1, C2K2)-convexity of β1x+ g(x) we have

β1b0+g(b0) > K1+β1z+g(z) ≥ β1b0+g(b0)+
z − b0
x2 − x1

(
(β1x2+g(x2))−(β1x1+g(x1))−K2

)
,

which implies

β1x2 + g(x2) < β1x1 + g(x1) +K2,

i.e., β1x+ g(x) is strictly non-K2-increasing on (−∞, b̄). Specially, if K2 = 0, β1x+ g(x) is

strictly decreasing on (−∞, b̄).

We are now ready for the proof of Proposition 1.2.

Proof of Proposition 1.2. (i) First, we show b̄ ≤ s by contradiction. Suppose b̄ > s, then

by the definition of b̄ and s in (1.18) and (1.19), respectively, and the continuity of

A1(·) and A2(·), there exist x and y such that s < x < y < b̄ for which A2(x) < 0

and A1(y) < 0, or g̃2(x) < g(x) and g̃1(y) < g(y). This contradicts Lemma 1.2 and

hence b̄ ≤ s. Next, we show b ≤ b̄ also by contradiction. Assume b > b̄, then by the

definition of b in (1.18), A1(z) < 0 for any z ∈ (b̄, b), which contradicts the definition

of b̄. Hence we have b ≤ b̄. We can prove s ≤ s in a similar way.

(ii) First, we show B ≤ S. Let

h1(y) = β1y + g(y), h2(y) = β2y + g(y) = h1(y)− (β1 − β2)y,

which are both strongly (C1K1, C2K2)-convex according to Lemma 1.1.(iii). Then by

(1.18) and (1.19) we have

B = inf{arg min
y

h1(y)}, S = sup{arg min
y

h2(y)},
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which imply that h1(x) > h1(B) for all x < B. Then for any x < B, we have

h2(x) = h1(x)− (β1 − β2)x > h1(B)− (β1 − β2)x ≥ h1(B)− (β1 − β2)B = h2(B),

where the second inequality follows from β1 ≥ β2. This implies that B ≤ S by the

definition of S.

Next, we show b ≤ B and S ≤ s. For b ≤ B, suppose on the contrary b > B, then by

(1.20) we have A1(B) < 0, hence

g(B) > g̃1(B) = K1 + min
B≤y≤B+C1

{β1y + g(y)} − β1B = K1 + g(B),

where the last equality follows from the fact that B is a global minimizer of β1y+g(y).

This contradicts K1 ≥ 0 and hence it should be b ≤ B. In a similar way we can show

S ≤ s.

(iii) We prove the case where C2 =∞ and K1 ≥ K2 by contradiction; the other case where

C1 =∞ and K1 ≤ K2 can be proved in the same way. Assuming b̄ > B, there exists

x ∈ (B, b̄) such that A1(x) < 0 by the definition of b̄ in (1.18). Then

g(x) > g̃1(x) = K1 + g(z) + β1(z − x) (1.22)

for some z ∈ (x, x+ C1]. Notice that z cannot take value of x because that results in

K1 < 0. By the definition of B in (1.18) and z > x > B, we have

g(z) + β1z ≥ g(B) + β1B,

or equivalently,

g(B)− g(z) ≤ β1(z −B). (1.23)

By strong (C1K1,∞K2)-convexity of g(·) we have

K1 + g(z) ≥ g(x) +
z − x
x−B

(
g(x)− g(B)−K2

)
,
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or equivalently,

g(x) ≤ x−B
z −B

(
K1 + g(z)

)
+
z − x
z −B

(
g(B) +K2

)
= K1 + g(z) +

z − x
z −B

(
g(B) +K2 −K1 − g(z)

)
≤ K1 + g(z) +

z − x
z −B

(
g(B)− g(z)

)
≤ K1 + g(z) + β1(z − x),

where the second inequality follows from the assumption K1 ≥ K2 and the last in-

equality follows from (1.23). This contradicts (1.22), thus we have shown b̄ ≤ B.

(iv) We first prove by contradiction the case where K2 = 0; the other case where K1 = 0

can be shown in the same way. By part (i), it suffices to show that the assumption

b < b̄ results in a contradiction. By the definition of b and b̄ in (1.18) there exist x and

y such that b ≤ x < y < b̄ and A1(x) ≥ 0, A1(y) < 0. Since K2 = 0 and x < y < b̄,

Lemma 1.3 (i) implies

β1x+ g(x) > β1y + g(y). (1.24)

By (iii) of this Lemma, b̄ ≤ B, thus, since C1 =∞ and since B is a global minimizer

of the function β1y + g(y),

g̃1(x) = K1 + β1B + g(B)− β1x, (1.25)

g̃1(y) = K1 + β1B + g(B)− β1y. (1.26)

Noticing the definition of A1(·) in Definition 1.2, A1(x) ≥ 0 and A1(y) < 0 together

with (1.24)–(1.26) yield

K1 + β1B + g(B) ≥ β1x+ g(x) > β1y + g(y) > K1 + β1B + g(B),

a clear contradiction. Hence, b = b̄.

Next, we consider the case where K1 = K2 = 0. We prove b̄ = B; the equality

S = s can be shown in the same way. First notice that b̄ ≤ B by (iii) of this Lemma.

Suppose, to the contrary, b̄ < B, then by the definition of b̄ in (1.18) there exists

x ∈ (b̄, B) that A1(x) ≥ 0, or g̃1(x) ≥ g(x) by the definition of A1(·). With K1 = 0,
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this implies that

g̃1(x) = β1B + g(B)− β1x ≥ g(x),

which contradicts the definition of B, as x < B. Hence b̄ = B.

We now proceed to the optimal single-period policy structure, in the following Theorem.

Theorem 1.2 (Single Period Optimal Policy Structure). Assume β1 ≥ β2 and g(·) ∈

SCC1K1,C2K2, then g0(x) and the corresponding minimizer y∗(x) are characterized by Ta-

ble 1.2 and Figure 1.2, in which g̃1(·) and g̃2(·) are defined by (1.16) and (1.17), respectively.

If y∗(x) is specified as a two-element set {·, ·}, either one of the two elements may apply.

Let

B(x) = inf B(x) where B(x) = arg min
x≤y≤x+C1

{β1y + g(y)}, (1.27)

S(x) = supS(x) where S(x) = arg min
x−C2≤y≤x

{β2y + g(y)} (1.28)

denote minimizers of g̃1(x) and g̃2(x), respectively. Let b(x) = B(x)−x and s(x) = x−S(x)

denote the corresponding order and salvage quantity.

Table 1.2: Single period optimal policy structure

x (−∞, b) [b, b̄) [b̄, s] (s, s] (s,∞)

g0(x) g̃1(x) min{g̃1(x), g(x)} g(x) min{g̃2(x), g(x)} g̃2(x)
y∗(x) B(x) {B(x), x} x {S(x), x} S(x)

Proof. • x ∈ (−∞, b). x < b implies that A1(x) < 0 by (1.20), so g̃1(x) < g(x) and by

Lemma 1.2 g(x) ≤ g̃2(x). It follows that g0(x) = g1(x) = g̃1(x) and y∗(x) = B(x),

the minimizer of g̃1(x).

• x ∈ [b, b̄). By the definition of b̄ in (1.18), there exists y ∈ (x, b̄) such that A1(y) < 0,

i.e., g̃1(y) < g(y). Then g(x) ≤ g̃2(x) by Lemma 1.2. It is therefore optimal to either

place an order or to keep the inventory position unaltered. The minimizer y∗(x)

therefore equals B(x) or x.
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Figure 1.2: Illustration of single period optimal policy structure

• x ∈ [b̄, s]. x ≥ b̄ implies that A1(x) ≥ 0 by (1.20), so g̃1(x) ≥ g(x). Similarly x ≤ s

implies that A2(x) ≥ 0 by (1.21), so g̃2(x) ≥ g(x). Therefore g0(x) = g1(x) = g2(x) =

g(x) and y∗(x) = x.

• x ∈ (s, s]. By the definition of s in (1.19), there exists y ∈ (s, x) such that A2(y) < 0,

i.e., g̃2(y) < g(y). Then g(x) ≤ g̃1(x) by Lemma 1.2. Therefore it is optimal to either

initiate a salvage batch or stay put, and the minimizer y∗(x) equals S(x) or x.

• x ∈ (s,∞). x > s implies that A2(x) < 0 by (1.21), so g̃2(x) < g(x) and by Lemma 1.2

g(x) ≤ g̃1(x). It hence follows that g0(x) = g2(x) = g̃2(x) and y∗(x) = S(x), the

minimizer of g̃2(x).

In other words, four critical points partition the inventory position line into five regions.

In the two extreme regions, (−∞, b) and (s,∞), a positive order or salvage transaction

needs to be initiated, respectively; in the middle region, [b̄, s], it is optimal to stay put; in

the second region, [b, b̄), it is optimal to either order or to stay put, and in the fourth region,

(s, s], it is optimal to either initiate a salvage transaction or to stay put. Within the latter

two regions, it is possible that the optimal policy alternates several times between ordering
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or salvaging versus staying put, a phenomenon already discovered in simpler models without

salvage opportunities, see e.g., Shaoxiang and Lambrecht (1996) and Shaoxiang (2004).

As mentioned, if the functions A1(·) and A2(·) have a single root, b = b̄ and s = s, so

that the second and fourth region vanish. In all of our numerical experience, this single

root property prevails. In this case, the five-region policy simplifies to a three-region policy,

and Table 1.2 and Figure 1.2 simplify to the following Table 1.3 and Figure 1.3. However,

Ye and Duenyas (2007), dealing with the special case of our model with unrestricted order

sizes, identified an instance where a five-region policy emerges because the functions A1(·)

and A2(·) have multiple roots.

Table 1.3: Simplified optimal policy structure

x (−∞, b) [b, s] (s,∞)

g0(x) g̃1(x) g(x) g̃2(x)
y∗(x) B(x) x S(x)

order stay put salvage

!: starting IP

": optimal 
adjusted IP

#(!)

&(!)

Figure 1.3: Illustration of single period optimal policy structure

The following monotonicity properties enable further simplification when computing an

optimal policy.
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Proposition 1.3 (Monotonicity). (a) The functions B(·) and S(·) are increasing for all

n = N, . . . , 1.

(b) The optimal order-up-to level y∗(x) is increasing in x, almost everywhere, for all n =

N, . . . , 1. Lack of full monotonicity may occur in terms of downward jumps and these

may arise at the, at most finitely many, breakpoint values where the optimal policy

switches between ordering and staying put, or between staying put and salvaging.

(c) If the function g(·) is convex, b(·) is decreasing and s(·) is increasing.

Proof. (a) We prove the monotonicity of the function B(·); the proof for the function S(·)

is analogous. It suffices to show that the family of sets {B(x) : −∞ < x <∞} is increasing

in the standard partial order ≥p for subsets of a lattice, see Vives (2001) (p 23): for a pair

of sets B1,B2, B1 ≥p B2 if for any b1 ∈ B1 and b2 ∈ B2, sup(b1, b2) ∈ B1 and inf(b1, b2) ∈ B2.

Note that the feasibility intervals [x, x + C], subsets of the real line R, are increasing in

x. Since the minimand in (1.27) is independent of x, hence has decreasing differences in

(x, y), the monotonicity of the sets {B(x) : −∞ < x < ∞} follows from Theorem 2.3 (b),

in combination with Remark 10, in Vives (2001).

(b) An immediate corollary of part (a) is that y∗(·) is increasing on any interval on which

the optimal policy prescribes “ordering” or any interval on which it prescribes “staying

put”. The remaining characterization of the function y∗(·) is immediate.

(c) We prove that b(x) is decreasing in x. The monotonicity proof for s(·) is analogous.

Similar to the proof of part (a), define

Ω(x) = arg min
0≤q≤C1

{β1(x+ q) + g(x+ q)} (1.29)

and note that b(x) = inf Ω(x). Since g(·) is convex, it has increasing differences in (x, q).

Applying Theorem 2.3 (b) in Vives (2001) to a minimization problem, we get that the sets

{Ω(x) : −∞ < x <∞} are decreasing in the partial order ≥p, defined in the proof of part

(a). In particular, b(·) is decreasing as well.

Downward jumps of the function y∗(·) in a few points, may indeed occur, as exhibited

by the common Example in Shaoxiang and Lambrecht (1996) and Shaoxiang (2004): the
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order-up-to level exhibits a downward jump at x = 6. Note that this example pertains

to an infinite horizon model with stationary inputs, and hence, a fortiori, in finite horizon

models with non-stationary inputs.

In spite of the fact that the order-up-to policy y∗(·) fails to be perfectly monotone, the

structure in Proposition 1.3 may be exploited to simplify the dynamic programming calcu-

lations, no less than in models where perfect monotonicity can be shown. Assuming y∗(·) is

calculated on a grid {x1, x2, . . .}, we may exploit the fact that y∗(xi) ∈ [y∗(xi−1),∞)∪{xi}.

The convexity assumption of the function g(·) is usually satisfied in a true single-period

setting, where g(y) = L(y). Unfortunately, it often fails in multi-period settings. The

monotonicity of the function g(·) implies that every interval on which it is optimal to

order may be partitioned into two (possibly empty) subintervals: in the first subinterval, it

is optimal to order up to capacity; in the second subinterval the order quantity decreases.

Similarly, any interval in which it is optimal to salvage, may be partitioned into two (possibly

empty) subintervals: in the first subinterval, the salvage quantity increases; if this quantity

reaches the capacity level, there is a second subinterval on which the salvage quantity equals

the capacity level.

Based on Theorem 1.2 and the previous lemmas, we have the following three corollaries

that capture special cases where the optimal policy takes on simpler or more specific forms.

First, as mentioned, a setting without a salvage option corresponds with the parameter

choices β2 = −M,K2 = 0, C2 = ∞. In this case, s = ∞, and the four-region structure in

Table 1.2 reduces to three regions only. Similar simplifications due to s = ∞ arise in the

special cases discussed below.

Corollary 1.2 (No-Salvage Models). When there is no salvage option and g(·) ∈ SCC1K1,∞0,

the structure of the optimal policy in the one-period problem is displayed by the first three

columns in Table 1.2, since s =∞.

Corollary 1.3 (Uncapacitated Models). When C1 = C2 = ∞, part of the optimal policy

structure in Theorem 1.2 takes on simpler forms summarized by Table 1.4.
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Table 1.4: Special optimal policy structures when C1 = C2 =∞

(a) When K1 ≥ K2 (If K2 = 0, b = b̄ and the shaded column disappears)

x (−∞, b) [b, b̄) [b̄, s] (s, s] (s,∞)

g0(x) g̃1(x) min{g̃1(x), g(x)} g(x) min{g̃2(x), g(x)} g̃2(x)
y∗(x) B {B, x} x {S(x), x} S

(b) When K1 ≤ K2 (If K1 = 0, s = s and the shaded column disappears)

x (−∞, b) [b, b̄) [b̄, s] (s, s] (s,∞)

g0(x) g̃1(x) min{g̃1(x), g(x)} g(x) min{g̃2(x), g(x)} g̃2(x)
y∗(x) B {B(x), x} x {S, x} S

(c) When K1 = K2 = 0

x (−∞, B) [B,S] (S,∞)

y∗(x) B x S

Proof. In this case we clearly have

B(x) = inf{arg min
y≥x

{β1y + g(y)}} = B, for x ≤ B;

S(x) = inf{arg min
y≤x

{β2y + g(y)}} = S, for x ≥ S.

By Proposition 1.2 (ii), for x < b ≤ B, y∗(x) = B; for x > s ≥ S, y∗(x) = S. This verifies

the structure in the two outer regions for both K1 ≥ K2 and K1 ≤ K2. For the shaded

regions in subtable (a) and (b):

• When K1 ≥ K2, , b̄ ≤ B by Proposition 1.2 (iii), hence for any x < b̄ ≤ B, g0(x) =

g̃1(x) and y∗(x) = B. Specially, if K2 = 0, Proposition 1.2 (iv) indicates b = b̄, and

the shaded region in Table 1.4 (a) does not exist.

• When K1 ≤ K2, S ≤ s by Proposition 1.2 (iii), hence for any x > s ≥ S, g0(x) = g̃2(x)

and y∗(x) = S. Specially, if K1 = 0, Proposition 1.2 (iv) indicates s = s, and the

shaded region in Table 1.4 (b) does not exist.

For the special case where K1 = K2 = 0, as given by subtable (c) simply follows from

Proposition 1.2 (iv).

When there are no capacity limits but a fixed cost for ordering or salvaging does exist

(as in subtables (a) and (b)), the following simplifications arise: the two outer regions have
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simple constant order-up-to and salvage-down-to levels B and S, respectively. Depending

on the relative size of K1 and K2, the second or fourth region also has a specific target

adjustment level. Finally, when either K1 or K2 is zero, the second or fourth region does

not exist. This makes the corresponding ordering or salvaging decision a simple “(s, S)”–

type policy. Furthermore, when there are no fixed costs, subtable (c) displays a three-region

structure where both ordering and salvaging decisions become “base stock”–type policies.

The characterization in Table 1.4 is similar to that in Theorem 1 in Ye and Duenyas

(2007), with additional simplifications indicated when one or both of the fixed costs are

zero, see also Semple (2007). Dai and Yao (2013) consider a continuous review variant

of this model where the demand process is given by a Brownian motion; the authors also

confine themselves to stationary models under the long-run average cost criterion, further

assuming that L = 0. For this case, they establish optimality of the following 4 threshold

policy: there exist threshold d < D < U < u, such that inventory is increased (decreased)

to D (U) when it reaches the level d (u); no inventory adjustment is made as long as the

inventory level resides in (d, u).

Corollary 1.4 (No-Fixed Costs Models). When either K1 = 0 or K2 = 0, part of the

optimal structure can be characterized with more specificity, as is shown in Table 1.5, in

which

B̄(x) = inf{ arg min
b̄≤y≤x+C1

{β1y + g(y)}, for x ≥ b̄− C1;

S(x) = sup{ arg min
x−C2≤y≤s

{β2y + g(y)}, for x ≤ s+ C2;

1+
b = 1(b > b̄− C1), 1−b = 1(b < b̄− C1);

1+
s = 1(s > s+ C2), 1−s = 1(s < s+ C2).

Proof. We first consider the case where K2 = 0; the case where K1 = 0 is symmetric and

can be shown similarly. When K2 = 0, by Lemma 1.3 (i), β1x+ g(x) is strictly decreasing

on (−∞, b̄).

34



Table 1.5: Special optimal policy structures (partly) when K1 = 0 or/and K2 = 0

(a) When K2 = 0. (Structure on [b̄,∞) same as in Table 1.2)

x (−∞,min{b̄− C1, b}) [min{b̄− C1, b},max{b̄− C1, b}) [max{b̄− C1, b}, b̄)

g0(x) g̃1(x) g̃1(x) min{g̃1(x), g(x)}
y∗(x) x+ C1 {x+ C1, x}1−b + B̄(x)1+

b {B̄(x), x}

(b) When K1 = 0. (Structure on (−∞, s] same as in Table 1.2)

x (s,min{s+ C2, s}] (min{s+ C2, s},max{s+ C2, s}] (max{s+ C2, s},∞)

g0(x) min{g̃2(x), g(x)} g̃2(x) g̃2(x)
y∗(x) {S(x), x} {x− C2, x}1+

s + S(x)1−s x− C2

(c) When K1 = K2 = 0 and C1 <∞, C2 =∞. (Structure on [b̄,∞) same as in Table 1.2)

x (−∞, b̄− C1) [b̄− C1, b̄)

g0(x) g̃1(x) g̃1(x)
y∗(x) x+ C1 b̄

• x < min{b̄−C1, b}. x < b implies that g0(x) = g̃1(x) by the general optimal policy in

Table 1.2. Since β1y + g(y) is strictly decreasing on (−∞, b̄) and x+ C1 < b̄, clearly

y∗(x) = x+ C1.

• min{b̄− C1, b} ≤ x < max{b̄− C1, b}. It is presumed that b̄− C1 6= b since otherwise

this interval is empty and there is nothing to show. Then there are two cases to

consider:

(a) b < b̄ − C1. The interval is b ≤ x < b̄ − C1. Clearly x ∈ [b, b̄) so g0(x) =

min{g̃1(x), g(x)} by the general optimal policy in Table 1.2. By the same argu-

ment as in the previous interval, if an order is placed, it is optimal to place a full

capacity order. Therefore y∗(x) ∈ {x+ C1, x}.

(b) b > b̄−C1. The interval is b̄−C1 ≤ x < b. Again x < b implies that g0(x) = g̃1(x)

by the general optimal policy in Table 1.2. Since b̄ ≤ x + C1 and β1y + g(y) is

strictly decreasing on (−∞, b̄), y∗(x) = B̄(x).

• max{b̄−C1, b} ≤ x < b̄. Clearly x ∈ [b, b̄) so g0(x) = min{g̃1(x), g(x)} by the general

optimal policy in Table 1.2. Since b̄ ≤ x + C1 and β1y + g(y) is strictly decreasing
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on (−∞, b̄), if it is optimal to place an order then y∗(x) = B̄(x) ∈ [b̄, x + C1]. Thus,

y∗(x) ∈ {B̄(x), x}.

Next we prove the optimal policy structure given by Table 1.5 (c) under K1 = K2 = 0

and C1 <∞, C2 =∞. Notice that this is a special case of subtable (a), where we also have

K1 = 0 and C2 =∞. We only need to show b = b̄ = B̄(x),∀x ∈ [b̄−C1, b̄] so that subtable

(a) becomes subtable (c). First we show β1x+ g(x) is increasing on (b̄,∞), which directly

implies B̄(x) = b̄,∀x ∈ [b̄− C1, b̄] by the definition of B̄. To see this, it follows from (1.20)

and K1 = 0 that for any x > b̄ and y ∈ [x, x+ C1],

A1(x) ≥ 0⇒ β1y + g(y)− β1x ≥ g(x)⇔ β1x+ g(x) ≤ β1y + g(y).

Then we show b = b̄. By Lemma 1.3 (i), β1x + g(x) is strictly decreasing on (−∞, b̄).

Therefore for any x ≤ b̄− C1,

β1x+ g(x) > β1y + g(y)⇒ β1y + g(y)− β1x < g(x), ∀y ∈ (x, x+ C1]

⇒ g̃1(x) < g(x)⇒ A1(x) < 0.

This implies b ≥ b̄− C1 noticing the definition of b in (1.18). Suppose b̄− C1 ≤ b < b̄. By

the definition of b and b̄ in (1.18) there exist x and y such that b̄−C1 ≤ b ≤ x < y < b̄ and

A1(x) ≥ 0, A1(y) < 0. It is shown above that B̄(s) = b̄,∀s ∈ [b̄− C1, b̄], hence

g̃1(x) = β1b̄+ g(b̄)− β1x, g̃1(y) = β1b̄+ g(b̄)− β1y.

Therefore

A1(x) ≥ 0⇒ g̃1(x) ≥ g(x)⇒ β1b̄+ g(b̄)− β1x ≥ g(x),

A1(y) < 0⇒ g̃1(y) < g(y)⇒ β1b̄+ g(b̄)− β1y < g(y),

which imply the following obvious contradiction:

β1b̄+ g(b̄) ≥ β1x+ g(x) > β1y + g(y) > β1b̄+ g(b̄),

where the middle inequality follows from Lemma 1.3 (i) as x < y < b̄. Hence, b = b̄.

Observe that B(x) [S(x)] denotes the optimal inventory position to order up to [salvage

down to] when the period is started with an inventory position of x units and assuming
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one is committed to initiate an order [a salvage batch]. B̄(x) [S(x)] restricts the choice for

the optimal order-up-to [salvage-down-to] levels to those above [below] b̄ [s]. Corollary 1.4

shows that, when K2 = 0, the (ordering) half line (−∞, b̄) may be partitioned into three

intervals, see Table 1.5 (a): in the left most interval, it is optimal to place a maximum

size order and in the right most interval, it is optimal to place an order or to stay put

(but salvaging is suboptimal). In the middle interval, it is optimal to place an order when

b > b̄− C1; when b ≤ b̄− C1, it is optimal to either place a maximum size order (C1) or to

stay put. A similar specification may be provided for the (salvage) half line (s,+∞) when

K1 = 0, see Table 1.5 (b). When K1 = K2 = 0 and C1 <∞, C2 =∞, Table 1.5 (c) shows

that the (ordering) half line (−∞, b̄) displays a modified base-stock policy for the ordering

decision.

1.5 The multi period problem.

The (C1K1, C2K2)-convexity is preserved under the minimization operations specified by

(1.13)–(1.15). This enables us to extend the structural results, above, to general multi-

period planning horizons.

Proposition 1.4 (Preservation of strong (C1K1, C2K2)-convexity). Assuming β1 ≥ β2, if

g(·) is strongly (C1K1, C2K2)-convex, then

g1(x) = min
y∈[x,x+C′1]

{K1δ(y − x) + β1(y − x) + g(y)},

g2(x) = min
y∈[x−C′2,x]

{K2δ(x− y) + β2(y − x) + g(y)},

g0(x) = min{g1(x), g2(x)}

are also strongly (C1K1, C2K2)-convex for any C ′1 ≥ C1, C
′
2 ≥ C2.

We are now ready for our main result.

Theorem 1.3 (Multi Period Optimal Policy Structure). (a) Assume f0(·) ∈ SCC0K0,Cv0K
v
0

and f0(x) = O(|x|p) for some integer p ≥ 1. Then fn(x) ∈ SCCnKn,CvnK
v
n

and fn(x) =

O(|x|p) for n = N,N − 1, . . . , 1.
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(b) In each period n = N,N − 1, . . . , 1, the optimal policy structure is as defined in The-

orem 1.2 and Proposition 1.3 (a) and (b), with g1(·) = f1
n(·), g2(·) = f2

n(·), g0(·) =

fn(·), β1 = cn, β2 = cvn,K1 = Kn,K2 = Kv
n, C1 = Cn, C2 = Cvn and g(y) = Ln(y) +

αEfn−1(y −Dn).

Proof. (a) We prove this theorem by induction. By our assumption, the theorem holds

for n = 0. Suppose the result holds for period n − 1, i.e., fn−1(·) ∈ SCCn−1Kn−1,Cvn−1K
v
n−1

and fn−1(x) = O(|x|p). We first prove that fn(x) = O(|x|p). Since fn−1(x) = O(|x|p),

there exists a constant A > 0 such that |fn−1(x)| ≤ A|x|p; so that |Efn−1(y − Dn)| ≤

AE|y −Dn|p ≤ AE(|y| + Dn)p = A
∑p

l=0

(
p
l

)
EDp−l

n |y|l ≤ Bmax{|y|p, 1} for some constant

B > 0. Since Ln(y) = O(|y|p) by Assumption 1.2 (i), there exists a constant C > 0 such

that |Ln(y)| ≤ C|y|p. Let y∗(x) achieve the minimum in (1.9), then |f1
n(x)| ≤ Kn+ cn|y∗|+

|Ln(y∗)|+αB|y∗|p ≤ Kn + cn(|x|+Cn) +C(|x|+Cn)p +αBmax{1, (|x|+Cn)p} = O(|x|p),

thus f1
n(x) = O(|x|p). By similar argument, f2

n(x) and hence fn(x) are also O(|x|p).

We then approve that fn(x) ∈ SCCnKn,CvnK
v
n
. Since fn−1(·) ∈ SCCn−1Kn−1,Cvn−1K

v
n−1

, by

Lemma 1.1 (iii), (iv) and Assumption 1.3,

αEfn−1(y −Dn) ∈ SCCn−1(αKn−1),Cvn−1(αKv
n−1) ⊂ SCCnKn,CvnKv

n
. (1.30)

Since Ln(·) is convex, by Lemma 1.1 (iii) we have

g(y) = Ln(y) + αEfn−1(y −Dn) ∈ SCCnKn,CvnKv
n
. (1.31)

It then follows from Proposition 1.4 that f1
n(·), f2

n(·), fn(·) ∈ SCCnKn,CvnKv
n
.

(b) Immediate from Theorem 1.2 and Proposition 1.3 (a) and (b).

Pursuant to Proposition 1.3 in Section 1.4, we discussed the implications of the every-

where monotonicity property of Proposition 1.3 (a), and the almost everywhere monotonic-

ity property of Corollary 1.3 (b). The same observations pertain to the general multi-period

setting. Proposition 1.3 (c) fails to apply to the general multi-period model, since the con-

vexity assumption, there, typically fails.
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1.6 The infinite horizon model: minimizing total expected

discounted costs as well as long-run average costs.

In this section, we prove that all of our structural results carry over to stationary infi-

nite horizon models, assuming either the present value of all costs and revenues is to be

minimized, or the long-run average cost value.

In extending our results from finite horizon to infinite horizon models, we follow the

approach in Huh et al. (2011), closely; we therefore adopt much of the notation there.

A deterministic Markov policy δ is a sequence of decision rules {δ1, δ2, . . . , } such that in

period t, δt prescribes a specific feasible action to any potential state of the system. Under

a given Markov policy δ and starting state s, let φ(St, At) denote the net costs charged

in period t when St is the state of the system, and At the action (order size, salvage

batch) chosen, then. Let Jα(δ, s) = Eδ[
∑∞

t=1 α
tφ(St, At)] denote the expected infinite-

horizon present value of costs under policy δ when starting in state s. A policy δα is called

discounted cost optimal under a given discount factor α, if, simultaneously, for every starting

state s ∈ S,

Jα(δα, s) = inf
δ
Jα(δ, s).

The long-run average cost under a Markov policy δ and starting state s ∈ S is defined as

Φ(δ, s) = lim sup
T→∞

1

T

T∑
t=1

φ(St, At).

A stationary policy δ∗ is long-run average cost optimal if, simultaneously for all s ∈ S

Φ(δ∗, s) = inf
s′∈S

inf
δ

Φ(δ, s′).

We show the existence of a stationary discounted cost optimal policy, for any discount

factor α < 1, as well as the existence of a stationary long-run average cost optimal policy

and the even stronger preservation property establishing a strong relationship between the

two optimality criteria. We show that our model has the preservation property in that there

exists a stationary policy δ∗ satisfying the following properties.

(i) δ∗ is “long-run average cost optimal” stationary in the sense that

Φ(δ∗, s) = inf
s′∈S

inf
δ

Φ(δ, s′) (1.32)

39



for all s ∈ S, and

(ii) δ∗ is “limit discount optimal” in the following sense: for any starting state s and any

αm ↑ 1, there exit a subsequence {αmk} and a sequence {sk} converging to s such that

δ∗(s) = lim
k→∞

δαmk (sk). (1.33)

Theorem 1.4 (Infinite Horizon Optimality). (a) (Discounted Cost Optimality) For every

0 < α < 1, there exits a sequence of finite-horizon optimal policies {δα(·)} that con-

verges point-wise to a discounted cost optimal policy δα(·) as T approaches ∞. The

discounted optimal policy δα(·) has the structure described in Theorem 1.3.

(b) (Long-Run Average Cost Optimality) There exits a stationary long-run average cost

optimal policy δ∗. Moreover, the preservation property described in (1.32) and (1.33)

holds.

Theorem 1.4 corresponds with Theorem 3.1 in Huh et al. (2011) where it is shown to hold

for any inventory management Markov Decision Process (MDP) that satisfies Assumptions 1

and 2, as well as Condition (SC) there. The authors show that under these three conditions,

the MDP satisfies the conditions in Schäl (1993). The framework addressed in Huh et al.

(2011) is very broad and, in some ways, more general than the broad model addressed in this

chapter: it allows for demand distributions and capacity values that are Markov modulated,

i.e., determined by an underlying world state variable which evolves according to a given

Markov chain; it also allows for combined inventory control and pricing problems, where,

as discussed in Section 1.2, in each period a price level is chosen along with an inventory

adjustment and where the price level may impact the demand distribution. However, Huh

et al. (2011) did not allow for salvage opportunities, i.e., bilateral inventory adjustments.

To ensure that Assumption 1 in Huh et al. (2011) is satisfied, we merely require the

additional Assumption:

Assumption 1.5. In the stationary infinite-horizon model, per definition, the sequence

{Dn} is assumed to be i.i.d. as a random variable D, and Cn = C for all n. Moreover,

ED < C.
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The restriction ED < C is, of course, necessary to ensure that the inventory process can

be governed in a way that it remains stable and the long-run average costs remain finite.

See Federgruen and Zipkin (1986b) for a more detailed discussion in the special case where

no salvage opportunities exist and no fixed inventory adjustment costs are incurred.

Assumption 2 in Huh et al. (2011) requires us to limit the type of expected holding and

backlogging cost functions that may be used:

Assumption 1.6. L(y) = Eh((y − Dl+1)+) + Ep((Dl+1 − y)+), where h(·) and p(·) are

bounded from below and above by affine functions, i.e., strictly positive constants h, h̄, p, p̄

exist with

h ≤ h(z′)− h(z′′)

z′ − z′′
≤ h̄, p ≤ p(z′)− p(z′′)

z′ − z′′
≤ p̄

for any pair of distinct nonnegative numbers z′ and z′′.

The holding and backlogging cost structure in Assumption 1.6 is the commonly used

structure, both in the literature and in practice. However, some models allow for h(·) and

p(·) that grow superlinearly, but are bounded by a polynomial function of a higher degree,

as in Assumption 1.2. This generalization will be discussed in Section 1.8.

To prove Theorem 1.4, it therefore suffices to be shown that Condition (SC) in Huh

et al. (2011) is satisfied. We need some additional notation. Let

X0
t = the inventory level at the beginnning of period t after any inventory adjustments

initiated L periods earlier

X l
t = X0

t + inventory adjustments to take effect within the next l periods, l = 1, . . . , L− 1,

XL
t = yt = X0

t + all inventory adjustments to take effect within the next L periods.

A function g : Rn → R is a symmetrically linearly bounded above (SLBA) function if

there exist positive scalers ζ and ρ such that g(x) ≤ ζ + ρ‖x‖ with ‖x‖ the 1-norm of x.

A function g : Rn → R is a symmetrically quadratically bounded above (SQBA) function if

there exist positive scalers ζ, ρ and ξ such that g(x) ≤ ζ + ρ‖x‖+ ξ(‖x‖)2.

Condition 1.1 (Condition (SC)). Let X = (X0, X1, . . . , XL−1) be an arbitrary vector of

inventory levels in any given period. There exist constants M̄ ≥ 0 and M ≤ 0 satisfying

the following.
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(a) Let X′ = (X ′0, X ′1, . . . , X ′L−1) denote an inventory vector identical to X except for one

component, say l ∈ {0, . . . , L− 1}. There exists a a real-valued function ηl(X,X′) with

the following properties.

(i) For any Markov policy δ, there exists a Markov policy δ′ such that for all N ≥ 1:

JN (δ′,X′) ≤ JN (δ,X) + ηl(X,X′),

where JN (δ,X) [JN (δ′,X′)] denotes the expected total costs over a planning hori-

zon of N periods when starting with the inventory vector X [X] and following

policy δ [δ′].

(ii) If X l ≥ M̄ and X ′l = I l − 1, then ηl(X,X′) ≤ 0.

(iii) If X l < I ′l ≤M , then ηl(X,X′) ≤ 0.

(iv) If I l = 0, then ηl(X,X′) is a SQBA function of X′l.

(b) Let XL be such that y = XL > max{M̄,XL−1} and let δ be any Markov policy. Then,

there exists an action X ′L = y′ such that XL−1 ≤ X ′L ≤ max{M̄,XL−1} and a policy

δ′ such that for any N ≥ 1,

JN (X ′L, δ′,X) ≤ JN (XL, δ,X),

where JN (XL, δ,X) [JN (X ′L, δ′,X)] denotes the expected total costs over a planning

horizon of N periods when the initial inventory vector is X and the initial inventory

position is set to XL [X ′L].

The following Lemma shows that Condition (SC) is, indeed, satisfied. Together with

Assumption 1.6 this provides the proof for Theorem 1.4.

Lemma 1.4. Condition (SC) holds under Assumptions 1.1–1.6.

As pointed out in Huh et al. (2011), the preservation property establishes that, for any

discount factor 0 < α < 1, a discounted cost optimal stationary policy exists and that this

policy inherits the structural properties established in Theorem 1.3. As far as the long-

run average cost policy δ∗ is concerned, the preservation property “however, is, in itself,
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insufficient to show that δ∗ inherits the structural properties” in Theorem 1.3. However,

the proof of the long-run average cost policy δ∗ sharing these properties can be complicated,

with similar arguments as those employed in Section 5 of Huh et al. (2011) for the inventory

models addressed there.

1.7 Easily implementable heuristics: numerical examples

The structure of the optimal policy may be too complex for implementation, in several

managerial settings. This applies, in particular, to the most general model where there

may be intervals on which the order-up-to or salvage-down-to quantity is given by general

non-linear functions {Bn(·), Sn(·)}. One recommendation is to replace these functions by a

linear (or possibly piecewise linear) function, far more easily understood and accepted.

More specifically, it is easily verified that in any period n = N, . . . , 1, values Ln < Un

exist such that y∗n(xn) = Cn for all xn < Ln, and y∗n(xn) = x − Cvn for all x > Un.

Procurement models are typically solved on a rolling-horizon basis and only the policy rule

pertaining to the first period, period N , needs to be implemented. In case the functions

{BN (·)} and {SN (·)} have nonlinear components, replace, on [LN , UN ], y∗N (·) by ỹN (·)

as follows: on any interval [x, x̄] in which the optimal policy prescribes an order [salvage

quantity], throughout, replace the curve corresponding with {y∗N (·)} by the line connecting

(x, y∗N (x)) and (x̄, y∗N (x̄)). On all other intervals, maintain the policy rule y∗N (·) without

any modifications.

As mentioned, the second and fourth interval in Table 1.2 and Figure 1.2 vanish when

the functions A1(·) and A2(·) have at most one root. In all of our numerical experience,

this is always the case, reducing the policy structure to that in Table 1.3 and Figure 1.3.

Moreover, in all of our numerical experience dealing with unimodal demand distributions,

the complexity of a nonlinearB(·) or S(·) function never arises, so that the above suggestions

for a simplified policy structure never applied, because the structure of the exact optimal

policy {y∗n(·)} is already of the desired, simple (piecewise linear) form. The possibility of

nonlinear B(·) functions was exemplified by Gallego and Scheller-Wolf (2000) dealing with

the special case of our model, where salvaging is not an option. The authors identified
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one such instance by entertaining an artificial demand distribution with {1, 6, 7} as its

three-point support such that P[D = 1] = P[D = 7] = 0.15 and P[D = 6] = 0.7.

We illustrate our results with a set of 13 instances obtained by the systematic variation

of 7 key parameters in the model. All instances use stationary data and demand distri-

butions. All demand distributions are Normals truncated at zero. The 13 instances share

the parameters h = 1,ED = 5,Kv = 2, Cv = 10, cv = 1.3. The remaining parameters are

specified in Table 1.6.

Table 1.6: Parameter setting for numerical studies

Scenario K C c α l p σ

base case 2 10 3 1 2 5 2
high fixed ordering cost 10 10 3 1 2 5 2
low fixed ordering cost 0 10 3 1 2 5 2

large order capacity 2 20 3 1 2 5 2
small order capacity 2 2 3 1 2 5 2

high unit ordering cost 2 10 20 1 2 5 2
low unit ordering cost 2 10 1.5 1 2 5 2

small α 2 10 3 0.7 2 5 2
long lead time 2 10 3 1 5 5 2
zero lead time 2 10 3 1 0 5 2

high service level 2 10 3 1 2 49 2
volatile demand 2 10 3 1 2 5 5
stable demand 2 10 3 1 2 5 0.5

The base case example is illustrated by Figure 1.4, in which we display the function

y∗N (·) on the left panel and the value functions fN (·), f1
N (·) and f2

N (·) on the right panel.

For x < 9, it optimal to place a maximum size order; for 9 ≤ x < 16, it is optimal to order

up to the level 19. For 16 ≤ x ≤ 32 it is optimal to stay put, and for 32 < x < 38, it

is optimal to salvage down to the level 28. Finally for x ≥ 38 it is optimal to initiate a

maximum salvage quantity. Parallel figures for the remaining 12 instances are contained

in the online appendix. Note that y∗N (·) is piecewise linear in all instances so that the

suggested policy simplifications do not need to be undertaken.
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Figure 1.4: A numerical example of optimal policy and value functions

1.8 Concluding remarks.

This chapter analyzes a general periodic review inventory planning model that allows for

the simultaneous treatment of three prevalent complicating factors: (a) bilateral inventory

adjustments, (b) capacity limits for such adjustments, and (c) fixed costs for any such

adjustments. Prior literature has addressed only subsets of these complications. We char-

acterize the structure of an optimal policy, both for finite and infinite horizon models. We

also show that earlier structural results can be obtained as corollaries of our general theory.

The analyses are enabled by the identification of a new convexity property that generalizes

all existing ones, as in Table 1.1.

It is of interest to generalize our results further. Specific directions include combined

inventory control and pricing models, i.e., allowing the demand distribution to be endoge-

nously controlled, for example by the dynamic selection of a price level. This would gen-

eralize the work of Federgruen and Heching (1999) and Chen and Simchi-Levi (2004a,b)

which fail to allow for inventory reductions or capacity limits.

We are also confident that some of the technical restrictions can be relaxed, for ex-

ample Assumption 1.6. Assumption 1.2 ensures that the Ln(·) functions are polynomially

bounded. It should be possible to eliminate Assumption 1.6 by generalizing Condition (SC)
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in Huh et al. (2011) to allow for cost differentials η(·, ·) that are “symmetrically polynomially

bounded above”.
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Chapter 2

Dual Sourcing under Capacity Limits, Fixed Costs and Salvage

Opportunities

2.1 Introduction and Summary

Manufacturing companies and retail chains often have access to two alternative supply

sources for component parts, product modules, finished goods or supply materials. One

source is typically low cost but has long lead times, whereas the other provides quicker

response but at a higher price. When designing its procurement process, the purchaser

may select one of the two sources as its exclusive supplier. Alternatively, it may opt for a

dual sourcing strategy which procures from both sources. In the latter case, the challenge

is to determine how and when each of the sources is to be used, as a function of the

dynamically evolving inventory information. We address this question within a general

model that incorporates economies of scale with respect to the order costs, capacity limits

for individual orders and opportunities to reduce inventory via salvage sales.

The above strategic dilemmas arise, first and foremost, when firms decide on offshoring

vs onshoring options. In the past few decades, there has been a consistent trend to offshore.

However, the trend has recently been reversed, as companies have come to realize that, along

with other sourcing considerations, price savings associated with offshore options need to

be traded off against increased inventory costs and stockout risks due to the larger lead

times involved. Longer lead times translate into a need for larger safety stocks, under a

given targeted service level, or inferior service levels under given inventory investments. In

contrast, onshore procurement from a local or nearby market is fast but typically incurs a

higher purchase price or manufacturing cost.

Moreover, many companies have come to realize that a hybrid approach employing two
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or more suppliers, simultaneously, is, frequently, considerably more effective than one which

relies on a single supplier, see e.g. Scheller-Wolf et al. (2007).

Within the operations management community, several authors have reported on spe-

cific company settings where dual sourcing is employed. These include Beyer and Ward

(2002) reporting on Hewlett-Packard’s strategy for manufacturing servers and Rao et al.

(2000) on Caterpillar’s for compact worktools sold in the North American market. Allon

and Van Mieghem (2010a) report on a $10 billion high-tech US manufacturer of wire-

less transmission components with two assembly plants, one in China and one in Mexico.

The authors identify a heuristic dual sourcing strategy, which, in their application, saves

up to 20% over the best single sourcing strategy. Based on this application, Allon and

Van Mieghem (2010b) developed a teaching game, see also Van Mieghem and Allon (2015).

The study of periodic review, dual sourcing inventory models starts with four papers

in the early sixties, assuming independent demands, full backlogging of stockouts, and two

suppliers with different lead times and different per-unit procurement prices. Other than

linear order costs, there are holding and backlogging costs assumed to be convex in the

end-of-the-period inventory and backlog levels, respectively.

Fukuda (1964) showed that a dual base stock policy, which acts on a single inventory

measure, is optimal in this model, as long as the lead time of the slower supplier is exactly

one period longer than that of the expedited supplier. (We refer to this as the consecutive

lead time case). Under this policy, one starts by determining the size of the order to

be placed with the expedited supplier, if any. This order is determined by a base-stock

(order-up-to) policy acting on the (full) inventory position = the inventory level plus all

outstanding orders. After the order with the expedited supplier is added to this inventory

position measure, a second base-stock policy is applied to determine the order size with the

slower supplier (if any).

Under arbitrary lead times, Whittemore and Saunders (1977) showed that no procure-

ment strategy, acting on a single or even two inventory measures (so-called indices) needs

to be optimal. As a consequence, many heuristic policies were proposed, mostly in the past

decade, to handle the general lead time case. See Sun and Van Mieghem (2017) for a recent

survey.
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However, to our knowledge, little progress was made to include important generalizations

and complicating factors that arise in practice and have become part of standard single

sourcing inventory models, by themselves or in various combinations; in particular:

(a) fixed order costs and (b) capacity limits associated with the orders with the two sup-

pliers.

An additional generalization is

(c) the ability to decrease the inventory level by salvaging a given quantity through sales

in a secondary channel (jobbers, discounters, outlet stores, etc.).

In view of the Whittemore and Saunders (1977) result, we, initially, confine ourselves

to the consecutive lead time case. We must also assume that, when applicable, the lead

time for a salvage transaction equals the order lead time of one of the two suppliers. This

is a natural assumption when salvaging involves returning items to this supplier; in other

settings, however, the lead time assumptions may be restrictive. Section 2.5 therefore

discusses effective heuristics for general lead time combinations.

We show that a single index policy continues to be optimal for this very general model

that incorporates the three complications (a)–(c), simultaneously. (The remaining model

assumptions are standard and identical to those employed in the above-mentioned literature

on dual sourcing models.) In each period, one first determines the size of an order with

the expedited supplier, if any, or the size of any salvage quantity, based, exclusively, on the

regular full inventory position. Thereafter, the inventory position is adjusted upward (by

the expedited supplier order) or downward (by the salvage quantity); any order with the

regular supplier is then determined as a function of the adjusted inventory position.

Moreover, under some parameter restrictions, the dependence of the optimal order sizes

and/or salvage quantity on the period’s starting inventory position follows a relatively

simple structure. In the most general case, the optimal policy is characterized by four

critical threshold levels of the inventory position: be ≤ b̄e ≤ se ≤ se partitioning the

inventory position line into 5 consecutive regions. In the middle range [b̄e, se], it is optimal

to forgo both an order with the expedited supplier, as well as any salvage activity. In the

far-left (-right) region (−∞, be) [(se,∞)], it is optimal to place an order with the expedited

supplier [to initiate a salvage sale], the size of which varies as a non-linear function of the
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inventory position. This leaves us with the remaining pair of intervals [be, b̄e) and (se, se].

In the former, one alternates between sub-intervals with a positive order and those where

it is optimal to stay put; however, salvaging is not to be considered in this interval [be, b̄e).

Similarly, one alternates on (se, se] between sub-intervals where it is optimal to stay put

and those where it is optimal to initiate a salvage batch; however, ordering does not need

to be considered. We identify a simple condition under which the second and fourth regions

vanish, giving rise to an even simpler three-region policy.

As far as the second stage ordering decision with the regular supplier is concerned, the

optimal policy is characterized by two threshold parameters, br, b̄r partitioning the adjusted

inventory position line in up to three regions. The structure of the optimal strategy within

these regions is identical to those of the first stage decision in the three left most intervals;

see Figure 2.1.

order order/
stay put

stay put salvage/
stay put salvage

Starting IP

Expedited IP

JQ($)

K($)

;Q ;PQ GQ GQ
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stay put

stay put
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Regular IP
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:
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:

Note. The solid line is the 45° line through the origin, shifted by the capacities C and Cv to

obtain the dotted lines.

Figure 2.1: General optimal policy structure

Even simpler and more pronounced structures arise in various special cases; where only

a subset of the complications (a)–(c) prevails, or where some model parameters take on a

specific value, for example, when either orders or salvage sales can be initiated without a

fixed cost.

For general lead time combinations, we propose and evaluate effective heuristics; see
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Section 2.5. We also conduct various numerical studies to illustrate and evaluate these

heuristics, and to draw managerial insights.

Here are some of the key managerial insights: The benefits of dual sourcing may be in

excess of 10%, and even as large as 30%. They increase as the lead time, and hence the

relative value of the expedited supplier, increases. These savings are achieved even though

the expedited supplier is used infrequently and for a small part of the total purchase volume.

The benefits are larger in capacitated versus uncapacitated systems, and in systems in which

the fixed procurement costs are relatively low. These findings explain the current trend to

complement offshore production factories with onshore smaller “SpeedFactories”, see Boute

et al. (2019). Finally, the benefits of dual sourcing increase as a higher service level [demand

volatility] is targeted [experienced].

The remainder of this paper is organized as follows. In Section 2.2 we give a review of

the literature on multi-sourcing procurement strategies. Section 2.3 shows, under the above

lead time restrictions, how the general dual sourcing problem can be reduced to a tractable

single sourcing problem. In Section 2.4, we derive under some parameter restrictions, the

structure of the optimal dual sourcing policy both in the most general and in various

special cases. Based on these structural results, we develop, in Section 2.5, our proposed

heuristics for general lead time combinations. Numerical studies in Section 2.6 review

various managerial insights. Section 2.7 contains concluding remarks.

2.2 Literature Review

In this section, we review the literature on dual sourcing stochastic inventory models. As

mentioned in the Introduction, the 60-year-old literature has mostly focused on a base

periodic review model with independent demands, full backlogging of stockouts, linear order,

holding and backlogging costs, and two potential uncapacitated suppliers, differentiated by

their per-unit procurement price and lead times. This workhorse model may be viewed as

the direct extension of the seminal single source model by Arrow et al. (1951).

Three papers in the early sixties, i.e., Barankin (1961), Daniel (1963) and Neuts (1964)

focused on the special case where the lead time of the expedited supplier is negligible (or
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zero), and that of the regular supplier exactly one period. Here, the optimal strategy

employs two base-stock levels: first, the period’s starting inventory level—including last

period’s regular order—is used by a simple base-stock policy to determine whether an order

is to be placed with the expedited supplier. Thereafter, a second base-stock policy is used

to determine the order with the regular supplier, if any, comparing the adjusted inventory

level (inventory level plus the new order with the expedited supplier) with a second base-

stock level. Fukuda (1964) extended this result to the case where the lead time of the

regular supplier is arbitrary and that of the expedited supplier one period shorter. The

same structural result continues to apply, except that the base-stock policies act on the

period’s starting inventory position, as opposed to the inventory level.

Whittemore and Saunders (1977) showed that no simple structure prevails for the gen-

eral case with non-consecutive lead times, i.e., lead times that differ by more than a single

period. In particular, the optimal policy needs to be based on more than one, or even any

constant number of inventory measures, or indices.

With this negative insight, the development of dual sourcing models was interrupted for

some 30 years. In the last decade, we have seen a plethora of papers suggesting and compar-

ing heuristic policies for the infinite horizon, stationary base model with general lead times.

This literature stream started with Veeraraghavan and Scheller-Wolf (2008) proposing the

use of dual index base-stock polices. Here, the first stage order to the expedited supplier

is determined by a base-stock policy acting on the so-called expedited inventory position,

consisting of the inventory level plus all outstanding orders to arrive within the expedited

supplier’s lead time from the current period. The second stage order with the regular sup-

plier is determined by a second base-stock policy acting on the full inventory position, the

current period’s order with the expedited supplier included. These authors compared the

cost performance of the best policy within their proposed class, with the overall optimal

policy. To this end, they conducted a numerical study assuming the demand distribution

has support on a few values only., so that the set of possible inventory levels can be limited

and the optimal policy can be found via dynamic programming, at least for small lead time

values. The authors report that their proposed dual index policy, in the majority of cases,

comes within 1% or 2% of optimality.
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The authors also consider capacity limits for the two suppliers. In this case, base stock

policies need to be replaced by “modified base-stock policies”, where an order is placed to

bring the relative inventory index as close as possible to the base-stock level. In the single

sourcing literature, such policies were shown to be optimal, see e.g. Federgruen and Zipkin

(1986a,b).

Scheller-Wolf et al. (2007) show that a single-index base-stock policy performs compara-

bly or even better than the dual index base-stock policy in Veeraraghavan and Scheller-Wolf

(2008). Under a single index base-stock policy, the order with the expedited supplier is de-

termined by a base-stock policy acting on the full inventory position, which includes all

outstanding orders, rather than the more limited “expedited” inventory position in Veer-

araghavan and Scheller-Wolf (2008). In Scheller-Wolf et al. (2007)’s numerical study, the

average difference between the cost values of the two heuristics is less than 0.5% and the

maximum difference no more than 3%. While the cost performance is almost identical be-

tween the two heuristics, the authors point at several major advantages of the single index

heuristic, including the fact that it is simpler and that the optimal base-stock levels can be

computed analytically, at “25–60 times faster” computational times.

Sheopuri et al. (2010) develop six alternative heuristic polices, some of considerably

more complex structure (for example, the vector-based base-stock policy and the “best

weighted” index policy). Their numerical study shows that each of the heuristics has an

average cost performance that comes within 1% of that of the dual index base-stock policy,

and hence of the single index base-stock policy, as well. These authors also show that the

single source lost-sales model can be viewed as a special case as the dual source model with

backlogging. Several of the structural properties identified by Zipkin (2008a) for the lost

sales model can therefore be generalized in the study of dual sourcing problems. In the

same spirit as Sheopuri et al. (2010), Hua et al. (2015) developed another class of heuristic

policies, again with comparable cost performance, in their numerical study.

Allon and Van Mieghem (2010a) proposed a Tailored Based-Surge (TBS) heuristic in

which a constant size order is placed with the regular supplier and a base-stock policy is

used for the expedited supplier. Janakiraman et al. (2015) analyzed this class of policies,

deriving optimality gap bounds when the demands consist of a regular base demand plus
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an infrequent surge demand. In a numerical study, similar to that in Veeraraghavan and

Scheller-Wolf (2008), they observed that the optimality gap of the best TBS policy varies

between 21% and 3.5%. Xin and Goldberg (2017) showed that a TBS policy is asymptot-

ically optimal when the lead time difference goes to infinity. Xin et al. (2017) extend the

results to a setting where the expedited supplier is unreliable, i.e., in any period the supplier

is with a given probability unable to fill any order. The authors evaluate the performance

of the TBS heuristic based on Walmart data. As mentioned in the Introduction, Allon and

Van Mieghem (2010b) developed the Mexico-China teaching game, based on the industrial

application which motivated their parallel paper. See also Chapter 7 in the prominent text-

book on Operations Strategy by Van Mieghem and Allon (2015) for a treatment of the dual

sourcing problem.

Sun and Van Mieghem (2017) developed a robust optimization approach for the base

dual sourcing problem. Under this approach, the problem can be formulated as a math-

ematical program, avoiding the curse of dimensionality associated with standard dynamic

programming formulations that aim at optimizing aggregate expected costs.

Very few papers address generalizations of the base model. A noted exception is Sethi

et al. (2003) who incorporates fixed order costs into the model with the one period lead time

difference. They show that, in each period, the order for the expedited supplier and that for

the regular supplier are to be determined sequentially, both on the basis of an (s, S)-policy

acting on the regular inventory position. We retrieve this result as one of the special cases

in our general model. Fox et al. (2006) also allow for fixed order costs but assume zero lead

time for the both suppliers. It is easily seen that this model reduces to a single sourcing

problem with a piecewise linear concave order cost. Boute and Van Mieghem (2015) add

capacity costs and order smoothing considerations into the base model.

A few papers have addressed dual sourcing problems in continuous review models. Moin-

zadeh and Schmidt (1991) and Song and Zipkin (2009) assumed demands are generated by

a Poisson process and a dual-index base-stock policy is applied. The former paper assumes

the lead times are deterministic while the latter allows for stochastic but exogenous lead

times. Moinzadeh and Schmidt (1991) characterize the steady-state inventory level distri-

bution and hence the long-run average cost for any (dual-index) base-stock policy. Song and
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Zipkin (2009) models the system as a queueing network with overflow by-passes and obtain

the steady-state distribution of the network in product form. Very recently, Zhou and Yang

(2016) extended their work by allowing for compound Poisson demands and fixed order

costs. These authors propose, as heuristic, a single index pair of (R,nQ)-policies. At each

demand epoch, one places an order with the expedited supplier iff the full inventory position

is below a reorder level Re; the order is sized as the smallest multiple of an order size Qe

which elevates the inventory position above Re. With this order added to the inventory

position, any order with the regular supplier is determined by a different (Rr, nQr)-policy.

All of the above continuous review papers make an upfront restriction to a specific

class of heuristic policies. However, the recent paper by Song et al. (2017), characterizes

the optimal policies in a setting with linear costs but endogenously determined stochastic

lead times, under a certain condition, and propose near-optimal heuristic policies when the

condition fails.

2.3 Dual Sourcing: Equivalency with a Single Sourcing

Model

We consider a single-item periodic review inventory system with two potential suppliers: a

regular and an expedited supplier. In each period, there may also be a salvage option to

reduce inventory, generating a given per-unit revenue or cost. The lead time for ordering

from the expedited supplier [regular supplier, salvaging] is le [lr, ls]. In the base model

we focus on the case where lr = le + 1 and ls = le.
1 (The condition ls = le applies

when both expedited orders and salvage transactions occur in negligible time, or when

salvaging involves returns to the supplier.) As explained in the Introduction, optimal order

and salvaging policies, that act on a single inventory measure each, can only be expected

under these lead time restrictions. Moreover, the structural results obtained for this special

case suggest effective heuristic adaptations under general lead time combinations. See

Section 2.5.

1The only other tractable case has ls = lr, using a similar analysis. Janakiraman and Seshadri (2017)
address this specific case, in a model without fixed cost or capacity limits and cvn = 0.
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We index the periods backward from 1 to N . The sequence of events in period n is

as follows: At the beginning of period n, an order may arrive from the expedited or the

regular supplier, or both. Such deliveries are added to the inventory level. The firm now

decides on new order sizes to be placed with each of the two suppliers as well as any salvage

quantity if it wants to reduce its inventory position. Stochastic demand is then realized and

satisfied with on-hand inventory. At the end of the period, any unsatisfied demand is fully

backlogged while leftover inventory is carried over to the next period. It is easily verified

that it is never optimal to simultaneously place an order with the expedited supplier and to

sell off a batch of inventory, since both inventory adjustments take effect in the very same

period.

We first introduce notation for the model primitives. For period n = N,N − 1, . . . , 0,

denote:

Ke
n,K

r
n = fixed cost for any expeditied and regular order, respecitively.

Cen, C
r
n = capacity limit for any expeditied and regular order, respectively.

cen, c
r
n = unit price charged by the expedited and regular suppliers, respectively.

(assuming cen > crn)

Kv
n, c

v
n, C

v
n = fixed cost, unit cost and capacity limit, respectively, when salvaging inventory.

Dn = stochastic demand.

α = discount factor, α ∈ [0, 1].

(Often, cvn < 0, reflecting salvage revenues.)

Assume {Dn, 1 ≤ n ≤ N} are independent random variables with general distributions.

Inventory and backlogging related costs will be introduced below. We impose the following

restrictions on the cost parameters. These restrictions are innocuous and merely preclude

arbitrage opportunities.

Assumption 2.1. For any period n, the unit order costs, the unit salvage revenue and

backlogging cost satisfy the restrictions: (i) cen ≥ cvn, and (ii) crn ≥ αcvn−1.

Assumption 2.1 (i) precludes the possibility of arbitrage opportunities where goods are

procured from the expedited supplier, to be sold at a premium via the salvage channel.
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Similarly, Assumption 2.1 (ii) precludes the possibility of buying units form the regular

supplier and initiating the sell-off of these units, at a profit, one period later.

The state and action variables, in period n, are given by:

xn = the inventory position at the beginning of period n

= the beginning inventory level, i.e., on-hand inventory minus backlogs, plus all

outstanding orders from both suppliers, exclusive of the current orders.

qen = the size of the expedited-channel inventory adjustment in period n.

qrn = the size of the order placed with the regular supplier in period n.

Note that qrn ≥ 0 while −∞ < qen <∞. qen ≥ 0 [qen < 0] represents the size of the expedited

order [salvage batch] initiated in period n.

Our ability to aggregate the order with the expedited supplier, with the amount to be

salvaged (a common lead time later), follows, by Assumption 2.1 (i), from the fact that

it is never optimal to initiate both a negative and a positive expedited-channel inventory

adjustment in the same period: if the net inventory position adjustment is positive [nega-

tive], one is better off reducing the expedited order [salvage batch] to the level of the net

inventory adjustment and canceling the salvage batch [expedited order].

The inventory position dynamics are given by

xn−1 = xn + qen + qrn −Dn.

Moreover, the inventory level In−le at the end of period n− le is given by

In−le = xn + qen −Dn,n−le , (2.1)

where Dn,m = Dn + Dn−1 + · · · + Dm is the aggregate demand in the time interval [n,m]

with m ≤ n.

Assuming the inventory and backlogging related costs depend on the end-of-period in-

ventory level sizes only—as in virtually all single-sourcing inventory models, the (single

dimensional) inventory position xn is a sufficient description of the state of the system. In-

stead of charging the actual inventory costs that arise at the end of period m (m = 1, 2, . . .)
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to that period, one obtains an equivalent representation of the controllable part of the to-

tal expected discounted cost by charging its expected value to the start of period m + le,

employing the stochastic identity (2.1). Thus for all n = 1, 2, . . . , N , let

Ln(xn + qen) = the expected value of all inventory and backlogging related costs

at the end of period n− le discounted back to period n.

We are now ready to formulate the dynamic programming recursions for our model. Let

fn(x) = the optimal discounted expected total costs in the last n periods of the planning

horizon, when period n is started with an inventory position x.

As mentioned, under Assumption 2.1, it is never optimal to place an order with the

expedited supplier along with the initiation of a salvage order. Therefore

fn(x) = min{f1
n(x), f2

n(x)}, (2.2)

where

f1
n(x) = the minimum total expected cost in the last n periods, when starting with an

inventory position of x units, and assuming an expedited order is placed in period n,

f2
n(x) = the minimum total expected cost in the last n periods, when starting with an

inventory position of x units, and assuming a salvage sale is initiated in period n.

These functions satisfy the recursions:

f1
n(x) = min

qen∈[0,Cen],qrn∈[0,Crn]
{Ke

nδ(q
e
n) + cenq

e
n +Kr

nδ(q
r
n) + crnq

r
n + Ln(x+ qen)

+ αEfn−1(x+ qen + qrn −Dn)}, (2.3)

f2
n(x) = min

qen∈[−Cvn,0],qrn∈[0,Crn]
{Kv

nδ(−qen) + cvnq
e
n +Kr

nδ(q
r
n) + crnq

r
n + Ln(x+ qen)

+ αEfn−1(x+ qen + qrn −Dn)}, (2.4)

where δ(u) = 1 if u > 0 and δ(u) = 0 otherwise.

In settings without salvage opportunities, fn(x) = f1
n(x). However, to allow for a unified

treatment, we model the “no-salvage” case as one in which cvn = −M , a large negative
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number such that salvaging is completely unattractive. Without loss of generality, we set

Kv
n = 0 and Cvn =∞ in this case.

Since (2.3) and (2.4) share the last three terms, and substituting

yn = x+ qen = the beginning inventory position of period n, after inclusion of any

expedited supplier order or salvage sale quantity,

zn = yn + qrn = xn + qen + qrn = the beginning inventory position of period n, after inclusion

of all inventory adjustments of period n,

we can rewrite (2.3) and (2.4) as

f1
n(x) = min

y∈[x,x+Cen]
{Ke

nδ(y − x) + cen(y − x) + gn(y)}, (2.5)

f2
n(x) = min

y∈[x−Cvn,x]
{Kv

nδ(x− y) + cvn(y − x) + gn(y)}, (2.6)

where

gn(y) = Ln(y) + f rn(y), (2.7)

f rn(y) = min
z∈[y,y+Crn]

{Kr
nδ(z − y) + crn(z − y) + αEfn−1(z −Dn)}. (2.8)

In other words, the order and salvage decisions in any given period may be thought of as

occurring in two stages: first a new order with the expedited supplier/salvage quantity is

determined based on xn—the inventory position, followed by the choice of a supplementary

order with the regular supplier based on the augmented inventory position yn. Our second

conclusion is that the general dual source inventory planning problem is equivalent to a

single source model with an “adjusted” future cost function gn(·). In particular, the optimal

combined ordering and salvage policy can be obtained by computing a series of nested one-

dimensional value functions, and this under general parameters and demand distributions.

In particular, one starts with the evaluation of the function gn(·), followed by that of f1
n(·)

and f2
n(·). The ultimate value function fn(·) is obtained as the pointwise minimum of the

functions f1
n(·) and f2

n(·).

In the next section, we show that under a few parameter restrictions, a specific structure

for the optimal policy can be established.
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2.4 A Combined Procurement Strategy of Special Structure

Chapter 1 introduces the key convexity concept, (C1K1, C2K2)-convexity, in 1.1, and

shows that (C1K1, C2K2)-convexity generalizes almost all familiar convexity structures.

See Proposition 1.1 and Table 1.1. We show that, under a few restrictions, an optimal pol-

icy is of relatively simple structure, exhibited in Theorem 2.2, below. First, in terms of the

expected holding and backlogging cost functions Ln(·), we introduce a standard assumption:

Assumption 2.2. The function Ln(·) is convex and Ln(y) = O(|y|p) for some p ≥ 1,

n = 1, 2, . . . , N . Also, E(Dp
n) <∞ for n = 1, 2, . . . , N .

In addition, we need

Assumption 2.3. For n = N, . . . , 1:

(i) Kr
n = Ke

n = Kn, Crn = Cen = Cn;

(ii) Kn ≥ αKn−1, Kv
n ≥ αKv

n−1;

(iii) Cn ≤ Cn−1, Cvn ≤ Cvn−1.

In other words, capacity limits are assumed to weakly increase over time, an assumption

satisfied in most practical applications. (Most frequently, capacities are constant over the

course of the inventory planning horizon.) The inequalities Kn ≥ αKn−1 and Kv
n ≥ αKv

n−1

echo those in the basic single source inventory problem with fixed order costs, see Scarf

(1960) or Zipkin (2000). Assumption 2.3 (i) is more restrictive, in particular the assumption

that both suppliers have the same capacities.

We first show that all value functions {fn(·)}, n = N,N − 1, . . . , 1 satisfy the strong

(C1K1, C2K2)-convexity property, assuming the terminal value function f0(·) does.

Theorem 2.1. Assume f0(x) ∈ SCC0K0,Cv0K
v
0

and f0(x) = O(|x|p) for some integer p ≥ 1.

Then fn(x) ∈ SCCnKn,CvnK
v
n

and fn(x) = O(|x|p) for n = N,N − 1, . . . , 0.
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Now, define auxiliary functions

g̃1
n(x) = Kn + min

y∈[x,x+Cn]
{cen(y − x) + gn(y)}, A1

n(x) = g̃1
n(x)− gn(x),

g̃2
n(x) = Kv

n + min
y∈[x−Cvn,x]

{cvn(y − x) + gn(y)}, A2
n(x) = g̃2

n(x)− gn(x),

g̃rn(y) = Kn + Ln(y) Arn(y) = g̃rn(y) + Ln(y)

+ min
z∈[y,y+Cn]

{crn(z − y) + αEfn−1(z −Dn)}, − αEfn−1(y −Dn).

Here, g̃1
n(x) represents the optimal expected cost from period n on assuming one is com-

mitted to place an order with the expedited supplier in this period (possibly combined with

an order with the regular supplier). A1
n(x) = g̃1

n(x) − gn(x) denotes the cost differential

with the optimal expected cost from period n on, assuming one is committed to forgo any

order with the expedited supplier or a salvage batch in this period. Similarly, g̃2
n(x) repre-

sents the optimal expected cost from period n on assuming one is committed to initiate a

salvage batch in this period (possibly combined with an order with the regular supplier).

A2
n(x) = g̃2

n(x)− gn(x) denotes the cost differential with the same benchmark gn(·) used in

the definition of A1
n(·). Finally, g̃rn(y) denotes the expected optimal cost until the end of

the planning horizon, assuming one is committed to place an order with the regular sup-

plier, while foregoing an order with the expedited supplier or a salvage batch, and Arn(y)

denotes the cost differential vis-à-vis the optimal expected cost when forgoing any inventory

adjustments in period n.

Define the following critical points for period n:

Be
n = inf{arg min

y
{ceny + gn(y)}}, ben = inf{x : A1

n(x) ≥ 0}, b̄en = sup{x : A1
n(x) < 0},

(2.9)

Sn = sup{arg min
y
{cvny + gn(y)}}, sn = sup{x : A2

n(x) ≥ 0}, sn = inf{x : A2
n(x) < 0},

(2.10)

Br
n = inf{arg min

z
{crnz+αEfn−1(z−Dn)}}, brn = inf{x : Arn(x) ≥ 0}, b̄sn = sup{x : Arn(x) < 0}.

(2.11)
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Let

Be
n(x) = inf{ arg min

x≤y≤x+Cn

{ceny + gn(y)}}, Sn(x) = sup{ arg min
x−Cvn≤y≤x

{cvny + gn(y)}},

Br
n(y) = inf{ arg min

y≤z≤y+Cn

{crnz + αEfn−1(z −Dn)}}

denote minimizers of g̃1
n(x), g̃2

n(x) and g̃rn(y), respectively.

The following theorem can be proven based on the proof of Theorem 1.2 in Chapter 1.

Theorem 2.2. (a) The critical points are ranked as follows:

ben ≤ b̄en ≤ sen ≤ sen, brn ≤ b̄rn. (2.12)

(b) The optimal policy is characterized by Table 2.1, in which y∗n(xn) and z∗n(y∗n) are either

uniquely determined or take a value in a bi-valued set {·, ·}.

Table 2.1: Optimal policy structure for systems with fixed costs and capacity limits

(a) Expedited supplier and salvage

xn (−∞, ben) [ben, b̄
e
n) [b̄en, s

v
n] (svn, sn] (sn,∞)

fn(xn) g̃1
n(xn) min{g̃1

n(xn), g(xn)} g(xn) min{g̃2
n(xn), g(xn)} g̃2

n(xn)
y∗n(xn) Be

n(xn) {Be
n(xn), xn} xn {Sn(xn), xn} Sn(xn)

(b) Regular supplier

y∗n (−∞, brn) [brn, b̄
r
n) [b̄rn,∞)

f rn(y∗n) g̃rn(y∗n) min{g̃rn(y∗n), αEfn−1(y∗n −Dn)} αEfn−1(y∗n −Dn)}
z∗n(y∗n) Br

n(y∗n) {Br
n(y∗n), y∗n} y∗n

As shown in Section 2.3, the optimal order and salvage decisions, in period n, can be

determined in two steps. In the first step, determine the optimal adjusted inventory position

y∗n(xn) for the expedited channel (hence the optimal order amount from the expedited

supplier or salvage amount) using Table 2.1 (a) after computing all necessary auxiliary

functions and critical points; this also involves the calculation of the value function f rn(y).

In the second step, with y∗n obtained from the first step, determine the optimal adjusted

target z∗n(y∗n) for the regular channel (which implies the optimal order amount from the

regular supplier) using Table 2.1 (b).
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Except for some highly artificial problem instances, the structure of the optimal policy

further simplifies to a three-region policy and a two-region policy in parts (a) and (b), re-

spectively. More specifically, the intermediate regions [ben, b̄
e
n], [svn, s

v
n] and [brn, b̄

r
n] invariably

vanish, because the functions A1
n(·), A2

n(·) and Arn(·) have a single root.

2.4.1 Special Settings

In this subsection, we consider several special settings where the optimal policy structure

takes on simpler forms.

2.4.1.1 No Fixed Costs, No Capacity Limits, Salvage Opportunities

In this setting Kn = Kv
n = 0 and Cn = Cvn =∞. Based on Table 1.4 (c) in Corollary 1.3, the

optimal policy structure for systems without fixed costs and capacity limits is summarized

by Table 2.2. The optimal inventory decision for the expedited channel (ordering from the

expedited supplier or salvaging) follows a double “base stock”–type policy. The inventory

position line is partitioned into three consecutive regions. In the left and right most regions,

it is optimal to order up to a base-stock level Be
n from the expedited supplier or to salvage

down to a level Sn, respectively; in the middle region it is optimal to stay put. The optimal

inventory decision for the regular supplier is a simple base stock policy with an order-up-to

level Br
n. Note that if salvaging is not allowed, the first stage policy is a simple base stock

policy, i.e., Sn =∞, eliminating the last column in subtable (a).

Table 2.2: Optimal policy structure for systems without fixed costs and capacity limits

(a) Expedited supplier and salvage

xn (−∞, Be
n) [Be

n, Sn] (Sn,∞)

y∗n(xn) Be
n xn Sn

(b) Regular supplier

y∗n (−∞, Br
n) [Br

n,∞)

z∗n(y∗n) Br
n y∗n

2.4.1.2 Fixed Costs, No Capacity Limits, No Salvage.

In this setting Kn > 0,Kv
n = 0, Cn = Cvn = ∞. This case was addressed by Sethi et al.

(2003), when lr = 1 and le = 0, but allowing for forecast updates. Based on Table 1.4 (a)

from Corollary 1.3, the optimal policy structure is summarized by Table 2.3. Both channels

63



take on the classical “(s, S)”–type policy. More specifically, the expedited channel adopts

a (ben, B
e
n) policy and the regular channel follows a (brn, B

r
n) policy.

Table 2.3: Optimal policy structure for systems with fixed costs but without capacity limits

(a) Expedited supplier

xn (−∞, ben) [ben,∞)

y∗n(xn) Be
n xn

(b) Regular supplier

y∗n (−∞, brn) [brn,∞)

z∗n(y∗n) Br
n y∗n

2.4.1.3 No Fixed Costs, Capacity Limits, No Salvage.

In this setting, Kn = Kv
n = 0 and Cn < ∞, Cvn = ∞. Based on Table 1.5 (c) from

Corollary 1.4, under the optimal policy, both channels adopt a modified base-stock policy

as in Table 2.4.

Table 2.4: Optimal policy structure for systems without salvage option

(a) Expedited supplier

xn (−∞, b̄en − Cn) [b̄en − Cn, b̄en) [b̄en,∞)

y∗n(xn) xn + Cn b̄en xn

(b) Regular supplier

y∗n (−∞, b̄rn − Cn) [b̄rn − Cn, b̄rn)

z∗n(y∗n) y∗n + Cn b̄rn

2.4.1.4 Fixed Costs and Capacity Limits, No Salvage.

In this setting Kn > 0,Kv
n = 0 and Cn < ∞, Cvn = ∞. Based on Table 1.5 (a) from

Corollary 1.4, the optimal policy structure for systems with fixed costs and capacity limits

but without salvage option is summarized by Table 2.5, where

1+
ben

= 1(ben > b̄en−Cn), 1−ben
= 1(ben < b̄en−Cn); 1+

brn
= 1(brn > b̄rn−Cn), 1−brn

= 1(brn < b̄rn−Cn).

The optimal policy structures for the expedited and regular suppliers are similar in form.

There are four regions. In the far-left region, the optimal policy is to order as much as

possible—up to the capacity limit, while in the far-right region it is optimal to stay put. In

the remaining two intermediate regions, the optimal policy is less categorical: in the third
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region, it is optimal to either stay put or to place an order; in the second region, one of

two cases prevails: in one case it is optimal to either order as much as possible or stay put

and in the other it is optimal to order a quantity specified by the aforementioned functions,

B̄e
n(·) or B̄r

n(·).

2.5 General Lead Times

In this Section, we address the general case, with arbitrary order lead time combinations

lr > le, rather than the special setting where lr − le = 1. (In § 2.5.1, we also address

general salvage lead time lv.) Sheopuri et al. (2010) show that a minimal state description

is of dimension ∆l, even in the simplest of models, i.e., in the absence of any fixed order

costs, capacity limits or salvage opportunities. One such “minimal” state description is

It ≡ (I let , I
le+1
t , . . . , I lr−1

t ), where I lt = the net inventory level at the beginning of period

t plus all outstanding orders that will arrive by the beginning of period t + l. While of

dimension ∆l, this state description is a major simplification, beyond the straightforward

state description, which includes the inventory level and each of the le + lr outstanding

orders with the two suppliers.

Note that xt = I lr−1
t represents the regular full inventory position at the beginning of

period t, including all outstanding orders with the expedited and regular supplier. The

fully optimal strategy is prohibitively difficult to compute, in particular when ∆l ≥ 3, say,

and even if computable, it would be prohibitively difficult to implement.

For ∆l ≥ 2, we therefore propose the following upper and lower bound approximations

and heuristics. For the sake of notational simplicity, we confine ourselves to infinite horizon

models with stationary inputs (parameters and demand distributions).

Under the lead time pair (le, lr), let z∗(le, lr) [π∗(le, lr)] denote the optimal cost value

[policy] and z(π|le, lr) the cost value of an arbitrary policy π. The following bounds apply

with l̂r = le + 1 and l̂e = lr − 1.

LB ≡ z∗(le, l̂r) ≤ z∗(le, lr) ≤ min{UB1 ≡ z∗(l̂e, lr),UB2 ≡ z(π∗(l̂e, lr) |le, lr)}. (2.13)

The inequalities LB ≤ z∗(le, lr) ≤ UB1 follow from the simple sample path argument in

Zipkin (2008b), Section 5. Since π∗(l̂e, lr) is a feasible policy under (le, lr), z
∗(le, lr) ≤ UB2.
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In settings where the policy π∗(l̂e, lr) is characterized by a few threshold parameters, a third

upper bound UB3 ≤ UB2 can be obtained by searching for the best parameter combination

within the same policy class.

We illustrate this approach with a study of problem instances without fixed costs or

salvage opportunities, but with supplier-specific capacity limits. The lead time pair (le, lr) =

(2, 5).
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The first panel in Table 2.6 investigates instances in which each supplier has a capacity

of 6—only 20% above the mean demand—or larger, so that single sourcing from either

supplier is feasible. The second and third panels maintain an aggregate capacity of 6 and

12, respectively, under various allocations to the individual suppliers; in some cases, given

this limited capacity, only dual sourcing or sourcing from one of the suppliers is feasible.

One period demands have mean [standard deviation] of 5 [2] and a Normal distribution,

truncated at 0 and 10.

We display the estimated cost per period under LB ,UB1,UB2 and UB3 along with

associated standard errors from which confidence intervals can be constructed. As shown,

both under LB and UB1, a pair of modified base-stock policy is optimal, under dual sourc-

ing. We conclude that uniformly, UB3 is the best of the three upper bounds. The remaining

gap between LB and UB3 is 10%, on average. This is an inflated representation of the true

gap since we omit the variable procurement cost, at its base price cr at the regular supplier,

from both cost measures. We conjecture that UB3 is much closer to the optimal cost value

than LB , since it represents the best policy within the class known to contain the optimal

policy under consecutive lead times. As a consequence, we report, in the numerical studies

in Section 2.6, either the exact optimal cost value—when computable—or UB3. Through-

out, “savings” refers to the % gap between the cost under dual sourcing versus the best

single sourcing policy.

2.5.1 Incompatible Salvage Lead Time: the Case lv < le

As mentioned, in the presence of salvage opportunities, often lv = le (or lv = lr) when

salvaging involves return shipments to the supplier. Sometimes, lv < le, in which case

a heuristic approach is required, similar to when order lead times fail to be consecutive.

Analogous to the above, we propose as a lower bound, reducing (le, lr) to (lv, lv + 1) and

finding the optimal policy under these lead times. Upper bounds UB1,UB2 and UB3 are

obtained by increasing (lv, le) to (lr − 1, lr − 1) as above.
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2.6 Numerical Studies: Managerial Insights

In this section, we report on three studies conducted to investigate the impact of various

model parameters on the system performance, with a particular focus on the benefits of

dual sourcing and the specific ways the expedited supplier is used as a complement to the

regular supplier. Some of the studies employ general lead time combinations to appreciate

how they impact on the above measures.

Systems with fixed costs (but no capacity limits or salvage opportunities):

As explained, under general lead times, we report on heuristic UB3, the best in the

class of single index pairs of (s, S) policies (se, Se, sr, Sr), which we have shown to contain

an optimal policy when lead times are consecutive. Table 2.7 exhibits our results for a set

of 30 instances. The first 7 columns specify the input parameters, in particular: (i) the

expedited lead time le; (ii) the regular lead time lr; (iii) the differential between the per

unit cost rates charged by the expedited and regular suppliers, c; (iv) K, the fixed cost

incurred for any order; (v) SL = p/(h+ p), the service level in a single source setting when

governed by a base-stock level, all with h = 5; (vi) [(vii)] the mean [standard deviation] of

the Normally distributed one-period demand. The remaining three vertical panels exhibit

the results under the optimal dual sourcing policy, within the above class of policies, and the

optimal policy under single sourcing with each of the suppliers. Beyond the optimal policy

parameters, the mean cost columns exhibit the average over 1000 replicas of the per-period

cost under a planning horizon of N = 1000 periods, with associated standard errors. The

dual sourcing panel, in addition, contains % Savings = the percentage savings realized by

the dual sourcing policy, compared with the optimal single sourcing policy; % Expedited =

the percentage of sales that is procured from the expedited supplier; and Expedite Freq =

the percentage of periods in which an order is placed with the fast supplier.
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The first horizontal panel explains the impact of an increase in lead time differences,

fixing le = 2. The benefit of dual sourcing increases from 1.1% to 10.2%; remarkably

the latter very significant savings are achieved even though the expedited supplier is used

infrequently—less than once in every three periods—and for only 14% of the total purchase

volume. In the second panel, we consider consecutive lead times but increase the lead

time values. This panel confirms that the benefit of dual sourcing are relatively small

when the lead time difference is small and decreasing as the absolute lead times increase.

Correspondingly, the expedited supplier is used very sparsely.

The next two panels exhibit the impact of the K/c ratio. In the third [fourth] panel,

the c [K] value is varied leaving the K [c] value fixed. Using our base instance as the

benchmark, when the c value is reduced, the expedited supplier is, understandably, used

for a larger portion of the purchase volume, and the benefits over single sourcing from that

supplier decrease as well.

Finally, the service level SL and the demand volatility have intuitive impacts: as ei-

ther one increases, the expedited supplier is used more frequently and the benefits of dual

sourcing increase also. This is exhibited in the last two panels.

Supplier-specific capacity limits:
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In Table 2.8, we explore systems in the fully general model in which the two suppliers

have different capacity levels; under consecutive lead times, such systems can be solved

by the DP method of Section 2.3, even though the special policy structure in Section 2.4

cannot be guaranteed. The first and fourth panels in the table investigate how a smaller

expedited supplier may improve the performance of the system. In the first [fourth] panel,

the capacity level [advantage] of the regular supplier is kept constant at 10 [4] units. In the

third panel, the capacity of the expedited [regular] supplier is kept constant [increased].

The results in the first panel show that the availability of an expedited supplier has

major benefits even if she has limited capacity; for example, even when Cr = 10 and Ce = 2

the cost savings are 17.4%. In general, the benefits of dual sourcing are larger in capacitated

systems as opposed to uncapacitated systems, see Table 2.7 (above). As can be expected,

additional capacity at either supplier is always beneficial but the marginal benefit decreases

rapidly. The same is true for marginal aggregate capacity, see the third panel.

Table 2.6 in the previous section sheds light on the impact of differentiated capacity

levels in systems with non-consecutive lead times. In the first panel, where aggregate

capacity is ample, but that of an individual supplier limited, the benefits of dual sourcing

are very extensive, ranging between 18% and 39% under the heuristic UB3. Note, once

again, that these major savings are achieved even though the expedited supplier is used,

for, on average, only one sixth of the total volume. The second panel has instances where

dual sourcing is essential; neither one of the suppliers could be used by herself. In the third

panel, one of the suppliers is large enough to procure by herself; the savings due to dual

sourcing vary between 14% and 20% in this panel, even though the expedited supplier is

used for less than a fifth of the purchase volume.

General salvage lead times:

A final study reported in Appendix B.2 evaluates the benefits of a salvage opportunity in

systems with consecutive lead times, fixed order costs and supplier-specific capacity limits.

The systems can be solved with the DP method of Section 2.3. Varying model parameters

systematically, the salvage opportunity improves costs, on average, by 2% but sometimes

by as much as 8.2%. This is in contrast to the special case in Janakiraman and Seshadri

(2017) where no benefits were found.
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2.7 Concluding Remarks

This paper addresses a general periodic review model, to identify an optimal procurement

policy in the presence of two suppliers, differentiated by their lead time and per-unit cost

price. The model allows for salvage opportunities, capacity limits and fixed costs associated

with orders and salvage transactions. We have provided a full characterization of the optimal

procurement strategy in the general model as well as various special cases that arise when

only part of the above complications prevail. Our exact results are confined to the case

where the lead times of the two suppliers differ by a single period only (Even in the base

model without fixed cost, capacity limits or salvage opportunities, it is well known that

only a one-period lead time difference allows for an optimal policy that acts on a single

inventory measure.) However, our structural results for this special case suggest effective

heuristics for general lead time combinations, as demonstrated in Section 2.5.

Indeed, significant cost savings can be achieved with dual sourcing. Remarkably, such

savings can be obtained even when the expedited supplier is only used for a small part, say

5% of all procurement. The availability of the fast(er) supplier allows one to forgo major

inventory investments to achieve a given service level or to prevent costly stockouts under

a given inventory investment.

In practice, a second expedited supplier may only be available if a minimum sales volume

can be guaranteed, or a minimum frequency with which orders are placed. Future work

should address such “participation” constraints.

It is also important to extend our results to settings with more than two suppliers.

Generalizations of our structural results are possible when the lead time of any given supplier

differs from that of the next fastest supplier by a single period. This extension was carried

out by Feng et al. (2005) in the base model. Moreover, we believe that these results continue

to suggest effective heuristic strategies under general lead time differences.
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Chapter 3

Ride-Hailing Networks with Strategic Drivers: The Impact of Platform

Control Capabilities on Performance

3.1 Introduction

We are motivated by the emergence of ride-hailing platforms such as Uber, Lyft and Gett,

that face the problem of matching service supply (drivers) with demand (riders) over a

spatial network. We study the impact of operational platform controls on the equilibrium

performance of such networks, focusing on the interplay with two practically important

challenges for this matching problem: (i) Significant demand imbalances prevail across

network locations for extended periods of time, as commonly observed in urban areas during

rush hour (see Figures 3.1 and 3.2), so that the natural supply of drivers dropping off riders

at a location either falls short of or exceeds the demand for rides originating at this location.

These mismatches adversely affect performance as they lead to lost demand, to drivers idling

at low-demand locations, and/or to drivers repositioning, i.e., traveling without serving a

rider, from a low- to a high-demand location. (ii) Drivers are self-interested and decide

strategically whether to join the network, and if so, when and where to reposition, trading

off the transportation time and cost involved against their matching (queueing) delay at

their current location. These decentralized supply decisions may not be optimal for the

overall network.

Motivated by these challenges, we consider two platform control levers, demand-side

admission control and supply-side capacity repositioning. Admission control allows the

platform to accept or reject rider requests based on their destinations, thereby affecting

not only the supply of cars through the network, but also the queueing delays of drivers

to be matched at lower-demand locations, and in turn, their decisions to reposition to
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higher-demand locations. Repositioning control allows the platform to direct drivers to go

where they are needed the most, rather than having to incentivize them to do so, thereby

alleviating the demand/supply imbalance in the network.

To evaluate these control levers we study the steady-state behavior of a deterministic

fluid model of a two-location ride-hailing loss network with four routes (two for local and

two for cross-location traffic) in a game-theoretic framework. Demand for each route is char-

acterized by an arrival rate and a deterministic travel time. Three parties interact through

this network. Riders generate demand for each route, paying a fixed price per unit travel

time. Prices are fixed throughout, and for simplicity assumed to be route-independent,

though this is not necessary for our analysis. Drivers decide, based on their outside op-

portunity cost and their equilibrium expected profit rate from participation, whether to

join the network, and if so, whether to reposition from one location to the other, rather

than idling. Drivers have heterogeneous opportunity costs but homogenous transportation

costs; therefore, participating drivers are homogeneous in their strategies and in the eyes of

the platform. The platform receives a fixed commission (fraction) of the fare paid by the

rider and seeks to maximize its commission revenue. We consider three control regimes:

(i) Centralized Control with respect to admission and driver repositioning decisions; (ii)

Minimal Control : no admission control and decentralized (driver) repositioning decisions;

(iii) Optimal Admission Control at each location and decentralized repositioning.

Main Results and Contributions. First, we propose a novel model that accounts

for the network structure and flow imbalances, the driver incentives, and the interplay of

queueing, transportation times, and driver repositioning decisions—all essential features of

ride-hailing platforms.

Second, we fully characterize the steady-state system equilibria, including the drivers’

repositioning incentive-compatibility conditions, for the three control problems outlined

above, relying on the analysis of equivalent capacity allocation problems. The solutions

provide insights on how and why platform control impacts the system performance, both

financially, in terms of platform revenue and per-driver profits, and operationally, in terms

of rider service levels and driver participation, repositioning and queueing. One immediate

finding is that when capacity is moderate, accepting rider requests in a pro-rata (or FIFO)
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manner need not be optimal, and neither is the practice of accepting rider requests at a

location as long as it has available driver supply.

Third, we glean new insights on the interplay between the platform’s admission control

and drivers’ strategic repositioning decisions. Specifically, we show that the platform may

find it optimal to strategically reject demand at the low-demand location, even though there

is an excess supply of drivers, so as to induce repositioning to the high-demand location.

We provide intuitive necessary and sufficient conditions for this policy feature in terms of

the network characteristics and the driver economics. This deliberate degradation of the

rider service level at one location yields more efficient repositioning, and in turn a higher

service level at the other location. Thus, operational levers, as opposed to location-specific

or origin-destination pricing, can affect repositioning behavior.

Fourth, we derive upper bounds on the performance benefits that the platform and

the drivers enjoy due to increased platform control capability. These bounds show that

these benefits can be very significant for the platform, of the order of 50%, 100% or even

larger improvements, especially when the network operates in a moderate capacity regime,

so there are tangible supply/demand trade-offs across the network, and when there are

significant cross-location demand imbalances. Per-driver benefits are also most significant

when capacity is moderate, but are less significant in their magnitude because driver par-

ticipation decisions are endogenous—so, if platform controls increase the per-driver profit

significantly at a given participation level, more drivers choose to participate, reducing the

equilibrium per-driver benefit.

Flow Imbalances: Example Manhattan. We illustrate the magnitude and duration

of the demand imbalances alluded to above with data on flow imbalances at the route-

and location-level, for taxi rides in Manhattan. These flow imbalances are derived from

the publicly available New York City TLC (Taxi & Limousine Commission) Trip Record

Data.1 These data record for each taxi ride the start and end time, the geo pickup and

dropoff locations, and the fare paid. Although the data report censored demand (i.e., only

realized trips but not rider demand that was not filled), we believe the (uncensored) demand

1http://www.nyc.gov/html/tlc/html/about/trip record data.shtml
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imbalances are likely of the same order of magnitude as the (censored) flow imbalances;

indeed, in the high-traffic direction the flow likely underestimates demand by a larger margin

than in the opposite direction. We further note that, although our data do not include trips

on ride-hailing platforms (this information is not public), these platforms likely experience

similar imbalances.
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Figure 3.1: Route-level flow imbalances in Manhattan

Figure 3.1 illustrates the route-level realized flow imbalances for two origin-destination

pairs in Manhattan, NY. Chart (a) shows the average number of trip originations per 10

minute-interval between Upper West Side (UWS) and Midtown West (MW) (to and fro),

and the logarithm of the ratio of number of trip originations between the two locations

per time bin; for each time bin the average is computed over all weekdays for one month.

Chart (b) shows the same quantities between the Upper East Side and Midtown East.

We observe a pronounced imbalance of almost one order of magnitude (about 10x) in the

morning rush hour and about half an order of magnitude (about 3x) in the evening rush

hour in the reverse direction. Therefore, focusing on origin-destination pairs in the network,

we observe strong flow imbalances, so the cross traffic between such two locations will not

replenish sufficient capacity for the originating trips in the high-demand location (UWS in

the morning) and will likely oversupply the low-demand location (MW in the morning).

Figure 3.2 shows that the realized flow imbalances persist even after aggregation to the

location-level. That is, the flow of other trips being completed in the high-demand location,

e.g., morning arrivals into the UWS from other locations, is insufficient to supply the
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necessary capacity for the UWS to MW trips: Charts (a) and (b) show the net imbalances

(total number of drop-offs minus total number of pickups) at two locations in Manhattan,

over the course of a day. These net imbalances are statistically significant and exhibit strong

and different intraday patterns.

(Inflow-outflow)

(a) Upper West Side, May 2016

Inflow-outflow

(Inflow-outflow)

(b) Midtown, May 2016

Figure 3.2: Location-level flow imbalances in Manhattan

Taken together, these observations on route- and location-level flow imbalances suggest

that self-interested strategic drivers actively reposition towards high-demand locations so

as to supply the needed capacity that would otherwise not be available at high-demand

locations/time-periods. They also suggest that platform controls may be able to use desti-

nation information to direct capacity where it is needed (something that does not happen

in the taxi market), and to incentivize or completely control a more efficient driver reposi-

tioning strategy.

Finally, we note that both Figure 3.1 and Figure 3.2 show that imbalance periods

persist for multiple time bins, lasting typically for a couple of hours. To contrast, the

typical transportation times between these location pairs are of the order of 10-15min,

suggesting that network transients may settle down quickly relative to the duration of these

imbalances, which, in part, motivates our focus on the steady state fluid model equations

as opposed to a study of the transient process itself.

The paper proceeds as follows. This section concludes with a brief literature review.

In §3.2 we outline the system model and formulate the three optimization problems that

correspond to the three control regimes mentioned above. §3.3 studies the centralized

control regime, and §3.4 studies the two control regimes where drivers make self-interested
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repositioning decisions. Finally, §3.5 derives upper bounds on the performance benefits to

the platform and to the drivers due to increased platform control, and offers some numerical

illustrations.

Related Literature. This paper is related to the growing literature on the sharing

economy, with a specific focus on the operations of ride-hailing platforms. With a couple of

exceptions discussed below, this literature can be broadly grouped into two streams: papers

that study (i) a single location (or the system as a whole) with driver incentives, and (ii) a

network of locations without strategic drivers or driver incentives. In contrast to these two

streams, this paper studies a network model with driver incentives.

In single-location models with incentives, the strategic driver decision is whether to

enter the system; driver repositioning is a network consideration that is not captured in

these models. Several papers focus on the impact of surge or dynamic pricing and its im-

pact on equilibrium performance over static pricing policies. Banerjee et al. (2016) study a

stochastic single-location queueing model with price-sensitive riders (demand) and drivers

(capacity) and find (consistent with the literature on revenue maximization in large scale

queues) that static pricing is asymptotically (first order) optimal. Cachon et al. (2017) com-

pare five pricing schemes, with increasing flexibility in setting consumer price and provider

wage, and find that dynamic (surge) pricing significantly increases the platform’s profit

and benefits drivers and riders. Castillo et al. (2017) show analytically and empirically that

surge pricing avoids the “wild goose chase” effect when capacity is scarce—the phenomenon

where drivers have to travel far distances to pick up customers. Chen and Sheldon (2015)

use Uber data to show empirically that surge pricing incentivizes drivers to work longer and

hence increases systemwide efficiency. Hall et al. (2017) in a different empirical study based

on Uber data, find that the driver supply is highly elastic to wage changes; a fare hike only

has a short-lived effect on raising the driver hourly earnings rate, and is eventually offset

by endogenous entry. As mentioned above, our results confirm this empirical phenomenon.

Taylor (2017) and Bai et al. (2017) both study the price and wage decisions of on-demand

service platforms that serve delay-sensitive customers and earnings-sensitive independent

providers. Taylor (2017) examines the impact of delay sensitivity and provider independence

on the optimal price and wage, and shows that the results are different when uncertainty
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in customer and provider valuations prevails. Bai et al. (2017) extend the model in Taylor

(2017) by also considering the impact of demand and service rate and potential capacity, as

well as total welfare (in addition to platform profit) as the system performance measures.

Some papers consider strategic, self-interested agents (capacity) without queueing consid-

erations. Gurvich et al. (2016) allow the platform to determine the capacity size (staffing),

system-state-contingent compensation and a cap on effective capacity. Hu and Zhou (2017)

study the optimal price and wage decisions of an on-demand matching platform. They

show that a commission contract can be optimal or near-optimal under market uncertainty.

Benjaafar et al. (2015) study peer-to-peer product sharing, where individuals with varying

usage levels make decisions about whether or not to own; the roles of market participants’

as provider or consumer are endogenous, unlike in the above papers (and ours).

In the second stream that studies ride-hailing networks without incentives, papers pri-

marily either focus on routing of cars or on matching riders to drivers. Most papers rely on

the analysis of an approximating deterministic fluid model. An important paper is Braver-

man et al. (2017); they prove an asymptotic limit theorem that provides justification for the

use of a deterministic fluid network model (such as the one in this paper), and then study

the transient optimization problem of empty car repositioning under centralized control.

In contrast to this paper, Braverman et al. (2017) do not consider admission control and

focus on centralized repositioning decisions. The underlying model is the BCMP product-

form network. Iglesias et al. (2017) also consider centralized matching and repositioning

decisions in the context of a BCMP network model. Similar to our paper, both papers

model a closed loss network. Banerjee et al. (2017) study optimal dynamic pricing of a

vehicle sharing network, and show that state-independent (demand) prices derived through

a convex relaxation are near-optimal when capacity grows large; the paper provides explicit

approximation guarantees for systems with finite size. He et al. (2017) study the problem

of designing the geographical service region for urban electric vehicle sharing systems.

Hu and Zhou (2016) consider dynamic matching for a two-sided, heterogeneous-type,

discrete-time system with random arrivals and abandonment. They provide conditions

under which the optimal matching policy is a priority rule. Ozkan and Ward (2017) study

dynamic matching on a network, and through a linear programming relaxation propose an
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asymptotically optimal matching policy that outperforms the commonly-used heuristic of

matching a rider with the nearest available driver. Their model differs from the one in Hu

and Zhou (2016) in that it (i) assumes probabilistic rather than deterministic matching,

and (ii) establishes that customers and drivers in the same location may not be matched.

Feng et al. (2017) compare customers’ average waiting time under two booking systems,

on-demand versus street hailing, assuming all trips occur on a circle. Caldentey et al.

(2009), Adan and Weiss (2012) and Bušić et al. (2013), among others, study multi-class

matching in the context of the infinite bipartite matching model. In the broader dynamic

queue matching context, Gurvich and Ward (2014) prove the asymptotic optimality of a

discrete review matching policy for a multi-class double-sided matching queue.

In contrast to these two streams, this paper studies a network model with strategic sup-

ply, i.e., drivers decide whether to join the system and where to provide service, given the

incentives offered by the platform. Bimpikis et al. (2017) study how a ride-sharing platform

with strategic drivers should price demand and compensate drivers across a network to op-

timize its profits, and show that the platform’s profits and consumer surplus increase when

demands are more balanced across the network; they focus on a discrete-time multi-period

model without driver queueing effects, where driver movement between any two locations

is costless and takes one time-period. Guda and Subramanian (2017) consider strategic

surge pricing and market information sharing in a two-period model with two local markets

without cross-location demand (there is no queueing and driver travel takes one period).

Buchholz (2017) empirically analyzes, using the NYC taxi data, the dynamic spatial equi-

librium in the search and matching process between strategic taxi drivers and passengers.

His counterfactual analysis shows that even under optimized pricing, performance can fur-

ther be improved significantly by more directed matching technology, which supports the

value of studying the impact of operational controls.

In contrast to Bimpikis et al. (2017), Guda and Subramanian (2017), and Buchholz

(2017), we focus on the impact of operational controls, as opposed to pricing, on system

performance, and provides insights and guidelines on the optimal operations of ride-hailing

networks. Consistent with the pricing results of Bimpikis et al. (2017), we find that cross-

network demand imbalances crucially affect performance, and that the impact of operational
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platform controls increases in such imbalances.

3.2 Model and Problem Formulations

We consider a deterministic fluid model of a ride-hailing network in steady state. Three par-

ties interact through this network, riders generate demand for rides, drivers supply capacity

for the rides, and the platform is instrumental in matching supply with demand. §3.2.1 in-

troduces the operational and financial model primitives; §3.2.2 describes the information

that is available to the parties and the controls that determine how supply is matched with

demand; §3.2.3 formulates the optimization problems for the three control regimes that we

study in this paper. Finally, §3.2.4 explains how to reformulate the problems specified in

§3.2.3 in terms of capacity allocation decisions.

Such an approximating fluid model was rigorously justified in Braverman et al. (2017)

for a system where drivers were not acting strategically; an adaptation of their arguments

could be used in our setting as well. We will focus directly on a set of (motivated) steady

state flow equations.

3.2.1 Model Primitives

We describe the model primitives for the network, the riders, the drivers and the platform.

1 2Λ//, E//

Λ1/, E1/

Λ/1, E/1

Λ11, E11Λ/1 < Λ1/

Low-demand
location

High-demand
location

PlatformPotential	demand	@
Impatient:	loss	model

price	L (1 − N)L Potential	supply	F
Driving	cost	R
Opportunity	cost RS~U ⋅

NL

Figure 3.3: Model primitives

Network. The network has two locations (nodes), indexed by l = 1, 2, and four routes

(arcs), indexed by lk for l, k ∈ {1, 2}. Figure 3.3 depicts the network schematic and the
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model primitives that we define in this section. We denote by tlk the travel time on route lk

and by t the travel time vector. We impose no restrictions on travel times; specifically, we

allow t12 6= t21, to reflect, for example, different uptown/downtown routes. The travel times

are constant and, in particular, independent of the number of drivers that serve demand

for the platform. This assumes that the number of drivers has no significant effect on road

congestion and transportation delays.

Riders. Riders generate demand for trips. We assume that the platform charges a fixed

price of $p per unit of travel time, uniform across all routes.; i.e., a rider pays for a route-lk

trip a fee of $ptlk. Given the price p, the potential demand rate for route-lk trips is Λlk, and

Λ denotes the potential demand rate vector. The platform keeps a portion γ of the total fee

as commission and drivers collect the remainder. Riders are impatient, i.e., rider requests

not matched instantly are lost. We focus on the case Λ12 6= Λ21, i.e., the cross-location

demands are not balanced; without loss of generality, we make the following assumption.

Assumption 3.1 (Demand imbalance). 0 < Λ12 < Λ21.

Drivers. Drivers supply capacity to the network. Let N be the pool of (potential)

drivers, each equipped with one car (unit of capacity). Drivers are self-interested and seek

to maximize their profit rate per unit time. They decide whether to join the network, and,

if so, whether to reposition to the other network location, i.e., travel without serving a rider,

in anticipation of a faster match.

Each driver has an idiosyncratic opportunity cost rate, denoted by co, that is assumed to

be an independent draw from a common distribution F , which is assumed to be continuous

with connected support [0,∞). Drivers join the network if their profit rate per unit time

equals or exceeds their outside opportunity cost rate. Therefore, if the per-driver profit rate

is $x, then the number of participating drivers, denoted by n, is n = NF (x) = NP (co ≤ x).

The per-driver profit rate x is itself a quantity that emerges in equilibrium and depends

on n, the drivers’ trip-related earnings and cost, the platform’s controls, and the driver

decisions, to be specified in §3.3 and §3.4.

Participating drivers incur a driving cost rate of $c per unit of travel time, which is

common to all drivers and independent of the car occupancy. Drivers serving rider demand
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earn revenue at rate $γ̄p per unit travel time, where γ̄ = 1 − γ, i.e., the price paid by the

rider, net of the platform commission. Therefore, the maximum profit rate that drivers can

earn equals γ̄p− c. However, their actual profit rate is lower if they spend time waiting for

riders (accruing zero profit during this wait) and/or repositioning from one location to the

other (incurring a cost c per unit time). The following assumption ensures that drivers can

earn a positive profit by repositioning2.

Assumption 3.2 (Positive profit from repositioning). ct12 < t21(γ̄p−c) and ct21 < t12(γ̄p−

c).

Given Assumption 3.1, only the first condition in Assumption 3.2 will prove to be

relevant.

Platform. The platform is operated by a monopolist firm that matches drivers with

riders with the objective of maximizing its revenue rate.3 The platform may have two

controls: a) demand-side admission control, and b) supply-side capacity repositioning, as

detailed in §3.2.3.

Information. Riders and drivers rely on the platform for matching, that is, potential

riders cannot see the available driver capacity, and drivers cannot see the arrivals of rider

requests.

The platform knows the model primitives introduced above, including the potential

demand rates Λ, the destination of each trip request, the travel times t, the driving cost c

and the opportunity cost rate distribution F . The driver opportunity cost rates are private

information, not known by the platform. Therefore, participating drivers are homogenous

to the platform. The platform knows the state of the system, i.e., each driver’s location,

travel direction and status at each point in time.

Riders do not need any network information since they are impatient—they simply

arrive with a trip request and leave if their request is not accepted or cannot be fulfilled

immediately.

2Assumption 3.2 also implies that γ̄p − c > 0, hence F (γ̄p− c) > 0, so at least some drivers choose to
join the network.

3The platform could, in practice, incorporate additional considerations in its objective or as control
constraints, e.g., to reward market penetration or penalize lost demand.
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Drivers do not observe the state of the system, but they have (or can infer) the in-

formation required to compute their individual expected profit rates, namely: the travel

times t; the steady-state delays until they get matched at each location, possibly zero; the

destination (routing) probabilities for matches at each location; and the probabilities that

they will choose or be instructed to reposition from one location to the other. These delays

and the routing and repositioning probabilities are endogenous quantities consistent with

the network equilibrium, to be detailed later on.

3.2.2 Matching Supply with Demand

Admission control. Let λlk ≤ Λlk denote the effective route-lk demand rate, i.e., the rate

of trip requests that are served. Let λ be the vector of effective demand rates and Λ − λ

the vector of lost demand rates. A trip request may be lost either if there is no available

driver capacity at the time and location of the request (recall that riders are impatient), or

if the platform chooses to reject the request (e.g., based on the requested destination), even

though driver capacity is available. In the regimes detailed in §3.2.3, the platform exercises

either no or optimal admission control.

Matching at each location. At each location drivers that become available (i.e., do not

reposition upon arrival) join a single queue, to be matched by the platform with riders origi-

nating at this location. (Drivers cannot reject the platform’s matching requests.) Through-

out we assume that the platform matches drivers to accepted ride requests according to a

uniform matching policy, such as First-In-First-Out (FIFO) or random service order. Since

participating drivers are homogeneous to the platform, this is not restrictive. This implies

that in steady state drivers queueing at location l encounter the same waiting time, denoted

by wl, and are directed to route-lk with probability λlk
λl1+λl2

. Let ql denote the steady-state

number of drivers queueing at location l. By Little’s Law we have wl = ql/(λl1 + λl2) for

l = 1, 2. Let w and q denote, respectively, the vector of steady-state waiting times and

queue lengths.

Repositioning of capacity between locations. Let ν12 and ν21 be the rates of drivers

repositioning from location 1 and 2, respectively, and ν = (ν12, ν21). Up to three flows

emanate from location l. Drivers that are matched with riders leave at rates λl1 and λl2,
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and drivers that reposition to location k 6= l leave at rate νlk (without queueing at location

l ). Therefore, letting η (λ, ν) denote the corresponding vector of steady-state repositioning

fractions, we have

η1 (λ, ν) =
ν12

λ11 + λ12 + ν12
and η2 (λ, ν) =

ν21

λ21 + λ22 + ν21
. (3.1)

Repositioning decisions are either centralized or decentralized, as detailed in §3.2.3. Under

centralized repositioning the platform controls the repositioning flows ν (e.g., drivers are

employees or autonomous vehicles) and the fractions η emerge in response through (3.1);

in this case we assume the drivers are informed about η. Under decentralized repositioning

the participating drivers choose the fractions η to maximize their individual profit rates,

and the resulting flow rates ν satisfy (3.1). In both regimes, drivers are homogeneous once

they have joined the network, and the resulting repositioning fractions, η, are the same for

all participating drivers.

Steady-state system flow balance constraints. Assuming a participating driver capacity

equal to n, the effective demand rates λ, repositioning flow rates ν and waiting times

w must satisfy: (i) flow balance between locations, λ12 + ν12 = λ21 + ν21, and (ii) the

capacity constraint
∑

l,k=1,2 λlktlk + (ν12t12 + ν21t21) +
∑

l=1,2wl (λl1 + λl2) = n, where∑
l,k=1,2 λlktlk is the number of drivers serving riders, ν12t12 + ν21t21 is the number of

drivers repositioning between locations, and
∑

l=1,2wl (λl1 + λl2) is the number of drivers

queueing in the two locations.

3.2.3 Three Control Regimes: Problem Formulations

We study three control regimes referred to as Centralized Control, Minimal Control and,

Admission Control, that differ in terms of (i) whether the platform does or does not exercise

admission control, and (ii) whether the platform controls or the drivers control repositioning

decisions. Each regime yields an optimization problem in terms of the tuple (λ, ν, w, n),

the system flow constraints described in §3.2.2, and the incentives of the platform and

the drivers that we formalize in this section. In all three regimes drivers make their own

participation decision by comparing their outside opportunity cost to their per-driver profit

rate from joining the system.
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Platform revenue. The platform’s steady-state revenue rate is given by Π (λ) := γpλ · t,

where γp is the platform’s commission rate per busy driver and λ · t is the number of

busy drivers, or equivalently, the number of riders being served. The welfare of riders, as

measured by served demand, is therefore proportional to the revenue of the platform.

Driver profit and equilibrium constraints. Drivers are homogeneous once they have

joined the network, as explained in §3.2.2, so all participating drivers achieve the same

steady-state profit rate. We can compute the per-driver profit rate in two ways: (i) as

the per-driver portion of the cumulative driver profits, for the participation equilibrium

constraint, and (ii) from the perspective of an individual driver circulating through the

network, for the repositioning equilibrium constraint.

First, the per-driver profit rate can be computed as follows

π (λ, ν, n) =
(γ̄p− c)

∑
l,k=1,2 λlktlk − c(ν12t12 + ν21t21)

n
,

where the numerator is the total profit generated by all n participating drivers. A partici-

pation equilibrium requires n = NF (π(λ, ν, n)).

Second, from the perspective of an infinitesimal driver circulating through the network,

her profit rate, denoted by π̃(η̃;λ,w), is a function of her repositioning fractions η̃, the

routing probabilities implied by λ and the delays w in the matching queues. The explicit

form of π̃(η̃;λ,w) is discussed in §3.4.1. The effective demand rates λ and delays w emerge as

equilibrium quantities that depend on the platform control and the decisions of all drivers.

A participating driver’s repositioning strategy is a vector of probabilities that specify for

each network location the fraction of times that the driver will, upon arrival, immediately

reposition to the other location. Since participating drivers are homogeneous, it suffices

to focus on symmetric strategies, where drivers symmetrically choose the fractions η̃ to

maximize π̃(η̃;λ,w). In equilibrium, we require that the unique repositioning fractions

η (λ, ν) induced by the aggregate flow rates (λ, ν) through (3.1) must agree with individual

drivers’ profit-maximizing repositioning decisions, i.e.,

η (λ, ν) ∈ arg max
η̃

π̃(η̃;λ,w). (3.2)

Since every driver chooses η (λ, ν), each earns the same profit rate, so that π̃(η (λ, ν) ;λ,w) =

π (λ, ν, n) for all (λ, ν, w, n) that satisfy the system flow constraints described in §3.2.2.
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Centralized Control (C). In the centralized benchmark the platform has “maximum”

control, over both demand admission and driver repositioning decisions. The platform

solves:

(Problem C) max
λ,ν,w,n

Π (λ) (3.3)

s.t λ12 + ν12 = λ21 + ν21, (3.4)∑
l,k=1,2

λlktlk + ν12t12 + ν21t21 +
∑
l=1,2

wl (λl1 + λl2) = n, (3.5)

0 ≤ λ ≤ Λ, ν ≥ 0, w ≥ 0, (3.6)

π (λ, ν, n) =
(γ̄p− c)

∑
l,k=1,2 λlktlk − c(ν12t12 + ν21t21)

n
, (3.7)

n = NF (π (λ, ν, n)) , (3.8)

where (3.4)–(3.6) are flow balance conditions and (3.7) and (3.8) enforce the participation

equilibrium.

Admission Control (A). This regime differs from the centralized benchmark in that

repositioning decisions are decentralized, i.e., controlled by drivers. The platform must

therefore also account for the repositioning equilibrium constraint (3.2) and solves:

(Problem A) max
λ,ν,w,n

{Π (λ) : (3.1)− (3.2) , (3.4)− (3.8)} . (3.9)

Minimal Control (M). In this regime the platform does not exercise any demand ad-

mission control, and drivers control repositioning decisions. The platform simply matches

rider trip requests in a pro-rata (or FIFO) manner to drivers, and never turns away requests

when there are drivers available to serve them. In addition to (3.1)–(3.2) and (3.4)–(3.8),

the network flows should satisfy the additional conditions (3.10)–(3.12) that we discuss

next.

First, at each location the effective demand rates are proportional to the corresponding

potential demand rates:

λl1
Λl1

=
λl2
Λl2

, l = 1, 2, (3.10)

i.e., routes originating at a location receive equal service probabilities (pro-rata service).
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Second, drivers cannot be repositioning out of location l if the potential rider demand

at that location has not been fully served, i.e.,

(Λl1 + Λl2 − λl1 − λl2)νlk = 0, l = 1, 2, k 6= l, (3.11)

and demand requests originating at a location l can only be lost if this location has no

supply buffer, so no drivers are waiting, i.e.,

(Λl1 + Λl2 − λl1 − λl2)wl = 0, l = 1, 2. (3.12)

In the Minimal Control Regime, the set of feasible tuples is given by

M = {(λ, ν, w, n) : (3.1)− (3.2) , (3.4)− (3.8), (3.10)− (3.12)} . (3.13)

We will show in §3.4.2 that for fixed participating capacity n, the set M is a singleton.

3.2.4 Reformulation to Capacity Allocation Problems

It is intuitive and analytically convenient to reformulate the above problems in terms of the

driver capacities allocated to serving riders, repositioning (without riders), and queueing

for riders.

For route lk, let Slk denote the offered load of trips, and slk denote the (effective)

capacity serving riders. Let S and s denote the corresponding vectors, S =
∑

lk Slk the

total offered load, and s =
∑

lk slk the total service capacity. From Little’s Law,

Slk = Λlktlk and slk := λlktlk, l, k ∈ {1, 2}. (3.14)

Let rlk be the capacity repositioning from location l to k, r = (r12, r21), and r = r12 + r21,

where

rlk = νlktlk, l 6= k, (3.15)

and ql be the capacity queueing at location l. Let q = (q1, q2) and q = q1 + q2, where

ql = wl(λl1 + λl2), l = 1, 2. (3.16)

Using (3.14)–(3.16) we can transform the formulations in §3.2.3 into equivalent problems

with respect to (s, r, q, n). With some abuse of notation, we write the platform profit
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function as Π (s) = γps instead of Π (λ), and similarly the per-driver profit functions as

π̃(η̃; s, q) instead of π̃(η̃;λ,w) and π (s, r, n) instead of π (λ, ν, n), and the repositioning frac-

tions in (3.1) as η(s, r) instead of η(λ, ν). For instance, the driver participation constraints

(3.7)–(3.8) are represented by

π (s, r, n) =
(γ̄p− c)s− cr

n
, (3.17)

n = NF (π (s, r, n)) . (3.18)

3.2.5 Two-Step Solution Approach

We propose a two-step solution approach to solve the platform’s revenue maximization

problem in each regime X ∈ {M,A,C}4. In the above formulations, denote by CX the set

of decision variables (s, r, q, n) that satisfy all the constraints for regime X except the driver

participation constraints (3.17)–(3.18). That is, CC = {(s, r, q, n) : (3.4) − (3.6), (3.14) −

(3.16)}, CA = {(s, r, q, n) : (3.1)−(3.2), (3.4)−(3.6), (3.14)−(3.16)}, and CM = {(s, r, q, n) :

(3.1) − (3.2), (3.4) − (3.6), (3.10) − (3.12), (3.14) − (3.16)}. The platform’s optimization

problem and the associated optimal revenue rate in regime X are given by

Π∗X := max
s,r,q,n

{Π(s) : (s, r, q, n) ∈ CX , (3.17)− (3.18)}. (3.19)

We solve (3.19) in the following two steps.

Step 1 Solve for the optimal capacity allocation for fixed capacity of participating drivers,

n:

ΠX(n) := max
s,r,q
{Π(s) : (s, r, q, n) ∈ CX}. (3.20)

Let πX(n) be the resulting reduced form of the per-driver profit π(s, r, n) given by

(3.17).

Step 2 Solve for the equilibrium capacity of participating drivers, n∗X , from (3.18), i.e.,

n∗X = NF (πX(n∗X)). (3.21)

The platform revenue and per-driver profit at equilibrium are given by ΠX(n∗X) and

πX(n∗X), respectively.

4For regime M , this simplifies to a feasibility problem.
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The following lemma provides a validity condition for this two-step approach to indeed solve

(3.19). (All proofs are included in the Appendix.)

Lemma 3.1 (Validity condition for two-step approach). Under constraints (s, r, q, n) ∈

CX , if for each n the per-driver profit is maximized under the platform’s optimal capacity

allocation, i.e., from Step 1:

πX(n) = max
s,r,q
{π(s, r, n) : (s, r, q, n) ∈ CX}, (3.22)

and πX(n) is continuously decreasing in n, then Π∗X = ΠX(n∗X) from Step 2.

We show below that regimes C and M always satisfy condition (3.22), whereas this is not

the case for regime A, in which case we modify the two-step solution approach accordingly.

The implication is that when condition (3.22) holds, the welfare of riders is in fact consistent

with the revenue of the platform.

3.3 Centralized Control (C)

In the centralized control regime (C) the platform controls demand admission and driver

repositioning so as to maximize its revenue, and drivers make participation decisions in

response to the resulting profit rate. The optimization problem for this regime is (3.3)–

(3.8), which can be reformulated using (3.14)–(3.16) as:

(Problem C) max
s,r,q,n

Π (s) (3.23)

s.t
s12 + r12

t12
=
s21 + r21

t21
, (3.24)

s+ r + q = n, (3.25)

0 ≤ s ≤ S, r ≥ 0, q ≥ 0, (3.26)

π (s, r, n) =
(γ̄p− c)s− cr

n
, (3.27)

n = NF (π (s, r, n)) . (3.28)

Following the solution approach outlined in §3.2.5, we present the solution of (3.23)–

(3.28) in two steps. First, in Proposition 3.1 we solve for

ΠC(n) = max
s,r,q
{Π(s) : (3.24)− (3.26)}, (3.29)
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the optimal capacity allocation assuming an exogenously given capacity of participating

drivers, n. Then, we characterize the resulting reduced form of the per-driver profit

π (s, r, n) in (3.27) as πC(n), and establish in Corollary 3.1 that there exists a unique

equilibrium capacity of participating drivers, n∗C , as the solution of n∗C = NF (πC(n∗C)).

Proposition 3.1 (Allocation of fixed driver capacity under regime C). Consider the prob-

lem (3.29) for fixed driver capacity n. Define the constants

nC1 := S − (Λ21 − Λ12) t21 and nC2 := S + (Λ21 − Λ12) t12, (3.30)

where nC1 < S < nC2 . The optimal capacity utilization has the following structure. (Fig-

ure 3.4 (a))

(1) Scarce capacity (n ≤ nC1 ). All drivers serve riders: s = n; r = 0; q = 0.

(2) Moderate capacity (nC1 < n ≤ nC2 ). Drivers serve riders or reposition from the low- to

the high-demand location: s+ r12 = n where r12 = t12/ (t12 + t21) (n− nC1 ), r21 = 0; q = 0.

(3) Ample capacity (n > nC2 ). Drivers serve all riders, reposition from the low- to the

high-demand location, or wait in queue: s = S; r12 = nC2 − S, r21 = 0; q = n− nC2 .

Note that nC1 is the maximum offered load that can be served without repositioning,

nC2 is the minimum capacity level required to serve the total offered load, S, i.e., with

the minimum amount of repositioning, and nC1 < S < nC2 due to the demand imbalance

Λ21 > Λ12 (Assumption 3.1).

The results in Proposition 3.1 are intuitive. In the scarce-capacity zone 1 (n ≤ nC1 )

drivers are serving riders 100% of the time. The exact allocation of n is arbitrary except

s12/t12 = s21/t21 implied by r = 0. For n = nC1 the platform only loses the excess demand

from the high- to the low-demand location, Λ21−Λ12, whereas destination-based admission

control allows the platform to selectively direct capacity to serve all local requests (route-

22).

In the moderate-capacity zone, the platform uses destination-based admission control

and capacity repositioning to optimize performance; all drivers are moving around, so no

capacity is “wasted” due to idling. Repositioning is only needed from the low- to the
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high-demand location.5

In the ample-capacity zone 3 (nC2 < n), in addition to serving all riders and repositioning

as needed, there is spare capacity that will ultimately idle waiting to be matched with riders.

The zone-3 solution in Proposition 3.1 is not unique; multiple allocations of r and q support

serving all demand. However, the solution with r21 = 0, i.e., no repositioning from location

2 to 1, maximizes the drivers’ profit rate for given n, and supports the maximum achievable

equilibrium capacity.

Let πC (n) denote the per-driver profit under the optimal capacity allocation in Propo-

sition 3.1, as a function of the number of drivers n. Substituting s and r from Proposition

3.1 into (3.27) yields

πC(n) =
(γ̄p− c)s− cr

n
=


γ̄p− c, zone 1 (n ≤ nC1 ),

1
n γ̄p

(
nC1 + (n− nC1 ) t21

t12+t21

)
− c, zone 2 (nC1 < n ≤ nC2 ),

1
n(γ̄pS − cnC2 ), zone 3 (n > nC2 ).

(3.31)

This profit rate reflects the drivers’ utilization profile: in zone 1 they serve riders all the

time (with revenue rate γ̄p and cost rate c); in zone 2 they serve riders only a fraction of

the time but still drive around all the time; and in zone 3 they also queue a fraction of the

time.

Corollary 3.1 (Driver participation equilibrium under regime C). Under centralized ad-

mission control and repositioning,

(i) the platform’s optimal capacity allocation maximizes the per-driver profit, i.e., condi-

tion (3.22) in Lemma 3.1 holds;

(ii) there exists a unique equilibrium capacity of participating drivers, denoted by n∗C , which

solves n∗C = NF (πC(n∗C)), where πC(n) is the continuously decreasing per-driver profit

in (3.31) and limn→∞ πC(n) = 0.

5The capacity dedicated into repositioning captures, in a discrete, two-location network, the “wild goose
chase” phenomenon described in Castillo et al. (2017).
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Corollary 3.1 proves the validity condition in Lemma 3.1, so that the two-step approach

yields an optimal solution to Problem C given by (3.23)–(3.28). The uniqueness of the

equilibrium participating capacity n∗C follows from the monotonicity of πC(n).

3.4 Regimes with Decentralized Repositioning

In §3.4.1 we provide an explicit characterization of a driver repositioning equilibrium. Subse-

quently we characterize the system equilibria for two regimes: in §3.4.2 for Minimal Control

(M) where the platform exercises no admission control, and in §3.4.3 for Admission Control

(A) where the platform optimizes over admission control decisions. Finally, in §3.4.4 we

summarize the key differences between the equilibria of all three regimes, C, M, and A.

3.4.1 Driver Repositioning Equilibrium

Recall from §3.2.2 that under decentralized repositioning, drivers symmetrically choose

their repositioning fractions η̃ to maximize their profit rate π̃(η̃;λ,w), and by (3.1) and

(3.2) a driver repositioning equilibrium requires η (λ, ν) ∈ arg maxη̃ π̃(η̃;λ,w). That is, a

set of flow rates (λ, ν) and delays w admit a driver repositioning equilibrium if, and only if,

the unique repositioning fractions η (λ, ν) that are consistent with (λ, ν) are every driver’s

best response to (λ,w). Using (3.14)–(3.16) to map (λ, ν, w) to (s, r, q) , we henceforth

express the functions η(λ, ν) and π̃(η̃;λ,w) as η(s, r) and π̃(η̃; s, q), respectively. Lemma

3.2 characterizes the profit rate function π̃(η̃; s, q). Its explicit expression is given in the

proof in the Appendix.

Lemma 3.2 (Per-driver profit rate). Let the function T (η̃; s, q) denote a driver’s expected

steady-state cycle time through the network, i.e., the average time between consecutive ar-

rivals to the same location. Let T s(η̃; s), T r(η̃) and T q(η̃; s, q) denote the expected time a

driver spends during a cycle serving riders, repositioning and queueing, respectively, where

T s(η̃; s) + T r(η̃) + T q(η̃; s, q) = T (η̃; s, q). The drivers’ expected steady-state profit rate is

an explicit function that satisfies

π̃(η̃; s, q) =
(γ̄p− c)T s(η̃; s)− cT r(η̃)

T s(η̃; s) + T r(η̃) + T q(η̃; s, q)
. (3.32)
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We have the following formal definition of a driver repositioning equilibrium.

Definition 3.1 (Driver repositioning equilibrium). A capacity allocation (s, r, q) forms a

driver repositioning equilibrium if, and only if, η (s, r) is every driver’s best response, that

is

η1(s, r) =
r12

s11
t12
t11

+ s12 + r12
and η2(s, r) =

r21

s21 + s22
t21
t22

+ r21
, (3.33)

η(s, r) ∈ arg max
η̃

π̃(η̃; s, q). (3.34)

Observe that under Assumption 3.1, it is not optimal to reposition from the high-

demand location (2) to the low-demand location (1). Therefore, we focus hereafter on driver

repositioning equilibria with η2 = 0 and r21 = 0. Condition (3.34) in Definition 3.1 yields

an explicitly defined set of capacity allocations (s, r, q) that admit a driver repositioning

equilibrium. We call this the set of driver-incentive compatible capacity allocations, denoted

by D, and specify it in Proposition 3.2.

Proposition 3.2 (Driver-incentive compatibility). There exists a driver repositioning equi-

librium with η2 = 0 if, and only if, the capacity allocation (s, r, q) is driver-incentive com-

patible, that is:

(s, r, q) ∈ D :=

(s, r, q) ≥ 0 : r21 = 0, q1


≤ q∗1(s) + k(s)q2 if r12 = 0

= q∗1(s) + k(s)q2 if r12 > 0

 , (3.35)

where q∗1(s) and k(s) are specified in (C.7), and q∗1(s) = k(s) = 0 if s11 + s12 = 0, and

q∗1(s), k(s) > 0 if s11 + s12 > 0. For (s, r, q) ∈ D the unique driver repositioning equilibrium

is given by (3.33).

The structure of the driver-incentive compatible capacity allocation set D is intuitive.

Inducing drivers not to reposition from location 1 (i.e., r12 = 0) requires a relatively

short location-1 queue, i.e., q1 ≤ q∗1(s) + k(s)q2. Inducing drivers to reposition from lo-

cation 1 (i.e., r12 > 0) requires appropriately balanced queues in the two locations6, i.e.,

q1 = q∗1(s) + k(s)q2; in this case, drivers are indifferent between repositioning to location 2

6Observe that the conditions r12 > 0 and q1 > q∗1(s) + k(s)q2 are mutually incompatible. The latter
condition implies that every driver repositions from location 1, but then no location-1 demand is served so
that q1 = 0.
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and queueing at location 1, and (3.33) identifies the unique randomization probability for the

corresponding symmetric driver repositioning equilibrium. Proposition 3.2 also foreshad-

ows the critical role that demand admission control plays in shaping drivers’ repositioning

incentives, to be discussed in detail in §3.4.3.

In light of Proposition 3.2, constraint (3.35) alone suffices to account for decentralized

repositioning in the problem formulations of regimes M and A: Given a driver-incentive

compatible allocation, the corresponding repositioning equilibrium fractions are immedi-

ately determined by (3.33).

3.4.2 Minimal Control (M)

In the minimal control regime (M) the platform exercises no admission control and drivers

make their own repositioning and participation decisions. We express the feasible set M,

given by (3.13) as the set of feasible capacity allocations (s, r, q, n). Using (3.14)–(3.16) the

flow constraints (3.10)–(3.12) are equivalent to

sl1
Sl1

=
sl2
Sl2

, l = 1, 2, (3.36)

(Sl1 + Sl2 − sl1 − sl2)rlk = 0, l = 1, 2, k 6= l, (3.37)

(Sl1 + Sl2 − sl1 − sl2)ql = 0, l = 1, 2. (3.38)

Substituting (3.35) for (3.1)–(3.2) based on Proposition 3.2, and noting that (3.4)–(3.8)

correspond to (3.24)–(3.28), the set of feasible capacity allocations under minimal control

is given by

M = {(s, r, q, n) : (3.24)− (3.28), (3.36)− (3.38), (3.35)} . (3.39)

Following the solution approach outlined in §3.2.5, we specify the system equilibrium

in two steps. First, we characterize in Proposition 3.3 the unique equilibrium capacity

allocation of a fixed number n of participating drivers, and get

ΠM (n) = max
s,r,q
{Π(s) : (3.24)− (3.26), (3.36)− (3.38), (3.35)} (3.40)

Then, we establish in Corollary 3.2 that there exists a unique equilibrium capacity of par-

ticipating drivers.
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Proposition 3.3 (Allocation of fixed capacity under regime M). Consider the problem

(3.40) for fixed driver capacity n. Define the constants

nM1 := nC1 −
(

1− Λ12

Λ21

)
S22, nM2 := nM1 + q∗1 (S) , and nM3 := nC2 + q∗1 (S) , (3.41)

where nC1 and nC2 are defined in (3.30) and nM1 < nC1 < S < nC2 < nM3 . There is a unique

feasible driver capacity utilization (s, r, q) to (3.40) with the following structure. (Figure 3.4

(b))

(1) Scarce capacity (n ≤ nM1 ). All drivers serve riders: s = n; r = 0; q = 0.

(2) Moderate capacity—no repositioning but queueing (nM1 < n ≤ nM2 ). Drivers serve all

riders at the low- and a fraction Λ12
Λ21

of riders at the high-demand location, or queue at the

low-demand location: s = nM1 where s1k = S1k, s2k = S2k
Λ12
Λ21

for k = 1, 2; r = 0; q1 =

n− nM1 < q∗1 (S), q2 = 0.

(3) Moderate capacity—repositioning and queueing (nM2 < n ≤ nM3 ). Drivers serve all rid-

ers at the low- and more than a fraction Λ12
Λ21

of riders at the high-demand location, reposition

from the low- to the high-demand location, or queue at the low-demand location: s > nM1

where s1k = S1k for k = 1, 2; r12 > 0, r21 = 0; q1 = q∗1(S), q2 = 0.

(4) Ample capacity (n > nM3 ). Drivers serve all riders, reposition from the low- to the high-

demand location, or queue at both locations in an incentive-compatible split: s = S; r12 =

nC2 − S, r21 = 0; q1 = q∗1(S) + k(S)q2, q2 > 0.

Proposition 3.3 differs in two ways from Proposition 3.1 for Centralized Control (regime

C). First, because the platform exercises no admission control in regime M, the maximum

offered load that can be served without repositioning, given by nM1 , is lower than under

optimal admission control (regime C), i.e., nM1 = nC1 − (1− Λ12/Λ21)S22. Specifically, with

destination-based admission control the platform could direct the scarce capacity to serve

all local traffic at the high-demand location. Second, and most importantly, because repo-

sitioning is decentralized in regime M, drivers can only be induced to reposition to the

high-demand location if there is a sufficiently long queueing delay at the low-demand loca-

tion. So, at lower capacity (zone 2), the low-demand queue builds up, but is not sufficient

to incentivize drivers to reposition to the high-demand location. Only at sufficiently high

capacity levels (zone 3) is the queue long enough for drivers to reposition. Since queueing
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is required to get sufficient repositioning to occur, the minimum capacity level required to

serve the total offered load, nM3 , exceeds the corresponding requirement under centralized

control, nC2 , by exactly the size of the queue that will provide the repositioning incentive.

Let πM (n) denote the per-driver profit under the equilibrium capacity allocation of

Proposition 3.3, as a function of the number of drivers n. (See the Proof of Corollary 3.2

in the Appendix for an explicit expression of πM (n).) It is easy to verify that πM (n) is

continuously decreasing in n and limn→∞ πM (n) = 0.

Corollary 3.2 (Driver participation equilibrium under regime M). Under no admission

control and decentralized repositioning,

(i) the platform’s optimal capacity allocation maximizes the per-driver profit, i.e., condi-

tion (3.22) in Lemma 3.1 holds;

(ii) there exists a unique equilibrium capacity of participating drivers, denoted by n∗M ,

which solves n∗M = NF (πM (n∗M )), where πM (n) is the continuously decreasing per-

driver profit.

Corollary 3.2 proves the validity condition in Lemma 3.1, so that the two-step approach

yields an optimal solution at which M as a singleton given by (3.39) is obtained. The

uniqueness of the equilibrium participating capacity n∗M follows from the monotonicity of

πM (n).

3.4.3 Admission Control (A)

3.4.3.1 Optimal Allocation of Fixed Capacity

In regime A the platform is free to choose the optimal admission control policy, while drivers

make their own repositioning and participation decisions. The corresponding capacity al-

location problem, the analog of (3.9), is given by

(Problem A) max
s,r,q,n

{Π (s) : (3.24)− (3.28), (3.35)} . (3.42)

Contrasting with (3.39), the platform’s control need not satisfy (3.36)–(3.38). We proceed

as before in two steps, but will modify the two-step solution approach in §3.4.3.3 to handle
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a special feature of the optimal platform control in this regime: the platform’s potential

strategic demand rejection discussed in §3.4.3.2. In that case the validity condition in

Lemma 3.1 may not hold and the exact equilibrium is more complicated. In Proposition 3.4,

we first solve for

ΠA(n) = max
s,r,q
{Π(s) : (3.24)− (3.26), (3.35)}, (3.43)

the optimal capacity allocation assuming an exogenously given capacity of participating

drivers, n.

Proposition 3.4 (Allocation of fixed capacity under regime A). Consider the problem

(3.43) for fixed driver capacity n. Define the constants

nA1 := nC1 and nA3 := nC2 + q∗1 (S) , (3.44)

where nC1 and nC2 are defined in (3.30) and nA1 = nC1 < S < nC2 < nA3 . There exists a

threshold nA2 such that nA1 < nA2 < nA3 and the optimal capacity utilization has the following

structure. (Figure 3.4 (c))

(1) Scarce capacity (n ≤ nA1 ). All drivers serve riders: s = n; r = 0; q = 0.

(2) Moderate capacity—no repositioning but queueing (nA1 < n ≤ nA2 ). Drivers serve all

riders except a fraction 1− Λ12
Λ21

from the high- to the low-demand location, and queue at the

low-demand location: s = nA1 ; r = 0; q1 = n− nA1 < q∗1 (s), q2 = 0.

(3) Moderate capacity—repositioning, with or without queueing (nA2 < n ≤ nA3 ). Compared

to zone 2, drivers serve more riders at the high- but possibly fewer riders at the low-demand

location, they reposition from the low- to the high-demand location, and may queue at the

low-demand location: s > nA1 ; r12 > 0, r21 = 0; q1 = q∗1(s) ≥ 0, q2 = 0.

(4) Ample capacity (n > nA3 ): Drivers serve all riders, reposition from the low- to the high-

demand location, or queue at both locations in an incentive-compatible split: s = S; r12 =

nC2 − S, r21 = 0; q1 = q∗1(S) + k(S)q2, q2 > 0.

Proposition 3.4 differs in two ways from Proposition 3.3 for Minimal Control (regime

M). First, because the platform exercises admission control in regime A, the maximum

offered load that can be served without repositioning is the same as under Centralized

Control, i.e., nA1 = nC1 , and exceeds its counterpart under Minimal Control, i.e., nM1 < nA1 ,
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as discussed in §3.4.2. The exact allocation of n at scarce capacity (zone 1) is arbitrary

except s12/t12 = s21/t21, the same as in regime C.

Second and more importantly, whereas under Minimal Control the demand served on

each route increases in the total available driver capacity n, this may not hold under

optimal admission control: Compared to zone 2, in zone 3 the platform may reject, and

therefore serve fewer, rider requests at the low-demand location even if there are available

drivers, and even though there is more capacity in the network. The idea is to make it less

attractive for drivers to queue at the low-demand location by decreasing the served demand

rate, rather than by relying on the buildup of a long queue. This frees cars to reposition

and subsequently serve riders.7 We term this policy feature strategic demand rejection as it

reduces the revenue at the low-demand location, in order to incentivize drivers to reposition

and generate more revenue at the high-demand location. We elaborate on the rationale and

specify optimality conditions for this key result in §3.4.3.2 below.

3.4.3.2 Strategic Demand Rejection to Induce Driver Repositioning

Proposition 3.4 states that under moderate-capacity conditions (zone 3, nA2 < n ≤ nA3 ),

drivers may serve fewerriders at the low-demand location (1), compared to when there is

less capacity in the network (zone 2). In this case the optimal admission control policy

exhibits a somewhat counterintuitive behavior, whereby the platform rejects some or all

rider requests in the low-demand location, even though there is an excess supply of drivers,

that is, empty cars are leaving and possibly also waiting to get matched at this location.

This strategic demand rejection sacrifices revenue at the low-demand location, so as to

incentivize drivers to reposition from the low- to the high-demand location where they can

generate more revenue for themselves and for the platform. Specifically, rejecting rider

requests at the low-demand location creates an artificial demand shortage that drivers

offset by choosing to reposition more frequently to the high-demand location, rather than

joining the low-demand matching queue. The end result is a shorter queue at the low-

demand location (the waiting time may increase or decrease). In terms of Proposition 3.2,

7This property of the optimal platform’s control seems to be in contrast to the literature in ride-hailing
networks.
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rejecting demand at location 1 alters the driver-incentive compatible capacity allocation by

reducing the queue-length threshold q∗1(s), which frees up driver capacity to reposition and

serve riders at the high-demand location. By controlling congestion, the platform has an

operational lever to incentivize drivers to reposition, as opposed to, for example, increasing

their wage.

This control action can only be relevant when capacity is moderate; when capacity is

scarce all drivers are busy; when capacity is ample, all riders are served. For the moderate-

capacity zone (3), Proposition 3.5 identifies a necessary and sufficient condition for the

optimality of strategic demand rejection in terms of the model primitives. To simplify

notation and highlight the structural imbalances, define the following ratios:

ρ1 :=
S11

S11 + S12
, ρ2 :=

S22

S21 + S22
, τ :=

t21

t12
, κ :=

c

γ̄p
< 1, (3.45)

where ρ1 and ρ2 are the shares of the local-demand offered load at location 1 and 2, re-

spectively, τ is the ratio between cross-location travel times, and κ is the ratio of driving

cost to drivers’ service revenue (“relative driving cost”). Assumption 3.2 requires that

κ < τ/(1 + τ).

Proposition 3.5 (Optimality of strategic demand rejection in regime A). Under optimal

platform admission control and decentralized repositioning, it is optimal at moderate ca-

pacity, i.e., for some n ∈ (nA2 , n
A
3 ], to strategically reject rider requests at the low-demand

location so as to induce repositioning to the high-demand location only if the following con-

dition holds:

Λ12

Λ21

1− ρ1κ

1− ρ1
<
τ − (τ + 1− ρ2)κ

1− ρ2

(
κ

1 + τ

τ

τ + 1− ρ2

ρ2
− 1

)
. (3.46)

Note that condition (3.46) is necessary but not sufficient, for demand rejection to be

optimal at equilibrium. §3.4.3.3 explains the reason in detail and provides a sufficient

condition for demand rejection to be optimal at equilibrium. To gain some intuition we

discuss (3.46) under the simplifying assumption that τ = 1.

Effect of ρ2, the share of the local-demand offered load at the high-demand location.8

Intuitively, if the local-demand share at the high-demand location ρ2 is low, then this

8For τ = 1 and κ > 0 the right-hand side (RHS) of (3.46) decreases in ρ2 from +∞ for ρ2 = 0 to −∞
as ρ2 → 1, so that (3.46) holds for ρ2 below some threshold.
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location is less attractive because of the higher likelihood that a driver will get matched

to a rider going back to the low-demand location; drivers have a weak “natural” incentive

to reposition to the high-demand location, so encouraging them to do so requires rejecting

demand at the low-demand location.

Effect of ρ1, the share of the local-demand offered load at the low-demand location.9

Holding ρ2 fixed, which fixes the RHS of (3.46), the condition cannot hold for sufficiently

large ρ1, i.e., if the local demand at the low-demand location is dominant: In this case

drivers in the low-demand location may get stuck serving local requests and queueing in

between, which adversely affects their profit rate and makes repositioning naturally more

attractive.

Effect of Λ12/Λ21, the cross-location demand imbalance. The LHS of (3.46) is positive

and decreases to zero as Λ21 increases from Λ12 to ∞, where Λ12/Λ21 < 1 by Assumption

3.1. Therefore, (3.46) holds for sufficiently large Λ12, provided the RHS is strictly positive

(i.e., the local-demand share at the high-demand location, ρ2, is below some threshold,

as discussed above). Intuitively, more cross-location demand at the high-demand location

increases the value of rejecting demand at the low-demand location in order to induce

drivers to reposition.

Effect of κ, the relative driving cost. (3.46) can only hold for sufficiently large κ > 0.

When repositioning becomes significantly more expensive than queueing (for which drivers

incur no direct cost), the platform needs to strengthen the incentive for repositioning over

queueing at the low-demand location by rejecting demand there.

3.4.3.3 Equilibrium Characterization

As discussed above, when the platform exerts strategic demand rejection, there is a shorter

queue at the low-demand location and more drivers are incentivized to reposition from the

low- to the high-demand location. The per-driver profit at a given participation level may

therefore go down, as drivers pay for repositioning but not for queueing. Therefore, even

when the necessary condition for strategic demand rejection, (3.46), holds, the platform

9The left-hand side (LHS) of (3.46) increases in ρ1 from Λ12/Λ21 for ρ1 = 0 to ∞ as ρ1 → 1, so that
condition (3.46) holds if both local-demand shares, ρ1 and ρ2, are below some threshold.
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may be able to generate more revenue without rejecting location-1 demand. In particu-

lar, because at fixed participation level, strategic demand rejection maximizes revenue per

driver but may reduce per-driver profit, the platform faces the following trade-off: increase

revenue through strategic demand rejection at the expense of reducing the per-driver prof-

its and limiting driver participation; or increase revenue with less (or no) strategic demand

rejection, to boost per-driver profits and driver participation.

In this section we present a modification to the two-step approach that identifies how

to find the solution in regime A when Lemma 3.1 does not hold, and we obtain a sufficient

condition for strategic demand rejection to be optimal in equilibrium.

We propose the following modified two-step solution approach that bounds the equi-

librium participating capacity n∗A between two participation levels, the lower participation

that is obtained if the platform exercises strategic demand rejection to maximize its rev-

enue at each given participation level, and the higher participation that is obtained if the

platform completely forgoes strategic demand rejection.

Modified Two-Step Solution Approach

Step 1 Solve for the optimal capacity allocation for fixed capacity of participating drivers, n

ΠA(n) = max
s,r,q
{Π(s) : (s, r, q, n) ∈ CA}, (3.47)

and solve for the optimal capacity allocation in the absence of demand rejection in

the low-demand location when n ∈ (nA1 , n
A
3 ]:

Π̂A(n) = max
s,r,q
{Π(s) : (s, r, q, n) ∈ CA, s1k = S1k for k = 1, 2, n ∈ (nA1 , n

A
3 ]}. (3.48)

Let πA(n) and π̂A(n) be the resulting per-driver profit functions, respectively.

Step 2 Solve for the equilibrium capacity of participating drivers, nA, from

NF (πA(n+
A)) ≤ nA ≤ NF (πA(n−A)), (3.49)

where n+
A = limε↓0 nA+ε and n−A = limε↓0 nA−ε, and solve for the equilibrium capacity

of participating drivers in the absence of strategic demand rejection, n̂A, from

n̂A = NF (π̂A(n̂A)). (3.50)
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The actual equilibrium participating capacity n∗A ∈ [nA, n̂A] can be identified by

solving for Π∗A in (3.19) with n restricted to n ∈ [nA, n̂A].

As reasoned above, the per-driver profit need not be maximized under the platform’s

optimal capacity allocation when it involves strategic demand rejection. In this case the

original two-step approach is not valid by Lemma 3.1 and we propose the above modified

version. Moreover, while π̂A(n) is continuously decreasing in n to a limit value of zero, πA(n)

also decreases in n to zero but is discontinuous under strategic demand rejection. Either

policy ensures a unique participation equilibrium. These observations and the modified

two-step approach are formalized by the following lemma.

Lemma 3.3 (Driver participation equilibrium under regime A). Under optimal admission

control and decentralized repositioning:

(i) Allowing strategic demand rejection, the platform’s optimal capacity allocation may

not maximize per-driver profit, i.e., condition (3.22) in Lemma 3.1 does not hold;

there exists a unique equilibrium participating capacity nA which solves (3.49).

(ii) Disallowing strategic demand rejection, the platform’s optimal capacity allocation max-

imizes per-driver profit, i.e., condition (3.22) in Lemma 3.1 holds; there exists a unique

equilibrium participating capacity n̂A which solves (3.50).

(iii) The actual equilibrium participating capacity is n∗A ∈ [nA, n̂A]. When regime A does

not involve strategic demand rejection, i.e., condition (3.46) does not hold, n∗A = nA =

n̂A.

(iv) A sufficient condition for strategic demand rejection to be optimal is Π̂A(n̂A) < ΠA(nA).

Proposition 3.6 identifies a plausible sufficient condition for strategic demand rejection

to be optimal in equilibrium under regime A, i.e., for Lemma 3.3 (iv) to hold.

Proposition 3.6 (Sufficient condition for strategic demand rejection in regime A). There

exists a positive threshold level of local-demand offered load at the high-demand location,

denoted by Ŝ22, such that if S22 ∈ [0, Ŝ22), then strategic demand rejection is optimal under

any equilibrium with moderate participating capacity n∗A ∈ (nA2 , n
A
3 ).
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Proposition 3.6 relies on the following intuition that holds in the absence of local demand

at the high-demand location 2. For drivers at the low-demand location 1, repositioning to

the high-demand location 2 is maximally unattractive if they find no local demand there

(S22 = 0), because this condition minimizes their utilization between the time when they

leave and the time when they return to the low-demand location. Therefore, giving drivers

the incentive to reposition without strategic demand rejection requires a very long queue

at the low-demand location and therefore substantial excess capacity, which reduces their

profits significantly. As a result, strategic demand rejection allows the platform to boost

revenues with only modest adverse effect on driver profits.

3.4.4 Graphical Depiction of Control Regimes C, M, and A

Figures 3.4 and 3.5 depict the broad features that are identified in Propositions 3.1, 3.3 and

3.4 for the three control regimes. (1) When capacity is scarce, all drivers are busy serving
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Figure 3.4: Optimal capacity allocation in three control regimes

riders under all three control regimes. (2) When capacity is ample, all riders are served,

and the three control regimes agree again. But, importantly, (3) with optimal admission

control and centralized repositioning the platform can serve the entire rider demand with less

capacity and without any drivers queueing at any location; in contrast, with decentralized

repositioning, in order to create the appropriate incentives, drivers need to queue. (4)

With admission control, the platform can (i) prioritize rider demand at the high-demand

location based on their destination, and therefore increase driver utilization in the absence
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Figure 3.5: Driver time allocation in three control regimes

of repositioning, and (ii) reject rider demand at the low-demand location to incentivize

driver repositioning.

Switching to the driver’s view (Figure 3.5), additional platform control capability ensures

that drivers are busy for a larger fraction of their time, and thus more profitable.

3.5 The Impact of Platform Controls on System

Performance

In this section we compare the equilibrium performance of the three control regimes

{M,A,C} from the viewpoint of the platform, the drivers, and the rider service level.

3.5.1 Ranking of Platform Revenue, Per-Driver Profit, and Driver

Capacity

We start by ranking the platform revenue, the per-driver profit, and the driver capacity

under the three control regimes. Let ΠX(n) denote the platform revenue rate under the

equilibrium capacity allocation in regime X ∈ {M,A,C}, as a function of the participating

driver capacity n. Proposition 3.7 establishes that for fixed participating capacity both the

platform and the drivers are better off with increasing platform control capabilities.

Proposition 3.7 (Ranking of equilibrium profits for fixed capacity). For fixed participating

capacity n control capabilities have the following impact on profits:
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(1) The platform revenue rate increases with increasing platform control capability (M →

A→ C):

ΠM (n) ≤ ΠA(n) ≤ ΠC(n). (3.51)

(2) Centralized control maximizes the per-driver profit rate:

max {πM (n), πA(n)} ≤ πC(n). (3.52)

(3) Under decentralized repositioning, if (3.46) is not satisfied then optimal admission con-

trol increases the per-driver profit rate:

πM (n) ≤ πA(n). (3.53)

Parts (1) and (2) of Proposition 3.7 are as expected. Part (1) of Proposition 3.7 also

implies that riders benefit from increasing platform control capability: From the riders’

viewpoint, an important performance metric is the network-wide service level, defined as

the fraction of the total rider demand that is served. This service level equals the ratio

of total service capacity to total offered load, i.e., s/S. Since the platform revenue rate

is proportional to the total service capacity, i.e., Π (s) = γps by (3.23), the network-wide

service level is proportional to the platform revenue rate, and therefore increases with

increasing platform control capability by Part (1) of Proposition 3.7.

Part (3) of Proposition 3.7 establishes that optimal admission control typically benefits

drivers, provided that condition (3.46) is not satisfied. Conversely, if condition (3.46) holds

then by Proposition 3.5 the platform chooses to strategically reject demand in the low-

demand location at moderate capacity levels to induce driver repositioning; as a result,

drivers incur higher driving costs and may be worse off than without admission control (the

platform is still better off).

Proposition 3.8 establishes that the equilibrium driver participation increases with in-

creasing platform control capabilities, and as under fixed capacity, so do the resulting

platform revenue and per-driver profits. Let Π∗X := ΠX (n∗X) and π∗X := πX (n∗X) denote,

respectively, the platform revenue rate and the per-driver profit rate, under the equilibrium

capacity allocation and levels in regime X ∈ {M,A,C}.

109



Proposition 3.8 (Ranking of equilibrium profits and capacity). (1) The equilibrium plat-

form revenue rate increases with increasing platform control capability (M → A→ C):

Π∗M ≤ Π∗A ≤ Π∗C . (3.54)

(2) Centralized control maximizes the equilibrium driver participation and per-driver profit

rate:

max{n∗M , n∗A} ≤ n∗C and max{π∗M , π∗A} ≤ π∗C . (3.55)

(3) Under decentralized repositioning, if (3.46) is not satisfied, then optimal admission

control increases drivers’ participation and profit rate:

n∗M ≤ n∗A and π∗M ≤ π∗A. (3.56)

Parts (2) and (3) follow from Parts (2) and (3) of Proposition 3.7, respectively, and

because the marginal opportunity cost function, defined as co (n) := F−1
(
n
N

)
, strictly

increases in the participating capacity n. Part (1) follows because the platform revenue

functions ΠC(n), ΠM (n) and ΠA(n) are increasing in n. Propositions 3.1, 3.3, and 3.4 imply

that the performance improvements reported in Proposition 3.8 are strictly positive if, and

only if, the equilibrium driver capacity is in the moderate-capacity zone where increased

control capability is effective.Corollary 3.3 makes these conditions precise.

Corollary 3.3 (Conditions for performance gains). Platform controls strictly improve prof-

its under the following equilibrium conditions:

(1) Admission control (regime A over M): If (3.46) is not satisfied then

Π∗M < Π∗A, π
∗
M < π∗A and n∗M < n∗A if and only if n∗M ∈ (nM1 , nM3 ), (3.57)

where nM1 and nM3 are defined in (3.41).

(2) Centralized repositioning control (regime C over A):

Π∗A < Π∗C , π
∗
A < π∗C and n∗A < n∗C if and only if n∗A ∈ (nA1 , n

A
3 ), (3.58)

where nM1 and nM3 are defined in (3.44).
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The equilibrium iff capacity conditions in (3.57) are satisfied when the potential driver

supply and the outside opportunity cost distribution are such that (i) more drivers are

willing to participate at the maximum profit rate (γp−c) than are needed to meet the rider

demand that can be served without repositioning (so n∗M > nM1 ), but (ii) not enough drivers

are willing to participate at the reduced profit rate resulting from the queueing delays and

repositioning costs that are necessary to serve all riders (so n∗M < nM3 ). Both of these con-

ditions seem plausible, and as such we expect admission control to benefit the platform and

the drivers in practical settings. A similar argument indicates that in practical parameter

regimes the iff capacity conditions in (3.58) also hold, i.e., that centralized repositioning is

beneficial.

3.5.2 Upper Bounds on the Gains in Platform Revenue and Per-Driver

Profit

In this section we provide upper bounds on the gains in platform revenue and per-driver

profit due to increased platform control as explicit functions of the network primitives ρ1, ρ2,

and τ defined in (3.45) across all feasible driver outside opportunity cost rate distributions.

Proposition 3.9 (Upper bounds on platform revenue gains). Fix N ≥ nM3 = nA3 .

(1) Platform revenue gain due to admission control (regime A over M): If (3.46) is not

satisfied,

max
F (·)

Π∗A −Π∗M
Π∗M

≤ S

nM1
− 1 =

(
Λ21

Λ12
− 1

)
1

1 + 1−ρ2

1−ρ1

1
τ

. (3.59)

(2) Platform revenue gain due to centralized repositioning control (regime C over A):

max
F (·)

Π∗C −Π∗A
Π∗A

≤ S

nA1
− 1 =

(
Λ21

Λ12
− 1

)
1

1 + 1
1−ρ1

1
τ + ρ2

1−ρ2

Λ21
Λ12

. (3.60)

The key insight is that the potential revenue gains from both admission control and

centralized repositioning increase as a function of the cross-location demand imbalance

(Λ21/Λ12), and the cross-location travel time imbalance (τ = t21/t12). The condition N ≥

nM3 = nA3 requires that the potential driver supply is large enough to serve all riders under

decentralized repositioning. The upper bound on the gain from admission control (the

RHS in (3.59)) is attained if, under minimal control the platform can only meet the rider
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demand that does not require repositioning, and admission control allows the platform to

increase driver participation enough to serves all riders. The upper bound on the gain

from repositioning control in (3.60) has a similar interpretation. The upper bound in (3.59)

exceeds the bound in (3.60), because regime A allows the platform to serve more riders

without repositioning. The bounds in (3.59) and (3.60) can be approached arbitrarily

closely for specific choices of the opportunity cost distribution F (·), as discussed in Section

S2 of the Supplemental Materials.

Table 3.1 numerically illustrates the magnitude of the upper bounds in (3.59) and (3.60)

as a function of the cross-location demand imbalance Λ21/Λ12.

Table 3.1: Upper bounds in (3.59) and (3.60) on platform revenue gain (tlk = 1,∀lk, Λ12 =
Λ22 = 1)

(a) Balanced cross-local demand at low-demand location (ρ1 = 0.5)

cross demand imbalance (Λ21
Λ12

) 1 2 5 10

from admission control 0% 43% 150% 319%
from central. repositioning 0% 25% 100% 225%

(b) Imbalanced cross-local demand at low-demand location (ρ1 = 0.25)

(Λ21
Λ12

) 1 2 5 10

from admission control 0% 53% 189% 407%
from central. repositioning 0% 30% 120% 270%

Turning attention to the per-driver profit gain, we have the following result.

Proposition 3.10 (Upper bound on per-driver profit gains). Fix N ≥ nM3 = nA3 and

assume that (3.46) is not satisfied. The per-driver profit gain from admission control (under

regime A or C) satisfies:

max
F (·)

π∗A − π∗M
π∗M

= max
F (·)

π∗C − π∗M
π∗M

≤ 1− ρ2

τ − (1− ρ2 + τ)κ
. (3.61)

In contrast to the bounds on the platform revenue gains in Proposition 3.9 that can

only be attained when more control yields repositioning, the bound in (3.61) can only

be attained in the absence of repositioning, i.e., when admission control increases drivers’

utilization to 100% with only a small increase in their participation. In the online appendix

we illustrate this tension between the drivers’ and the platform’s gains from control, along
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with the properties of the opportunity cost distribution F (·) that are required to attain

the bound in (3.61). In a nutshell, if a small change in per-driver profit rate increases

the capacity of participating drivers significantly, then the platform may extract significant

gains while drivers are only marginally better off; conversely, if it takes a large change

in per-driver profit rate to attract incremental participating driver capacity, then drivers

extract significant incremental profits, while the platform benefit is moderate.

3.5.3 Value of Platform Control: Numerical Illustration

We conclude with a numerical illustration of the value of platform control. Taking Minimal

Control with commission rate γ = 0 as the base case, we consider the performance effects

of Centralized Control with γ = 0 and γ = 0.2. We assume unit travel times, i.e., tlk = 1

for l, k = 1, 2, fix the price per unit time $p = 3, the driver cost rate $c = 1, the offered load

vector S = (1, 1, x, x) and consider the cases x = 2 and x = 5, corresponding to moderate

and large demand imbalance, respectively. We assume that drivers’ outside opportunity

costs are uniformly distributed on [0, p− c].
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Figure 3.6: Impact of Centralized vs. Minimal control on performance (x = S2k/S1k, k =
1, 2)

The graphs in Figure 3.6 depict the effects of Centralized Control on four equilibrium

performance measures, the total driver profit and platform revenue (left panel), the per-
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driver profit rate (center panel), and the rider service level (right panel), in the top row for

cross-location imbalance S21 = 2 and in the bottom row for S21 = 5. These measures are

shown as functions of the offered-load-to-driver-pool ratio S/N , where S is fixed. Because

F (p− c) = 1, all drivers in the pool would participate at the maximum achievable profit rate

p− c, i.e., if they could serve riders all the time and the platform extracted no commission

(γ = 0). However, due to the cross-location demand imbalance, serving all riders involves

repositioning (plus queueing under Minimal Control) which reduces the per-driver profit

rate below p − c, and requires more participating cars than demand (so n > S), so that

serving all riders in equilibrium is only feasible if S/N < 1.

We make the following observations, which appear robust to other system parameters

(and possibly to other general network structures).

Total driver profit and platform revenue. Panels (a) and (b) show the effects of Central-

ized Control on the total driver profit and platform revenue, in percentage terms relative to

Minimal Control with γ = 0 (100%). Irrespective of the commission rate, both the drivers

and the platform are best off at intermediate values of the offered-load-to-driver-pool ratio

S/N . At intermediate values of S/N , drivers are always better off under Centralized Con-

trol with a zero commission rate (γ = 0), but are only better off when the cross network

imbalance is significant (x = 5); it is natural to assume that S/N is itself moderate, say in

the interval (.5, 2), since otherwise the platform may choose to change the price that riders

pay to increase or to reduce demand, respectively.

Per-driver profit vs. total driver profit. Panels (c) and (d) show the effects of Centralized

Control on the per-driver profit, in percentage terms relative to Minimal Control with γ = 0.

Comparing with the total driver profits, we see that the change in the per-driver profit is

always significantly lower in magnitude relative to the change in total driver profits, because

participation is endogenous and large relative profit gains will be spread among an increasing

supply of participating drivers, or relative profit losses will be moderated by a decreasing

supply.

Rider service level. Panels (e) and (f) show the rider service level. In the Minimal

Control regime, the service level drops significantly when the load ratio S/N increases; this

is aggravated when the demand imbalance is higher. Centralized platform control boosts
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the service level significantly at moderate values of S/N . However, at at higher values of

S/N , when capacity is scarce, the adverse effect of the commission (γ = 0.2) on driver

participation may dominate the benefits of Centralized Control, resulting in a lower service

level; e.g., see panel (e) for S/N > 1.

In summary, in the presence of demand imbalance, platform control capabilities can

generate significant value for all parties at moderate load ratios, provided that the commis-

sion rate is commensurate with the extra gross revenue that better control yields for the

drivers.
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Chapter 4

Surge Pricing and Dynamic Matching for Hotspot Demand Shock in

Ride-Hailing Networks

4.1 Introduction

Ride-hailing platforms such as Uber, Lyft and Via face non-stationary demand that exhibits

not only predictable time-of-day and day-of-week fluctuations, but also unpredictable de-

mand shocks that occur at a hotspot due to special events (e.g., the end of a concert, a

random disruption in public transportation, etc.). In presence of such shocks, the problem

of dynamically pricing and spatially matching rider demand and driver supply faces four

challenges: (i) The demand shock is of uncertain magnitude and/or duration. (ii) The rid-

ers are price- and delay- sensitive, and specifically they only accept matching delays that do

not exceed their idiosyncratic delay tolerance. (iii) The drivers are geographically dispersed

and behave strategically in deciding whether to proactively reposition toward the hotspot,

given their distance to and their expected payoff at the hotspot. (iv) Due to their travel

delay and payoff risk, the drivers’ response to a hotspot wage surge is both delayed and

uncertain. Motivated by these challenges, we study the platform’s optimal dynamic pricing

and matching control problem, focusing on two questions:

(i) What is the platform’s optimal surge pricing policy (in terms of rider price and driver

wage) and matching policy under a demand shock of uncertain duration?

(ii) How do the optimal policy and the system performance depend on the interplay of

three key timescales—rider patience, demand shock duration, and drivers’ travel delay

to the hotspot?

This work contributes to the literature on the sharing economy, with focus on ride-hailing

networks. The key novelty of this chapter is that it jointly considers (i) non-stationary
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demand, (ii) geographically dispersed supply and (iii) delayed incentives. Existing studies

focus on networks without incentives (e.g., Hu and Zhou (2015), O’Mahony and Shmoys

(2015), Braverman et al.(2016), Iglesias et al. (2016), Ozkan and Ward (2017), Freund et

al. (2017)), on single-location models with incentives (e.g., Bai et al. (2016), Benjaafar et

al. (2016), Cachon et al. (2016), Castillo et al. (2017), Gurvich et al. (2016), Riquelme et

al. (2016), Taylor (2016)), or on stationary networks with incentives (Afche et al. (2018),

Bimpikis et al. (2017)). Guda and Subramanian (2017) study surge pricing under non-

stationary demand in a two-location, two-period model. Castro et al. (2017) study surge

pricing and spatial supply response without timescale considerations.

We study the transient behavior of a ride-hailing network over a geographic area with

non-stationary demand at a hotspot. Riders are price- and delay-sensitive: they only accept

matches that cost less than their willingness-to-pay and arrive within their delay tolerance.

Drivers are dispersed over the geographic area and decide, upon receiving a hotspot wage

surge signal, whether to reposition toward the hotspot. They trade off local and certain

matches at the regular wage with hotspot matches at the surged wage that are subject to

the risk of being left unmatched when the shock ends. The platform seeks to maximize its

extra profit from the demand shock by jointly determining the pricing and matching policy.

Specifically, the platform responds to a demand shock with uncertain magnitude and/or

duration, (i) by dynamically controlling the rider price and driver wage, at a constant or

varying level over a fixed or random surge duration, where the features of these policies

are designed to moderate demand and incentivize drivers to proactively reposition toward

the hotspot; (ii) by spatially matching riders with drivers, subject to drivers’ incentive-

compatibility constraints (they trade off non-hotspot local matches with more profitable

hotspot matches), riders’ delay tolerance, and overall service level constraints.

We formulate and solve the platform’s profit maximization problem under two system

regimes: (1) centralized system: drivers are treated like “autonomous vehicles” and there is

no wage decision; (2) decentralized system: drivers are strategic and need to be incentivized

by a hotspot wage surge. We also characterize the impact of the key timescale parameters,

namely, the rider patience, the demand shock duration, and drivers’ travel delays, on the

optimal policy and the system performance.
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We contribute to the literature on three dimensions.

(i) Novel model of dynamic pricing and spatial matching under non-stationary demand.

The model we propose captures the interplay between non-stationary demand, geo-

graphically dispersed supply, and delayed and risky supply response and incentives.

The uncertain demand shock leads to a dynamic and stochastic hotspot surge price

and wage policy, and given the driver dispersion, yields delayed and uncertain supply

and incentives: a wage surge only affects the available supply after some (travel) delay;

and drivers only benefit from repositioning if they reach the hotspot “on time”.

(ii) Optimal dynamic pricing and spatial matching policy. We study and compare the

performance of various pricing policies under centralized and decentralized regimes.

For policies that equate the price/wage surge duration to the demand surge duration,

the decentralized system matches drivers from within a nearer distance, offers a higher

hotspot wage and charges riders a higher price. In responding to the wage surge,

drivers account for their risk of missing out by reaching the hotspot too late, so that

only nearby drivers reposition to the hotspot. Motivated by this result, we study price

policies that improve performance by optimally controlling the duration of the wage

surge vis- -vis the demand surge duration to mitigate drivers’ repositioning risk.

(iii) Impact of key timescales on the optimal policy and system performance. The optimal

rider price and driver wage at the hotspot, and the matching distance of non-hotspot

supply, depend crucially on the rider patience. Our results, contrasted with extreme

timescale parameter settings, provide intuition on asymptotic system behaviors where

riders are impatient (loss model) or infinitely patient (static planning), drivers that

can relocate to the hotspot quickly (light traffic) or slowly (heavy traffic), and the

demand shock duration is short (unpredictable events) or relatively long (predictable

intraday pattern). In the decentralized system, farther drivers are matched when the

rider patience is higher, the demand shock duration is longer, and drivers’ travel delays

to the hotspot are shorter; the hotspot surge price is higher when the rider patience

is lower, the demand shock duration is shorter, and drivers’ travel delays are shorter.
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4.2 Model and Problem Formulation

4.2.1 Hotspot Demand Shock

Hotspot Demand Shock. The hotspot demand shock has a magnitude, Λ(p) ≤ Λ̄, a decreas-

ing function of the rider price charged at the hotspot. We consider the shock duration to

be deterministic or exponential with mean T̄ , T ∼ exp(1/T̄ ).

Matching Decision. The platform offers wage surge signal to drivers within distance

ut, the wage surge range, at time t. The offered wage within ut should be high enough to

incentivize drivers to reposition to the hotspot. The surge duration is denoted by τ , which

can be the same as the demand shock duration T or longer.

Drivers can be matched if they are in the rider patience zone—within distance θ from

the hotspot. Therefore the actual matching rate at time t is the sum of instantaneous driver

available rate within distance θ and the driver entering rate at distance θ. Let φxt be the

matching rate at time t. We have

xt = min{ut, θ}+

∫ t

0
1(us ≥ θ + t− s)ds, t ∈ [0, T ], (4.1)

where the first term is the instant matching rate and the second term counts the entering

rate through the θ-zone. To get the second term, refer to Figure 4.1 (a). First note that

drivers entering the θ-zone at time t may be those that start repositioning at time s and

distance t − s from the θ-zone, for s ∈ [0, t], which is depicted by the −45 degree dashed

line; then integrating over [0, t] the time ds when the wage surge range at time s is larger

than θ+ t−s (the orange solid segments on the −45 degree dashed line) yields this entering

rate.
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Figure 4.1: Derivation of xt

Notice from Figure 4.1 (a) that, in the general case, xt involves summing the time

segments before t where u is above or on the −45 degree line, which can be mathematically

cumbersome. To simplify the exposition without loss of generality, we focus on the control

policies where u is continuous and does not decrease too fast so that xt has a straightforward

form. This is formalized by the following assumption and proposition.

Assumption 4.1. ut is continuous in t and u̇t ≥ −1, ∀t ≥ 0.

Under Assumption 4.1, we can derive xt given us, s ∈ [0, t] in the following proposition.

(All proofs are in the Appendix.)

Proposition 4.1. Given the surge range profile us ≥ 0, s ∈ [0, t] and assuming Assumption

4.1, the matching rate at time t is given by

xt =


ut if 0 ≤ ut < θ

θ + t if ut ≥ θ and t < u0 − θ

θ + δu(t) if ut ≥ θ and t ≥ u0 − θ

(4.2)

= (ut ∧ θ) + δu(t), (4.3)

where

δu(t) := max{0 ≤ s ≤ t : ut−s ≥ θ + s} (4.4)
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is the “delay of control” at time t—the state at time t is determined by the control δu(t)

time units ago. When {ut−s ≥ θ + s} = ∅, we follow the convention that δu(t) = 0.

Figure 4.1 (b) illustrates the derivation of xt under Assumption 4.1. When u̇t ≥ −1, ∀t ≥

0, the integral in (4.1) involves at most one time segment of length δu(t) instead of several

disconnected time segments. As a result, xt is only determined by the control δu(t) time

units ago.

The following corollary of Proposition 4.1 gives the derivative of x as a function of u

and its derivative.

Corollary 4.1. Under Assumption 4.1, the derivative of the matching rate at time t is

given by

ẋt =


u̇t if 0 ≤ ut < θ

1 if ut ≥ θ and t < u0 − θ

1− 1
1+u̇t−δu(t)

if ut ≥ θ and t ≥ u0 − θ

, (4.5)

where u̇t−δu(t) denotes the derivative of u at time t−δu(t). If u̇t−δt = −1, x is discontinuous

at t with a downward jump and ẋt does not exist.

The third case in (4.5) captures the monotonic relationship between u̇ and ẋ (with time

delay) and is summarized in Table 4.1.

u̇t−δu(t) ẋt

+∞ 1
(0,+∞) (0, 1)

0 0
(−1, 0) (−∞, 0)
−1 −∞

Table 4.1: Relationship between u̇t−δu(t) and ẋt when ut ≥ θ and t ≥ u0 − θ
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Figure 4.2: Exemplary control and state trajectories

Figure 4.2 shows exemplary control and state trajectories that contain all three cases in

Proposition 4.1 and Corollary 4.1. The delayed effect of u on x, xt = ut−δu(t), is depicted

by the three red dashed squares as examples. To distinguish the timelines of control u and

state x and avoid ambiguity, we use tu and tx respectively, instead of t, when necessary.

Let tx be the timeline of x (so xtx is an explicit form of xt), then let

tu := tx − δu(tx) (4.6)

be the timeline of u. The following lemma relates xtx , t
x and utu , t

u in terms of their value

and derivatives.

Lemma 4.1. For any tx ≥ (u0 − θ)+, xtx = utu. Furthermore,

(i) If 0 ≤ utx < θ, dtx

dtu = 1.

(ii) If utx ≥ θ and u̇tu > −1, then

dtx

dtu
= 1 + u̇tu ≡

1

1− ẋtx
. (4.7)

If utx ≥ θ and u̇tu = −1, then xt is discontinuous at tx and dtx = 0.

Using Lemma 4.1, we can prove the following key lemma which relates the integral of

functions of utu and xtx .

Lemma 4.2. For any function f(·) and 0 ≤ a < b,∫ b

a
f(ut)dt =

∫ b+(ub−θ)+

a+(ua−θ)+

f(xt)dt−
∫ ub∨θ

ua∨θ
f(x)dx. (4.8)
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4.2.2 Rider Price and Driver Wage

Let p0 and w0 be the constant rider price and driver wage at non-hotspot locations, respec-

tively. We assume the platform does not change non-hotspot pricing at any time. Next we

consider the pricing at the hotspot.

Hotspot rider price pt is a function of the matching rate, pt = p(xt), where p(x) is the

highest price to get φx ≤ Λ̄ hotspot demand:

Λ(p) = φx⇒ p(x) = Λ−1(φx). (4.9)

At time t, the platform’s hotspot revenue rate is therefore φp(xt)xt.

Let wt(y) be the incentive compatible (IC) hotspot wage at time t that makes a (marginal)

driver at distance y indifferent between staying local and repositioning to the hotspot. The

wage is quoted when the driver starts to reposition but is paid when the driver is matched.

When the IC condition—hence drivers’ repositioning decision—is time independent (which

is true under deterministic or exponential surge duration), the IC wage is also time indepen-

dent, denoted by w(y). Thereafter we are restricted to w(y) without explicit notification.

We consider two classes of wage quoting policies: broadcast and personalized message.

Under the broadcast policy, a common wage is quoted to all drivers (but paid individually

upon matching). Given that the platform chooses wage surge range ut and the IC wage

w(y) is increasing in y, all drivers that start repositioning at t will be paid w(ut) if matched

eventually. Hence the platform’s wage payment rate at time t is

φW b
t = φ

[∫ ut∧θ

0
wt(ut)dy +

∫ t

0
1(us ≥ θ + t− s)ws(us)ds

]
. (4.10)

Under time-independent wage w(y) and using Proposition 4.1, we can show (DETAILS can

be a lemma) that (4.10) is simplified as

φW b
t = φ

∫ xt

0
w(ut−(y−θ)+)dy. (4.11)

Note that if all repositioning drivers can be matched (which is true under deterministic

shock duration), we may adopt the wage-payable rate W̃ b
t = w(ut)ut. In this case the

common wage w(ut) is IC to the marginal drivers at ut but overpaying drivers at x < ut.
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Under the personalized message policy, each driver at x is quoted his/her own IC wage

w(x). Hence the platform’s wage payment rate at time t is

φW p
t = φ

[∫ ut∧θ

0
wt(y)dy +

∫ t

0
1(us ≥ θ + t− s)ws(θ + t− s)ds

]
. (4.12)

Under time-independent wage w(y) and using Proposition 4.1, we can show (DETAILS can

be a lemma) that (4.12) is simplified as

φW p
t = φ

∫ xt

0
w(x)dx. (4.13)

4.2.3 Sequence of Events

In this continuous time model, the sequence of events is as follows.

(1) Platform determines wage surge range ut at time t.

(2) Platform quotes surged wage to drivers at u ∈ [0, ut] at time t using broadcast or

personalized message policy.

(3) Drivers within [0, ut] reposition toward the hotspot and are matched immediately (if

within [0, θ]) or later (if within (θ, ut] by the end of the surge duration).

(4) Matching rate φxt realized (xt yielded by us, 0 ≤ s ≤ t through (4.1))

(5) φxt riders are matched and charged total price φp(xt)xt;

φxt drivers are matched and paid total wage φW b
t or φW p

t .

4.3 Deterministic Demand Shock Duration

Given deterministic shock duration T > 0, the platform determines the wage surge range

ut > 0, t ∈ [0, τ ] and quotes the implied IC wage using the broadcast or personalized

message policy. As T is deterministic, optimal surge duration τ = T since (i) τ ≥ T—if it is

optimal to surge (τ > 0), then it is optimal to surge at least until T , otherwise there is lost

extra hotspot profit; and (ii) τ ≯ T—there is no hotspot demand after T ⇒ no matching

needed ⇒ no wage surge.
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Since the demand shock duration and surge duration are both T known to all drivers,

only drivers that can be within the patience zone θ before the shock ends will reposition.

This gives rise to the IC wage determined by the following equation, where the wage is used

to cover drivers’ lost revenue during repositioning:

w0

m
=

wt(y)

y +m
, y ≤ θ + T − t. (4.14)

It follows that the effective wage surge range needs to satisfy ut ≤ θ + T − t, for t ∈ [0, T ].

Therefore the platform’s profit maximization problem can be formulated as

max
ut:t∈[0,T ]

φ

∫ T

0
{[p(xt)xt −Wt]− (p0 − w0)ut} dt (4.15)

s.t. 0 ≤ xt ≤ θ + t, t ∈ [0, T ] (4.16)

0 ≤ ut ≤ θ + T − t, t ∈ [0, T ] (4.17)

xt = min{ut, θ}+

∫ t

0
1(ut−s ≥ θ + s)ds, t ∈ [0, T ]. (4.18)

We next consider three wage policies with increasing flexibility:

(i) Static broadcast: set ut as a constant u in the above optimization problem and choose

W b
t given by (4.11) in (4.15).

(ii) Dynamic broadcast: choose W b
t given by (4.11) in (4.15).

(iii) Dynamic personalized message: choose W p
t given by (4.13) in (4.15).

4.3.1 Static Broadcast Wage Policy

Under this policy the platform chooses a constant wage level w(u0) that is incentive com-

patible with surge range u0. The effective surge range ut hence follows the structure:

ut =


min{u0, θ + T − t} if u0 ≥ θ

u0 if u0 < θ

.
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The optimization problem is reduced to

max
ut:t∈[0,T ]

φ

∫ T

0
{[p(xt)xt − w(u0)ut]− (p0 − w0)ut} dt (4.19)

s.t. ut =


min{u0, θ + T − t} if u0 ≥ θ

u0 if u0 < θ

, t ∈ [0, T ] (4.20)

xt = (ut ∧ θ) + δt, t ∈ [0, T ]. (4.21)

Proposition 4.2 (Static Broadcast). Under the static broadcast wage policy, the optimal

wage surge range is u∗t = min{u∗0, θ + T − t}, t ∈ [0, T ] in which

u∗0 = arg max
u0≥0

G(u0)u0T1(u0 < θ)

+

[
G(u0)u0[T − (u0 − θ)] +

∫ u0

θ
((p(u)− w(u0))− (p0 − w0))udu

]
1(u0 ≥ θ),

(4.22)

where G(u) is the extra profit per hotspot match defined as

G(u) := (p(u)− w(u))− (p0 − w0). (4.23)

4.3.2 Dynamic Broadcast Wage Policy

Under this policy the optimization problem is

max
ut:t∈[0,T ]

φ

∫ T

0
{[p(xt)xt − w(ut)ut]− (p0 − w0)ut} dt (4.24)

s.t. 0 ≤ ut ≤ θ + T − t, t ∈ [0, T ] (4.25)

xt = (ut ∧ θ) + δt, t ∈ [0, T ]. (4.26)

Proposition 4.3 (Dynamic Broadcast). Under the dynamic broadcast wage policy, the

optimal wage surge range is

u∗t = arg max
0≤u≤θ+T−t

G(u)u, t ∈ [0, T ], (4.27)

where G(·) is defined in (4.23).
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4.3.3 Dynamic Personalized Message Wage Policy

Under this policy the optimization problem is

max
ut:t∈[0,T ]

φ

∫ T

0

{[
p(xt)xt −

∫ xt

0
w(x)dx

]
− (p0 − w0)ut

}
dt (4.28)

s.t. 0 ≤ ut ≤ θ + T − t, t ∈ [0, T ] (4.29)

xt = (ut ∧ θ) + δt, t ∈ [0, T ]. (4.30)

Proposition 4.4 (Dynamic Personalized Message). Under the dynamic personalized mes-

sage wage policy, the optimal wage surge range is

u∗t = arg max
0≤u≤θ+T−t

Gp(u)u, t ∈ [0, T ], (4.31)

where Gp(u) is the extra profit per hotspot match defined as

Gp(u) :=

(
p(u)−

∫ u
0 w(s)ds

u

)
− (p0 − w0). (4.32)

4.3.4 Comparing the Three Wage Policies

Theorem 4.1. Let ust , u
b
t , u

p
t be the optimal solution in Propositions 4.2, 4.3 and 4.4, re-

spectively, then ust ≤ ubt ≤ u
p
t .

Theorem 1 compares/ranks the optimal surge range. Next to compare performance

measures and possible bounds on the improvement.

4.4 Exponential Demand Shock Duration

In this section we consider exponential demand shock duration, T ∼ exp(1/T̄ ). The plat-

form determines the wage surge range ut > 0, t ∈ [0, τ ] and quotes the implied wage using

the personalized message policy. We consider two types of surge duration τ : (i) restricted

surge duration where the surge ends when the demand shock ends, i.e., τ = T , and (ii)

relaxed surge duration where the surge may extend beyond the demand shock duration,

i.e., τ ≥ T , in order to incentivize faraway drivers.

The platform’s profit maximization problem can be formulated as
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max
ut:t∈[0,τ ],τ≥T

ET∼exp(1/T̄ )φ

∫ T

0
[p(xt)xt − (p0 − w0)ut] dt

− φ
∫ τ

0

∫ ut

0
1(τ − t ≥ (y − θ)+)wt(y)dydt

s.t. 0 ≤ xt ≤ θ + t, t ∈ [0, T ]

xt = min{ut, θ}+

∫ t

0
1(ut−s ≥ θ + s)ds, t ∈ [0, T ]

w0

m
=

wt(y)

y +m
F̄τ−t((y − θ)+) +

∫ (y−θ)+

0

w0
m (y +m− s)

y +m
fτ−t(s)ds.

We next consider the two surge duration types.

4.4.1 Restricted Surge Duration

The platform offers surged price and wage during the demand shock duration. As is men-

tioned in 4.2.2, since the surge duration coincides with the exponential shock duration, the

drivers’ repositioning decision is time independent but only location dependent, hence the

IC wage is also time independent, denoted by w(x). Using τ = T and (4.3), we can obtain∫ T

0

∫ ut

0
1(T − t ≥ (y − θ)+)w(y)dydt =

∫ T

0

∫ xt

0
w(x)dxdt, (4.33)

and the platform’s problem is simplified to

max
ut:t∈[0,T ]

ET∼exp(1/T̄ )φ

∫ T

0

{[
p(xt)xt −

∫ xt

0
w(x)dx

]
− (p0 − w0)ut

}
dt

s.t. xt =


ut if 0 ≤ ut < θ

θ + t if ut ≥ θ and t < u0 − θ

θ + max{δ ≥ 0 : ut−δ − θ ≥ δ} if ut ≥ θ and t ≥ u0 − θ

, t ∈ [0, T ]

w0

m
=

w(y)

y +m
F̄T ((y − θ)+) +

∫ (y−θ)+

0

w0
m (y +m− s)

y +m
fT (s)ds.

The following Lemma from Klinger (1969) transforms the expectation of an integral

over a random duration to an integral over the infinite horizon.

Lemma 4.3 (Klinger 1969). If T ∼ F is a positive random variable and the lhs of (4.34)

is finite, then

ET∼F
∫ T

0
g(x,u, t)dt =

∫ ∞
0

g(x,u, t)(1− F (t))dt. (4.34)
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Applying this Lemma, the objective function becomes

φ

∫ ∞
0

{[
p(xt)xt −

∫ xt

0
w(x)dx

]
− (p0 − w0)ut

}
e−

t
T̄ dt. (4.35)

Using Lemma 4.1, we get∫ ∞
0

e−
t
T̄ utdt =

∫ ∞
(u0−θ)+

e−
t−(xt−θ)

+

T̄
dtu

dtx
xtdt

=

∫ ∞
(u0−θ)+

e−
t−(xt−θ)

+

T̄ (1− ẋt1(xt ≥ θ))xtdt

=

∫ ∞
(u0−θ)+

e
(xt−θ)

+

T̄ (1− ẋt1(xt ≥ θ))xte−
t
T̄ dt,

so the objective function can be written as

max
u0≥0,xt:ẋt≤1

{
φ

∫ (u0−θ)+

0

[
p(xt)xt −

∫ xt

0
w(x)dx

]
e−

t
T dt

+ φ

∫ ∞
(u0−θ)+

{[
p(xt)xt −

∫ xt

0
w(x)dx

]
− (p0 − w0)e

(xt−θ)
+

T̄ (1− ẋt1(xt ≥ θ))xt
}
e−

t
T̄ dt

}
.

(4.36)

Let

R(x) := p(x)x−
∫ x

0
w(s)ds, L(x) := (p0 − w0)e

(x−θ)+
T̄ x, (4.37)

and use (4.2) in Proposition 4.1, the objective function becomes

max
xt:ẋt≤1

∫ ∞
0

φ [R(xt)− (1− ẋt1(xt ≥ θ))L(xt)] e
− t
T̄ dt. (4.38)

Define

V (x, t) := max
xs≥0,ẋs≤1

∫ ∞
t

φ [R(xs)− (1− ẋs1(xs ≥ θ))L(xs)] e
− s
T̄ ds and V (x) := V (x, 0).

Since the cost function depends on time only through the discounting factor e−s/T̄ and the

control ẋs does not depend on time, the Hamilton-Jacobi-Bellman (HJB) equation is given

by

1

T̄
V (x) = max

ẋ≤1
{φ [R(x)− (1− ẋ1(x ≥ θ))L(x)] + V ′(x)ẋ}

= max
ẋ≤1
{[φ1(x ≥ θ))L(x) + V ′(x)]ẋ}+ φ[R(x)− L(x)].
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Hence

V (x) =


T̄{φR(x) + V ′(x) + φ[1(x ≥ θ))− 1]L(x)} if φ1(x ≥ θ))L(x) + V ′(x) > 0

T̄ φ[R(x)− L(x)] if φ1(x ≥ θ))L(x) + V ′(x) = 0

∞ if φ1(x ≥ θ))L(x) + V ′(x) < 0

and

ẋ∗ =


1 if φ1(x ≥ θ))L(x) + V ′(x) > 0

any value ≤ 1 if φ1(x ≥ θ))L(x) + V ′(x) = 0

−∞ if φ1(x ≥ θ))L(x) + V ′(x) < 0

.

Therefore the optimal state trajectory {xt : t ≥ 0} is one where xt first increases at speed

1 from θ to x̄ which solves the second case:

1(x ≥ θ))L(x) + T̄ [R′(x)− L′(x)] = 0, (4.39)

and then stays at x̄. It follows that u∗0 = x̄.

4.4.1.1 Static Personalized Message Wage Policy

Given u0 ≥ θ, the key maximization problem (second term in (4.38)) is

max
xt:−∞<ẋt≤1

∫ ∞
u0−θ

[R(xt)− (1− ẋt)L(xt)] e
− t
T̄ dt. (4.40)

Assuming R(x) is concave and unimodal (e.g., a linear price function p(x) and convex total

wage rate
∫ x

0 w(s)ds can imply this), since L(x) is convex, R(x) − (1 − ẋt)L(x) is concave

and unimodal for any fixed ẋt. Therefore, for policy class with ẋt = 0, the optimal solution

is

x∗t ≡ x∗ = arg max
x
{R(x)− L(x)}, t ≥ u0 − θ. (4.41)

4.4.1.2 Dynamic Personalized Message Wage Policy

We consider if any deviation from the optimal static wage policy x∗ can yield extra profit.

In specific, we consider the deviation pattern that first increases x from x∗ at a constant

speed to x′, and then decreases x at (another) constant speed back to x∗. The intuition is as

follows: when increasing x, ẋt > 0 makes the profit rate in (4.40) higher than R(x)−L(x),
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while when decreasing x, ẋt < 0 makes the profit rate lower. However due to the exponential

decaying factor e−
t
T̄ , the profit gain in the increasing phase may exceed the profit loss in

the decreasing phase, resulting in a net gain.

The following lemma characterizes the profit gain (loss) from the aforementioned wage

deviation pattern.

Lemma 4.4. The profit gain from deviation x∗
v→ x′

u→ x∗ (increase x from x∗ to x′ at

speed v and decrease x back to x∗ at speed u) at time t > u0 − θ where x′ > x∗ is

Π(x′) = e−
t
T̄

∫ x′

x∗

{[
1

v
[(R(x)− L(x))− (R(x∗)− L(x∗))] + L(x)

]
e−

1
T̄
x−x∗
v

−
[

1

u
[(R(x∗)− L(x∗))− (R(x)− L(x))] + L(x)

]
e
− 1
T̄

[
x′−x∗
v

+x′−x
u

]}
dx.

(4.42)

When T̄ →∞, the limit is

−
∫ x′

x∗

{(
1

v
+

1

u

)
[(R(x∗)− L(x∗))− (R(x)− L(x))]

}
dx < 0, (4.43)

where the inequality follows for any v, u > 0 since x∗ maximizes R(x)− L(x).

Proposition 4.5. If T̄ = ∞, the static policy is optimal; if T̄ < ∞, there exists x′ > x∗

and v ≥ 0, 0 ≤ u ≤ 1 such that repeated deviation x∗
v→ x′

u→ x∗ yields higher expected profit

than the static policy.

The intuition is that when the expected shock/surge duration is short, increasing x to

capture more matching may benefit more than the potential loss from the decreasing phase,

when the shock is more likely to have ended already. Based on the equivalent formulation

with an exponential decaying factor as in (4.35), the extra gain from the increasing phase

is discounted less than the extra loss from the decreasing phase.

4.4.2 Relaxed Surge Duration

Now we consider relaxed surge duration where the platform may surge longer than the de-

mand shock duration, i.e., τ ≥ T , in order to incentivize faraway drivers. By surging longer,

the platform shares some or all fail-to-match risk with the drivers and pays less hotspot
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wage to incentivize drivers. We study two specific policies of relaxed surge durations: (1)

guaranteed wage and (2) minimum surge duration.

With τ ≥ T , since it is profitless to offer surge signal (and wage) to any driver after the

demand shock, we make the following assumption on the wage surge range ut.

Assumption 4.2. ut = 0 for T ≤ t ≤ τ .

4.4.2.1 Guaranteed Wage

Under this policy the platform guarantees that all drivers who reposition before the demand

shock ends will be paid a certain guaranteed wage, depending on the starting position of the

drivers. This implies a time-varying leftover surge duration τ(t) = max{T − t, (ut − θ)+}

seen by drivers at time t. With guaranteed wage payment all repositioning drivers face

no fail-to-match risk, and hence their repositioning decision is time independent but only

location dependent. Denote w̃(x) as the incentive compatible hotspot wage for drivers at

distance x under the guaranteed wage policy. Consequently the incentive compatible wage

is lower than that under the restricted surge duration policy.

Lemma 4.5. w̃(x) ≤ w(x) for x ≥ 0. More specifically, w̃(x) = w(x) for 0 ≤ x ≤ θ and

w̃(x) < w(x) for x > θ.

Using τ(t) = max{T − t, (ut − θ)+} and (4.3), we have τ = T + (uT − θ)+ and hence

obtain ∫ τ

0

∫ ut

0
1(τ − t ≥ (y − θ)+)w̃(x)dxdt =

∫ T

0

∫ ut

0
w̃(x)dxdt. (4.44)

Applying Lemma 4.3, the platform’s problem is simplified as

max
ut:t≥0

φ

∫ ∞
0

{[
p(xt)xt −

∫ ut

0
w̃(x)dx

]
− (p0 − w0)ut

}
e−

t
T̄ dt (4.45)

s.t. xt =


ut if 0 ≤ ut < θ

θ + t if ut ≥ θ and t < u0 − θ

θ + max{δ ≥ 0 : ut−δ − θ ≥ δ} if ut ≥ θ and t ≥ u0 − θ

, t ∈ [0, T ]

w0

m
=

w̃(y)

y +m
F̄T ((y − θ)+) +

∫ (y−θ)+

0

w̃(y)
m (y +m− s)

y +m
fT (s)ds.
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The following proposition shows that under certain static personalized message wage

policy, the optimal choice between restricted surge duration and guaranteed wage depends

on the expected demand shock duration T̄ .

Proposition 4.6. Under static personalized message wage policy with control ut ≡ u0 ≥

θ, t ≥ 0, there exists a threshold level T̄ ∗ > 0 such that the guaranteed wage yields lower

expected platform profit than the restricted surge duration if T̄ < T̄ ∗ and vice versa if

T̄ > T̄ ∗.

4.4.2.2 Minimum Surge Duration

Under this policy the platform announces a minimum surge duration τ0 > 0 such that the

actual surge duration is never shorter than τ0, i.e., τ = max{T, τ0}. The time dependent

incentive compatible hotspot wage wt(x) is given by:

wt(x) =


w̃(x) if (x− θ)+ ≤ (τ0 − t)+

w(x) if (x− θ)+ > (τ0 − t)+

, (4.46)

where w̃(x) and w(x) denote the (time independent) IC hotspot wage for drivers at distance

x that have guaranteed wage payment (no fail-to-match risk) and that face exponential

surge/shock duration (hence full fail-to-match risk risk), respectively.

Depending on the relative length of T and τ0, the platform’s wage payment to reposi-

tioning drivers can be derived as

∫ τ

0

∫ ut

0
1(τ − t ≥ (x− θ)+)wt(x)dxdt =

∫ T

0

∫ ut∧(θ+τ−t)

0
wt(x)dxdt

=


∫ T

0

∫ ut∧(θ+τ0−t)
0 w̃(x)dxdt if τ = τ0 > T∫ T

0

∫ xt
0 [1(t ≤ τ0)w̃(x) + 1(t > τ0)w(x)] dxdt if τ = T ≥ τ0

, (4.47)

where the first equation uses Assumption 4.2 and the second equation follows from (4.46).

Hence the expected wage payment is φET∼exp(1/T̄ ) Eq.(4.47).

Lemma 4.6. Under the minimum surge duration policy, there exists a unique τ∗0 ≥ 0 that

minimizes the platform’s expected wage payment to repositioning drivers.
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Applying Lemma 4.3, the platform’s problem is simplified as

max
ut:t≥0

φ

∫ ∞
0
{p(xt)xt − (p0 − w0)ut} e−

t
T̄ dt− φET∼exp(1/T̄ ) Eq.(4.47)

s.t. xt =


ut if 0 ≤ ut < θ

θ + t if ut ≥ θ and t < u0 − θ

θ + max{δ ≥ 0 : ut−δ − θ ≥ δ} if ut ≥ θ and t ≥ u0 − θ

, t ∈ [0, T ]

w0

m
=

w̃(y)

y +m
F̄T ((y − θ)+) +

∫ (y−θ)+

0

w̃(y)
m (y +m− s)

y +m
fT (s)ds

w0

m
=

w(y)

y +m
F̄T ((y − θ)+) +

∫ (y−θ)+

0

w0
m (y +m− s)

y +m
fT (s)ds.

Under certain static personalized message wage policy, the following proposition com-

pares the minimum surge duration policy with the guaranteed wage and restricted surge

duration policies at different levels of demand shock duration.

Proposition 4.7. Under static personalized message wage policy with control ut ≡ u0 ≥

θ, t ≥ 0, the minimum surge duration policy yields higher platform profit than the guaranteed

wage policy when T ≤ τ∗0 , and than the restricted surge duration policy when T ≥ τ∗0 .

Corollary 4.2. When T̄ → 0, restricted surge duration policy yields the highest platform

profit; when T̄ →∞, guaranteed wage policy yields platform profit; when T̄ is intermediate,

minimum surge duration yields the highest platform profit.

4.5 Summary

Chapter 3 focuses on operational controls to manage the steady-state equilibrium; this

chapter, on the other hand, addresses transient but significant demand shocks at a hotspot,

and focus on the drivers’ strategic response to surge signals given delayed incentives. The

platform responds to a demand shock with uncertain magnitude and/or duration at a

hotspot, by optimizing (i) surge pricing, which is meant to moderate demand, and surge

wages meant to incentivize drivers to proactively reposition toward the hotspot, and (ii)

dynamic matching, which trades off non-hotspot local matches for more profitable hotspot

matches.
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The distinctive features of this chapter lie on the focus of system transient under non-

stationary demand, the network setting, and drivers’ strategic response to surge signals

given delayed incentives. Our focus on the time effects sheds light on the interplay between

rider patience, demand shock duration and driver’s travel delay, which together play a

crucial rule on the optimal operations of ride-hailing platforms.

135



Bibliography

Ivo Adan and Gideon Weiss. Exact fcfs matching rates for two infinite multitype sequences.

Operations Research, 60(2):475–489, 2012. doi: 10.1287/opre.1110.1027. URL https:

//doi.org/10.1287/opre.1110.1027.

Gad Allon and Jan A. Van Mieghem. Global dual sourcing: Tailored base-surge allocation

to near- and offshore production. Management Science, 56(1):110–124, 2010a. doi: 10.

1287/mnsc.1090.1099. URL https://doi.org/10.1287/mnsc.1090.1099.

Gad Allon and Jan A. Van Mieghem. The mexico-china sourcing game: Teaching global

dual sourcing. INFORMS Transactions on Education, 10(3):105–112, 2010b. doi: 10.

1287/ited.1100.0045. URL https://doi.org/10.1287/ited.1100.0045.

Kenneth J. Arrow, Theodore Harris, and Jacob Marschak. Optimal inventory policy. Econo-

metrica, 19(3):250–272, 1951. ISSN 00129682, 14680262. URL http://www.jstor.org/

stable/1906813.

Jiaru Bai, Kut C. So, Christopher S. Tang, Xiqun Chen, and Hai Wang. Coordinating supply

and demand on an on-demand service platform with impatient customers. Working paper,

2017. URL https://ssrn.com/abstract=2831794.

Siddhartha Banerjee, Carlos Riquelme, and Ramesh Johari. Pricing in ride-share plat-

forms: A queueing-theoretic approach. Working paper, 2016. URL https://ssrn.com/

abstract=2568258.

Siddhartha Banerjee, Daniel Freund, and Thodoris Lykouris. Pricing and optimization

in shared vehicle systems: An approximation framework. Working paper, 2017. URL

https://arxiv.org/abs/1608.06819.

136



E. W. Barankin. A delivery-lag inventory model with an emergency provision (the single-

period case). Naval Research Logistics Quarterly, 8(3):285–311, 1961. ISSN 1931-9193.

doi: 10.1002/nav.3800080310. URL http://dx.doi.org/10.1002/nav.3800080310.

Saif Benjaafar, Guangwen Kong, Xiang Li, and Costas Courcoubetis. Peer-to-peer product

sharing: Implications for ownership, usage and social welfare in the sharing economy.

Working paper, 2015. URL https://ssrn.com/abstract=2669823.

Dirk Beyer and Julie Ward. Network Server Supply Chain at HP: A Case Study, chapter 8,

pages 257–282. Springer US, Boston, MA, 2002. ISBN 978-1-4757-6635-6. doi: 10.1007/

978-1-4757-6635-6 8. URL https://doi.org/10.1007/978-1-4757-6635-6_8.

Kostas Bimpikis, Ozan Candogan, and Daniela Saban. Spatial pricing in ride-sharing net-

works. Working paper, 2017. URL https://ssrn.com/abstract=2868080.

Robert N. Boute and Jan A. Van Mieghem. Global dual sourcing and order smoothing:

The impact of capacity and lead times. Management Science, 61(9):2080–2099, 2015.

doi: 10.1287/mnsc.2014.1992. URL https://doi.org/10.1287/mnsc.2014.1992.

Robert N. Boute, Stephen M. Disney, and J. A. Van Mieghem. Dual sourcing and smoothing

under non-stationary demand time series: Re-shoring with speedfactories. Working paper,

2019. URL https://ssrn.com/abstract=3140083.

Anton Braverman, J.G. Dai, Xin Liu, and Lei Ying. Empty-car routing in ridesharing

systems. Working paper, 2017. URL https://arxiv.org/abs/1609.07219v2.

Nicholas Buchholz. Spatial equilibrium, search frictions and efficient regulation in the taxi

industry. Working paper, 2017.
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Appendix A

Appendix for Chapter 1

A.1 Proofs

The proof of Proposition 1.4 is rather involved and lengthy and requires us to first demon-

strate the preservation result in the special case where β1 = β2 = 0, as per the following

Lemma.

Lemma A.1 (Preservation Property). If a function g(·) is strongly (C1K1, C2K2)-convex,

then

f1(x) = min
y∈[x,x+C′1]

{K1δ(y − x) + g(y)},

f2(x) = min
y∈[x−C′2,x]

{K2δ(x− y) + g(y)},

f(x) = min{f1(x), f2(x)}.

are also strongly (C1K1, C2K2)-convex for any C ′1 ≥ C1, C
′
2 ≥ C2.

Proof of Lemma A.1. (I) First, we show f1(·) ∈ SCC1K1,C2K2 . Let

∆1 = K1 + f1(x+ a)− f1(x)− a

b

(
f1(y)− f1(y − b)−K2

)
. (A.1)

It suffices to show that ∆1 ≥ 0 for y ≤ x, a ∈ [0, C1] and b ∈ (0, C2]. To this end, we

consider the following four different cases for the pair of values f1(x+ a) and f1(y − b).

(a) f1(x+ a) = g(x+ a) and f1(y − b) = g(y − b). In this case, we have

∆1 = K1 + g(x+ a)− f1(x)− a

b

(
f1(y)− g(y − b)−K2

)
≥ K1 + g(x+ a)− g(x)− a

b

(
g(y)− g(y − b)−K2

)
≥ 0,

where the first inequality follows from the definition of f1(·), and the second inequality

follows from the strong (C1K1, C2K2)-convexity of g(·).
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(b) f1(x+ a) = g(x+ a) and f1(y − b) = g(y − b+ u) +K1 with some u ∈ [0, C ′1]. In this

case, we have

∆1 = K1 + g(x+ a)− f1(x)− a

b

(
f1(y)− g(y − b+ u)−K1 −K2

)
.

Based on the value of f1(y) we consider the following two subcases:

(b.1) f1(y) ≤ g(y − b+ u) +K1 +K2. Since a ∈ [0, C1] ⊂ [0, C ′1] we know f1(x) ≤

g(x+ a) +K1, hence

∆1 ≥ K1 + g(x+ a)− f1(x) ≥ K1 + g(x+ a)− (g(x+ a) +K1) ≥ 0.

(b.2) f1(y) > g(y − b+ u) +K1 +K2. Knowing that 0 ≤ u ≤ C ′1, first we show u < b.

Obviously, this is true if C ′1 < b. Otherwise consider b ≤ C ′1, suppose on the

contrary that b ≤ u ≤ C ′1, then y ≤ y − b + u ≤ y + C ′1 and by the definition of

f1(·) we have

f1(y) ≤ g(y − b+ u) +K1,

which together with the subcase assumption f1(y) > g(y − b + u) + K1 + K2

implies that K2 < 0, contradicting the fact that K2 ≥ 0. Hence we have shown

that 0 ≤ u < b, which implies b− u ∈ (0, C2]. Therefore

∆1 ≥ K1 + g(x+ a)− f1(x)− a

b− u

(
f1(y)− g(y − b+ u)−K1 −K2

)
≥ K1 + g(x+ a)− g(x)− a

b− u

(
g(y)− g(y − b+ u)−K2

)
≥ 0,

where the second inequality follows from f1(x) ≤ g(x) and f1(y) ≤ g(y) +

K1 by the definition of f1(·), and the last inequality follows from the strong

(C1K1, C2K2)-convexity of g(·).

(c) f1(x+ a) = g(x+ a+ u) +K1 with some u ∈ [0, C ′1] and f1(y − b) = g(y − b).

Since u ∈ [0, C ′1], we have f1(x) ≤ g(x+ u) +K1 and therefore

∆1 = K1 + g(x+ a+ u) +K1 − f1(x)− a

b

(
f1(y)− g(y − b)−K2

)
≥ K1 + g(x+ u+ a)− g(x+ u)− a

b

(
g(y)− g(y − b)−K2

)
≥ 0,

where the last inequality follows from the strong (C1K1, C2K2)-convexity of g(·).
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(d) f1(x+ a) = g(x+ a+ u) +K1 and f1(y − b) = g(y − b+ w) +K1 with some

u,w ∈ [0, C ′1]. In this case, ∆1 defined by (A.1) can be written as

∆1 = K1 + g(x+ a+ u) +K1 − f1(x)− a

b

(
f1(y)− g(y − b+ w)−K1 −K2

)
. (A.2)

Based on the value of f1(y) we consider the following two subcases:

(d.1) f1(y) ≤ g(y − b+ w) +K1 +K2. In this case if a + u ≤ C ′1, we know f1(x) ≤

g(x+ a+ u) +K1 and hence by (A.2) we have

∆1 ≥ K1 + g(x+ a+ u) +K1 − f1(x)

≥ K1 + g(x+ a+ u) +K1 − (g(x+ a+ u) +K1) = K1 ≥ 0.

If a+ u > C ′1, again by (A.2) we have

∆1 ≥ K1 + g(x+ a+ u) +K1 − (g(x+ C ′1) +K1)

− a

b

(
f1(y)− g(y − b+ w)−K1 −K2

)
≥ K1 + g(x+ a+ u)− g(x+ C ′1)

− a+ u− C ′1
b

(
f1(y)− g(y − b+ w)−K1 −K2

)
≥ K1 + g(x+ a+ u)− g(x+ C ′1)

− a+ u− C ′1
b

(
g(y + w)− g(y + w − b)−K2

)
≥ 0,

where the first inequality is from the definition of f1(·), the second inequality

follows from the fact that 0 < a + u − C ′1 ≤ a and the case assumption f1(y) ≤

g(y− b+w) +K1 +K2, the third inequality is again implied by the definition of

f1(·) such that f1(y) ≤ g(y + w) + K1, and the last inequality follows from the

strong (C1K1, C2K2)-convexity of g(·) noticing that 0 < a+u−C ′1 ≤ a ≤ C1 and

x+ C ′1 ≥ y + w.

(d.2) f1(y) > g(y − b+ w) +K1 +K2. With the same proof as in (b.2) we can show
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that 0 ≤ w < b, implying b− w ∈ (0, C2], hence using u ∈ [0, C ′1] we have,

∆1 ≥ K1 + g(x+ a+ u) +K1 − f1(x)− a

b− w

(
f1(y)− g(y − b+ w)−K1 −K2

)
≥ K1 + g(x+ a+ u) +K1 − (g(x+ u) +K1)

− a

b− w

(
g(y)− g(y − b+ w)−K2

)
≥ K1 + g(x+ u+ a)− g(x+ u)− a

b− w

(
g(y)− g(y − b+ w)−K2

)
≥ 0,

where the first inequality follows from a
b ≤

a
b−w , since 0 < b− w ≤ b, the second

inequality follows from the definition of f1(·) such that f1(x) ≤ g(x+u)+K1 and

f1(y) ≤ g(y) +K1, and the last inequality follows from the strong (C1K1, C2K2)-

convexity of g(·).

Combining (a)-(d) we have shown that f1(x) ∈ SCC1K1,C2K2 .

(II) Next we prove that f2(x) ∈ SCC1K1,C2K2 . We first re-denote f1 and f2 more precisely

as

fg1,CK(x) = min
y∈[x,x+C]

{Kδ(y − x) + g(y)}, fg2,CK(x) = min
y∈[x−C,x]

{Kδ(x− y) + g(y)},

where both f1 and f2 are functions of g, C,K, and x. In part (I) we have essentially proved

that g(·) ∈ SCC1K1,C2K2 implies fg
1,C′1K1

(·) ∈ SCC1K1,C2K2 for C ′1 ≥ C1, and in this part we

want to show that g(·) ∈ SCC1K1,C2K2 also implies fg
2,C′2K2

(·) ∈ SCC1K1,C2K2 for C ′2 ≥ C2.

Applying Lemma 1.1 (i), if g(x) ∈ SCC1K1,C2K2 , then h(x) := g(−x) ∈ SCC2K2,C1K1 ,

and hence by part (I) we know fh1,C′2K2
(x) ∈ SCC2K2,C1K1 . We can make further manipula-

tions as

fh1,C′2K2
(x) = min

y∈[x,x+C′2]
{K2δ(y − x) + h(y)} = min

−y∈[−x−C′2,−x]
{K2δ(−x− (−y)) + h(y)}.

Transforming variable y′ = −y, we get

fh1,C′2K2
(x) = min

y′∈[−x−C′2,−x]
{K2δ(−x− y′) + h(−y′)}

= min
y′∈[−x−C′2,−x]

{K2δ(−x− y′) + g(y′)}

= fg
2,C′2K2

(−x),
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implying that fg
2,C′2K2

(−x) ∈ SCC2K2,C1K1 . Applying Lemma 1.1 (i) again we see fg
2,C′2K2

(x) ∈

SCC1K1,C2K2 , confirming the strong (C1K1, C2K2)-convexity of f2(x).

(III) Finally we show f(x) ∈ SCC1K1,C2K2 . Let

∆ = K1 + f(x+ a)− f(x)− a

b

(
f(y)− f(y − b)−K2

)
. (A.3)

We consider the following four different cases for the pair of values f(x + a) and f(y − b)

to show that ∆ ≥ 0 for all y ≤ x, a ∈ [0, C1] and b ∈ (0, C2]. Notice that the definition of

f(x) implies f(x) ≤ f1(x) and f(x) ≤ f2(x).

(a) f(x+ a) = f1(x+ a) and f(y − b) = f1(y − b). We have

∆ = K1 + f1(x+ a)− f(x)− a

b

(
f(y)− f1(y − b)−K2

)
≥ K1 + f1(x+ a)− f1(x)− a

b

(
f1(y)− f1(y − b)−K2

)
≥ 0,

where the last inequality follows directly from the strong (C1K1, C2K2)-convexity of

f1(x).

(b) f(x+ a) = f1(x+ a) and f(y − b) = f2(y − b). We can rewrite (A.3) as

∆ = K1 + f1(x+ a)− f(x)− a

b

(
f(y)− f2(y − b)−K2

)
. (A.4)

Per definition, f2(y−b) = g(y−b) or f2(y−b) = g(y−b−u)+K2 with some u ∈ (0, C ′2].

We consider these two subcases:

(b.1) f2(y − b) = g(y − b). Since f1(y−b) ≤ g(y−b) by the definition, we have f(y−b) =

f1(y − b) and this subcase becomes case (a) and ∆ ≥ 0 follows.

(b.2) f2(y − b) = g(y − b− u) +K2 for some u ∈ (0, C ′2]. Then (A.4) becomes

∆ = K1 + f1(x+ a)− f(x)− a

b

(
f(y)− g(y − b− u)−K2 −K2

)
≥ K1 + f1(x+ a)− f(x)− a

b

(
g(y − u)− g(y − u− b)−K2

)
,

where the inequality follows from f(y) ≤ f2(y) ≤ g(y−u)+K2, by the definitions

of f and f2. Now if f1(x+ a) = g(x+ a), we have

∆ ≥ K1 + g(x+ a)− f(x)− a

b

(
g(y − u)− g(y − u− b)−K2

)
≥ K1 + g(x+ a)− g(x)− a

b

(
g(y − u)− g(y − u− b)−K2

)
≥ 0,
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where the second inequality follows from f(x) ≤ g(x) and the last inequality

follows from the strong (C1K1, C2K2)-convexity of g(x). Otherwise if f1(x+a) =

g(x+ a+ w) +K1 for some w ∈ (0, C ′1], we have

∆ ≥ K1 + g(x+ a+ w) +K1 − f(x)− a

b

(
g(y − u)− g(y − u− b)−K2

)
≥ K1 + g(x+ a+ w) +K1 − f1(x)− a

b

(
g(y − u)− g(y − u− b)−K2

)
≥ K1 + g(x+ a+ w) +K1 − (g(x+ w) +K1)

− a

b

(
g(y − u)− g(y − u− b)−K2

)
≥ K1 + g(x+ w + a)− g(x+ w)− a

b

(
g(y − u)− g(y − u− b)−K2

)
≥ 0,

where the second and third inequalities follow from f(x) ≤ f1(x) and f1(x) ≤

g(x+w) +K1 with w ∈ (0, C ′1], respectively, and the last inequality follows from

the strong (C1K1, C2K2)-convexity of g(x).

(c) f(x+ a) = f2(x+ a) and f(y − b) = f2(y − b). The proof is analogous to case (a).

(d) f(x+ a) = f2(x+ a) and f(y − b) = f1(y − b). We can rewrite (A.3) as

∆ = K1 + f2(x+ a)− f(x)− a

b

(
f(y)− f1(y − b)−K2

)
. (A.5)

By its definition, f1(y − b) = g(y − b) or f1(y − b) = g(y − b + w) + K1 with some

w ∈ (0, C ′1]. We consider these two subcases:

(d.1) f1(y − b) = g(y − b). Since f2(y−b) ≤ g(y−b), per definition, we have f(y−b) =

f2(y − b) and this subcase becomes case (c) and ∆ ≥ 0 follows.

(d.2) f1(y − b) = g(y − b+ w) +K1 with some w ∈ (0, C ′1]. Then (A.5) becomes

∆ = K1 + f2(x+ a)− f(x)− a

b

(
f(y)− g(y − b+ w)−K1 −K2

)
. (A.6)

We first show that f(y) ≤ g(y − b+ w) +K1 +K2 always holds in this subcase.

To this end, note that b ∈ (0, C2] and w ∈ (0, C ′1], if w ≥ b, then w − b ∈ [0, C ′1)

and hence

f(y) ≤ f1(y). = inf
u∈[y,y+C′1]

{K1δ(u−y)+g(u)} ≤ g(y+(w−b))+K1 ≤ g(y−b+w)+K1+K2,
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otherwise if w < b, then b− w ∈ (0, C2) and hence

f(y) ≤ f2(y) = inf
u∈[y−C′2,y]

{K2δ(y−u)+g(u)} ≤ g(y−(b−w))+K2 ≤ g(y−b+w)+K1+K2.

We have thus proved that given b ∈ (0, C2] and w ∈ (0, C ′1],

f(y) ≤ g(y − b+ w) +K1 +K2. (A.7)

Similarly we can prove that given a ∈ [0, C1] and u ∈ (0, C ′2],

f(x) ≤ g(x+ a− u) +K1 +K2. (A.8)

Next we consider the possible values of f2(x + a). If f2(x + a) = g(x + a), then

by (A.6) and (A.7),

∆ = K1+g(x+a)−f(x)−a
b

(
f(y)−g(y−b+w)−K1−K2

)
≥ K1+g(x+a)−f1(x) ≥ 0,

where the last inequality follows from the definition of f1(x). On the other hand

if f2(x+ a) = g(x+ a− u) +K2 with some u ∈ (0, C ′2], then by (A.6), (A.7) and

(A.8)

∆ = K1 + g(x+ a− u) +K2 − f(x)− a

b

(
f(y)− g(y − b+ w)−K1 −K2

)
≥ 0.

Consequently, combining (a)-(d) we have proved that f(x) ∈ SCC1K1,C2K2 . The proof of

this proposition is also completed.

Proof of Proposition 1.4. We first prove that g0(·) is continuous. Note that

g0(x) = min

{
min

x≤y≤x+C1

{K1 + β1(y − x) + g(y)}, min
x−C2≤y≤x

{K2 + β2(y − x) + g(y)}, g(x)

}
.

Thus, continuity of g0(·) follows by showing that minx≤y≤x+C1{K1 + β1(y − x) + g(y)} is

continuous in x and minx−C2≤y≤x{K2 +β2(y−x)+g(y)} is continuous in x. Both continuity

results follow from Berge’s Maximum Theorem result, since the minimands are continuous

functions and the feasible sets are continuous correspondences of x, see e.g. Theorem 9.14

in Sundaram (1996).

It is not hard to see g(·) ∈ SCC1K1,C2K2 ⇒ g1(·), g2(·) ∈ SCC1K1,C2K2 : Lemma 1.1 (iii)

shows that g(y) ∈ SCC1K1,C2K2 ⇒ g(y)+β1y ∈ SCC1K1,C2K2 for any β1; then by Lemma A.1,
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g1(x) + β1x = miny∈[x,x+C′1]{K1δ(y − x) + β1y + g(y)} ∈ SCC1K1,C2K2 , and hence g1(x) ∈

SCC1K1,C2K2 using Lemma 1.1 (iii) again. Similarly we can show g2(x) ∈ SCC1K1,C2K2 .

Note that if β1 6= β2 we cannot directly apply Lemma A.1 to claim strong (C1K1, C2K2)-

convexity of g0(·).

For any x ≥ y, u ∈ [0, C1] and t ∈ (0, C2], we need to show that

0 ≤ ∆ = K1 + g0(x+ u)− g0(x)− u

t

(
g0(y)− g0(y − t)−K2

)
. (A.9)

As is in the proof of Lemma A.1 (III), we consider the following four cases for the pair of

values g0(x+ u) and g0(y − t):

(a) g0(x+ u) = g1(x+ u), g0(y − t) = g1(y − t);

(b) g0(x+ u) = g1(x+ u), g0(y − t) = g2(y − t);

(c) g0(x+ u) = g2(x+ u), g0(y − t) = g2(y − t);

(d) g0(x+ u) = g2(x+ u), g0(y − t) = g1(y − t).

First note that both g1(·), g2(·) ∈ SCC1K1,C2K2 , therefore case (a) and (c) can be easily

proved in the same way as (a) and (c) of Lemma A.1 (III), respectively.

For case (b), given g0(x + u) = g1(x + u) ≤ g2(x + u), if g1(x + u) = g2(x + u), this

becomes case (c). Otherwise, g1(x + u) < g2(x + u); then, by Corollary 1.1 (ii), we have

g1(y − t) ≤ g2(y − t) since y − t ≤ x + u. Thus, g0(y − t) = g1(y − t) = g2(y − t), so that

case (a) applies.

Thus, only case (d) remains to be proven. Notice that if g2(x+ u) = g(x+ u), then the

relations

g2(x+ u) = g0(x+ u) ≤ g1(x+ u) ≤ g(x+ u) = g2(x+ u)

implies g0(x+ u) = g1(x+ u) = g2(x+ u), so that case (a) applies. Similarly if g1(y − t) =

g(y− t), we can deduct that g0(y− t) = g1(y− t) = g2(y− t) and case (c) applies. Therefore

we only need to consider the distinct situations where

g1(y − t) = g̃1(y − t) = K1 + g(B(y − t)) + β1(B(y − t)− y + t) < g(y − t), (A.10)

g2(x+ u) = g̃2(x+ u) = K2 + g(S(x+ u)) + β2(S(x+ u)− x− u) < g(x+ u), (A.11)
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where B(·) and S(·) are defined by (1.27) and (1.28) with C1 and C2 replaced by C ′1 and

C ′2, respectively. For notational simplicity, we henceforth denote B(y − t) and S(x+ u) by

B̃ and S̃, respectively. Noticing that B̃ ∈ (y − t, y − t + C ′1], S̃ ∈ [x + u − C ′2, x + u) and

u ∈ [0, C1], t ∈ (0, C2], it is easy to see that

g0(y) ≤


g1(y) ≤ K1 + β1(B̃ − y) + g(B̃), if y ≤ B̃, (since B̃ ≤ y − t+ C ′1 < y + C ′1)

g2(y) ≤ K2 + β2(B̃ − y) + g(B̃), if y > B̃; (since B̃ > y − t ≥ y − C ′2)

(A.12)

g0(x) ≤


g1(x) ≤ K1 + β1(S̃ − x) + g(S̃), if x < S̃, (since S̃ < x+ u ≤ x+ C ′1)

g2(x) ≤ K2 + β2(S̃ − x) + g(S̃), if x ≥ S̃. (since S̃ ≥ x+ u− C ′2 ≥ x− C ′2)

(A.13)

We therefore distinguish among the 4 cases determined by the relative position of y vis-à-vis

B̃ and x vis-à-vis S̃.

(a) y ≤ B̃, x < S̃. In this case, by (A.12) and (A.10) we have

g0(y) ≤ K1 + β1(B̃ − y) + g(B̃) = g1(y − t)− β1t. (A.14)

Taking (A.11), (A.13) and (A.14) into (A.9), we get

∆ = K1 + g2(x+ u)− g0(x)− u

t

(
g0(y)− g1(y − t)−K2

)
≥ K1 +K2 + g(S̃) + β2(S̃ − x− u)−K1 − β1(S̃ − x)− g(S̃)

− u

t

(
g1(y − t)− β1t− g1(y − t)−K2

)
≥ K2 − β1u+

u

t

(
β1t+K2

)
=
(

1 +
u

t

)
K2 ≥ 0,

where the second inequality follows from

β2(S̃ − x− u)− β1(S̃ − x) = (β2 − β1)(S̃ − x− u)− β1u ≥ −β1u

by S̃ < x+ u and the assumption β1 ≥ β2.
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(b) y ≤ B̃, x ≥ S̃. In this case, taking (A.11), (A.13) and (A.14) into (A.9) we have

∆ = K1 + g2(x+ u)− g0(x)− u

t

(
g0(y)− g1(y − t)−K2

)
≥ K1 +K2 + g(S̃) + β2(S̃ − x− u)−K2 − β2(S̃ − x)− g(S̃)

− u

t

(
g1(y − t)− β1t− g1(y − t)−K2

)
= K1 +

u

t
K2 + (β1 − β2)u ≥ 0.

(c) y > B̃, x ≥ S̃. In this case, taking (A.10)–(A.13) into (A.9) we have

∆ = K1 + g2(x+ u)− g0(x)− u

t

(
g0(y)− g1(y − t)−K2

)
≥ K1 +K2 + g(S̃) + β2(S̃ − x− u)−K2 − β2(S̃ − x)− g(S̃)

− u

t

(
K2 + β2(B̃ − y) + g(B̃)−K1 − g(B̃)− β1(B̃ − y + t)−K2

)
≥ K1 − β2u+

u

t

(
β2t+K1

)
=
(

1 +
u

t

)
K1 ≥ 0,

where the third inequality follows from

β2(B̃ − y)− β1(B̃ − y + t) = (β2 − β1)(B̃ − y + t)− β2t ≤ −β2t

by B̃ > y − t and the assumption β1 ≥ β2.

(d) y > B̃, x < S̃. Note that in this case we must have u ∈ (0, C1], since if u = 0 there

cannot be x < S̃ by S̃ ∈ [x+ u− C ′2, x+ u). It then follows that

g0(x) ≤ g2(x) ≤ K2 + β2(S̃ − u− x) + g(S̃ − u), (since x− C ′2 ≤ S̃ − u < x) (A.15)

g0(y) ≤ g1(y) ≤ K1 + β1(B̃ + t− y) + g(B̃ + t). (since y < B̃ + t ≤ y + C ′1) (A.16)

Depending on the order of B̃ + t and S̃ − u, we consider the following two situations:

(d.1) B̃ + t ≤ S̃ − u. The following ranking applies:

y − t < B̃ < y < B̃ + t ≤ S̃ − u < x < S̃ < x+ u,

where the first inequality follows from B̃ = B(y−t) > y−t and the last inequality

from S̃ = S(x+ u) < x+ u.
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Taking (A.10), (A.11) and (A.15), (A.16) into (A.9) we get

∆ = K1 + g2(x+ u)− g0(x)− u

t

(
g0(y)− g1(y − t)−K2

)
≥ K1 +K2 + g(S̃) + β2(S̃ − x− u)−K2 − β2(S̃ − u− x)− g(S̃ − u)

− u

t

(
K1 + β1(B̃ + t− y) + g(B̃ + t)−K1 − g(B̃)− β1(B̃ − y + t)−K2

)
= K1 + g(S̃)− g(S̃ − u)− u

t

(
g(B̃ + t)− g(B̃)−K2

)
≥ 0,

where the last inequality follows from the definition of strong (C1K1, C2K2)-

convexity of g(·) with x = S̃ − u, y = B̃ + t and u ∈ [0, C1] and t ∈ (0, C2].

(d.2) B̃ + t > S̃ − u. Now the following rankings apply:

y − t < B̃ < y < B̃ + t, S̃ − u < B̃ + t, S̃ − u < x < S̃ < x+ u. (A.17)

Note that (A.15) and (A.16) still hold.

Using (A.10) and (A.11), (A.9) can be written as

∆ = K1 + g2(x+ u)− g0(x)− u

t

(
g0(y)− g1(y − t)−K2

)
= K1 +K2 + g(S̃) + β2(S̃ − x− u)− g0(x)

− u

t

(
g0(y)−K1 − g(B̃)− β1(B̃ − y + t)−K2

)
.

Having mentioned that u > 0 in this case, ∆ ≥ 0 is equivalent to

g0(y) + β1y − g(B̃)− β1B̃ −K1 −K2

t
− g(S̃) + β2S̃ − g0(x)− β2x+K1 +K2

u
≤ β1−β2.

(A.18)

Conditioning on the signs of the two numerators on the left hand side of (A.18),

three subcases need to be considered:

(i) g0(y) + β1y − g(B̃)− β1B̃ −K1 −K2 ≤ 0. Then using (A.13),

g0(y) + β1y − g(B̃)− β1B̃ −K1 −K2

t
− g(S̃) + β2S̃ − g0(x)− β2x+K1 +K2

u

≤ −g(S̃) + β2S̃ − g0(x)− β2x+K1 +K2

u

≤ −g(S̃) + β2S̃ − [K1 + g(S̃) + β1(S̃ − x)]− β2x+K1 +K2

u

=
(β1 − β2)(S̃ − x− u)−K2

u
+ (β1 − β2) ≤ β1 − β2,

where the last inequality follows from S̃ < x+u and the assumption β1 ≥ β2.
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(ii) g(S̃) + β2S̃ − g0(x)− β2x+K1 +K2 ≥ 0. Then using (A.12),

g0(y) + β1y − g(B̃)− β1B̃ −K1 −K2

t
− g(S̃) + β2S̃ − g0(x)− β2x+K1 +K2

u

≤ g0(y) + β1y − g(B̃)− β1B̃ −K1 −K2

t

≤ [K2 + g(B̃) + β2(B̃ − y)] + β1y − g(B̃)− β1B̃ −K1 −K2

t

=
(β1 − β2)(y − t− B̃)−K1

t
+ (β1 − β2) ≤ β1 − β2,

where the last inequality follows from B̃ > y−t and the assumption β1 ≥ β2.

(iii) g0(y) + β1y − g(B̃)− β1B̃ −K1 −K2 > 0 and g(S̃) + β2S̃ − g0(x)− β2x+

K1 +K2 < 0. Before proving (A.18) we first show that, in view of (A.17),

there exist t0 and u0 with 0 < y − B̃ ≤ t0 ≤ t and 0 < S̃ − x ≤ u0 ≤ u such

that

g(y − t0) = K1 + β1(B̃ − y + t0) + g(B̃), (A.19)

g(x+ u0) = K2 + β2(S̃ − x− u0) + g(S̃). (A.20)

For v ∈ [y − B̃, t], let

h(v) = g(y − v)− [K1 + β1(B̃ − y + v) + g(B̃)],

which is a continuous function. Then, since

h(y − B̃) = g(B̃)− [K1 + β1 · 0 + g(B̃)] = −K1 ≤ 0,

h(t) = g(y − t)− [K1 + β1(B̃ − y + t) + g(B̃)] = g(y − t)− g̃1(y − t) ≥ 0,

by the mean value theorem there exists t0 ∈ [y − B̃, t] such that h(t0) = 0,

i.e., g(y − t0) = K1 + β1(B̃ − y + t0) + g(B̃). Similarly we can show the

existence of a value u0 satisfying 0 < S̃ − x ≤ u0 ≤ u and (A.20).
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Next we proceed to prove (A.18). We have

g0(y) + β1y − g(B̃)− β1B̃ −K1 −K2

t
− g(S̃) + β2S̃ − g0(x)− β2x+K1 +K2

u

≤ g0(y) + β1y − g(B̃)− β1B̃ −K1 −K2

t0

− g(S̃) + β2S̃ − g0(x)− β2x+K1 +K2

u0

=
g0(y)− [K1 + β1(B̃ − y + t0) + g(B̃)]−K2 + β1t0

t0

− K1 + [K2 + β2(S̃ − x− u0) + g(S̃)]− g0(x) + β2u0

u0

=
g0(y)− g(y − t0)−K2

t0
− K1 + g(x+ u0)− g0(x)

u0
+ β1 − β2

≤ β1 − β2,

where the first inequality follows from the conditions specifying case (iii);

the last inequality follows from the strong (C1K1, C2K2)-convexity of g(·)

and the fact that g0(·) ≤ g(·), specifically,

K1 + g(x+ u0)− g0(x)− u0

t0

(
g0(y)− g(y − t0)−K2

)
≥ K1 + g(x+ u0)− g(x)− u0

t0

(
g(y)− g(y − t0)−K2

)
≥ 0,

which implies (noticing t0 and u0 are both positive)

g0(y)− g(y − t0)−K2

t0
− K1 + g(x+ u0)− g0(x)

u0
≤ 0.

Proof of Lemma 1.4. The proof is analogous to that in Sections C.1 and C.2 in the

electronic companion of Huh et al. (2011). The proof is given in three parts:

Condition SC (a): X ′l1 > X l
1: We compare two inventory level vectors X1 and X′1. Assume

that these two vectors are identical except X ′l1 > X l
1 form some l ∈ {0, 1, . . . , L − 1}. Let

∆ = X ′l1 −X l
1. We will then prove parts (i), (iii) and (iv) of Condition (SC) (a). (Part (ii)

is not applicable since we consider the X ′l1 > X l
1 case in in this part.)

For any Markov policy δ, let δ′ be the following policy. If l < L−1, then X ′L−1
1 = XL−1

1 .

Let the δ′ policy order or salvage the same quantity as the δ policy in every period. We
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call this the “mimic” policy of δ. If l = L− 1, then the δ′ policy initiates the same salvage

batches as the δ policy, but does not order anything for the first ∆ units ordered by the δ

policy, and then matches δ’s orders unit-by-unit. Recall ut = XL
t −XL−1

t is the number of

units ordered by δ in period t ≥ 1. Then, the order quantity u′t of the δ′ policy is given by,

for t ≥ 1,

u′t =


[
∑t

t′=1 ut′ −∆]+ if
∑t−1

t′=1 ut′ < ∆

ut otherwise

.

Note that u′t is a feasible inventory adjustment quantity. In every period t ≥ 1: let t∗ denote

the first period in which u′t∗ > 0. Then u′t = 0 or u′t = ut for all t < t∗ and u′t = ut for all

t > t∗, both feasible. Moreover,

0 ≤ u′t∗ =

t∗∑
t′=1

u′t −∆ ≤
t∗∑
t′=1

u′t −
t∗−1∑
t′=1

u′t = ut∗ ,

hence feasible as well, where the inequality follows from
∑t∗−1

t′=1 u
′
t ≤ ∆ by the definition of

t∗. We say δ′ is a “wait-and-mimic” policy of δ.

The remainder of the proof is analogous to that in Huh et al. (2011).

Condition SC (a): X ′l1 < X l
1: The proof is is analogous to that in Huh et al. (2011) with

the following adaptation: In case l < L− 1, let δ′, the mimic policy of δ, order and salvage

the same quantity as the δ policy in every period. For the case where l = L− 1, the policy

δ′ mimics δ for the first T0 periods, i.e., it orders and salvages the same quantity as policy

δ; thereafter, the specification of δ′ is identical to that in Huh et al. (2011).

Condition SC (b): Analogous to the proof in Huh et al. (2011).

A.2 Additional numerical examples
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Figure A.1: Numerical example: high fixed ordering cost (big K)

Figure A.2: Numerical example: low fixed ordering cost (small K)

Figure A.3: Numerical example: large ordering capacity (big C)
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Figure A.4: Numerical example: small ordering capacity (small C)

Figure A.5: Numerical example: high unit cost (big c)

Figure A.6: Numerical example: low unit cost (small c)
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Figure A.7: Numerical example: small α

Figure A.8: Numerical example: long lead time (big l)

Figure A.9: Numerical example: zero lead time (l = 0)

165



Figure A.10: Numerical example: high service level (big p)

Figure A.11: Numerical example: volatile demand (big σ)

Figure A.12: Numerical example: stable demand (small σ)
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Appendix B

Appendix for Chapter 2

B.1 Proofs

Proof of Theorem 2.1. We prove this theorem by induction. By our assumption, the

theorem holds for n = 0. Suppose the result holds for period n − 1, i.e., fn−1(·) ∈

SCCn−1Kn−1,Cvn−1K
v
n−1

and fn−1(x) = O(|x|p). We first prove that fn(x) = O(|x|p). Since

fn−1(x) = O(|x|p), there exists a constant A > 0 such that |fn−1(x)| ≤ A|x|p; so that

|Efn−1(z −Dn)| ≤ AE|z −Dn|p ≤ AE(|z|+Dn)p = A
∑p

l=0

(
p
l

)
EDp−l

n |z|l ≤ Bmax{|z|p, 1}

for some constant B > 0. Let z∗(y) achieve the minimum in (2.8), then |f rn(y)| ≤

Kn + crn|z∗| + αB|z∗|p ≤ Kn + crn(|y| + Cn) + αBmax{1, (|y| + Cn)p} = O(|y|p). By the

same argument, and since Ln(y) = O(|y|p), gn(y) = O(|y|p) and f1
n(x), f2

n(x) and fn(x) are

all O(|x|p).

We then prove that fn(x) ∈ SCCnKn,CvnK
v
n
. Since fn−1(·) ∈ SCCn−1Kn−1,Cvn−1K

v
n−1

, by

Lemma 1.1 (iii) and (iv) in Chapter 1, and Assumption 2.3,

αEfn−1(z −Dn) ∈ SCCn−1(αKn−1),Cvn−1(αKv
n−1) ⊂ SCCnKn,CvnKv

n
. (B.1)

It then follows from Proposition 1.3 in Chapter 1 and Assumption 2.3 that

f rn(y) ∈ SCCnKn,CvnKv
n
. Since Ln(·) is convex, we have

gn(y) = Ln(y) + f rn(y) ∈ SCCnKn,CvnKv
n

(B.2)

by Lemma 1.1 (iii). Finally by Proposition 1.3 again, f1
n(x), f2

n(x), fn(x) ∈ SCCnKn,CvnKv
n
.

Proof of Theorem 2.2. brn ≤ b̄rn is immediate from their definitions. To prove the re-

mainder of Theorem 2.2, note that, in each period n, the value functions f1
n(·), f2

n(·), fn(·)
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satisfy a single stage problem of the following structure:

g1(x) = min
y∈[x,x+C1]

{K1δ(y − x) + β1(y − x) + g(y)},

g2(x) = min
y∈[x−C2,x]

{K2δ(x− y) + β2(y − x) + g(y)},

g0(x) = min{g1(x), g2(x)},

where g1(·) = f1
n(·), g2(·) = f2

n(·) and g(·) = gn(·). Define auxiliary functions

g̃1(x) = K1 + min
y∈[x,x+C1]

{β1(y − x) + g(y)},

g̃2(x) = K2 + min
y∈[x−C2,x]

{β2(y − x) + g(y)},

as counterparts of g1(x) and g2(x), under definitive inventory adjustment, i.e., definitively

incurring fixed costs for ordering or salvaging, respectively, and let Ai(x) = g̃i(x)− g(x) be

the increase in minimal cost if forced to order (for i = 1) or salvage (for i = 2).

We define the following critical points with the convention that the infimum (supremum)

of an empty set equals +∞ (−∞).

Definition B.1. (Critical Points) For a continuous function g(·) ∈ SCC1K1,C2K2 and any

β1, β2, define

B = inf
{

arg min
y
{β1y + g(y)}

}
, b = inf{x : A1(x) ≥ 0}, b̄ = sup{x : A1(x) < 0},

S = sup
{

arg min
y
{β2y + g(y)}

}
, s = sup{x : A2(x) ≥ 0}, s = inf{x : A2(x) < 0}.

These critical points play important roles in the structure of the optimal strategy. By

its definition, B is the (smallest) global minimizer of g̃1(x) if C1 = ∞, i.e., the smallest

order-up-to level for sufficiently small x if ordering is better than staying put. Similarly,

S is the (largest) global minimizer of g̃2(x) if C2 = ∞, .i.e., the biggest salvage-down-to

level for sufficiently large x if salvaging is better than staying put; b is the smallest among

all inventory levels where ordering is not better than staying put; b̄ is the largest among

all inventory levels where ordering is better than staying put; s is the largest among all

inventory levels where salvaging is not better than staying put; s is the smallest among all

inventory levels where salvaging is better than staying put.
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Note that by definition we have

g1(x) = min{g(x), g̃1(x)}, A1(x) < 0 ∀x < b, A1(x) ≥ 0 ∀x > b̄,

g2(x) = min{g(x), g̃2(x)}, A2(x) < 0 ∀x > s, A2(x) ≥ 0 ∀x < s.

The lemma below, which follows from Proposition 1.2 in Chapter 1, characterizes the

ranking of the critical points.

Lemma B.1 (Critical Points). Assume β1 ≥ β2 and g(·) ∈ SCC1K1,C2K2, then

(i) −∞ ≤ b ≤ b̄ ≤ s ≤ s ≤ ∞;

(ii) −∞ ≤ b ≤ B ≤ S ≤ s ≤ ∞;

(iii) If C2 =∞ and K1 ≥ K2, then b̄ ≤ B; if C1 =∞ and K1 ≤ K2, then S ≤ s;

(iv) If C1 = ∞ and K2 = 0, then b = b̄; if C2 = ∞ and K1 = 0, then s = s. If

C1 = C2 =∞ and K1 = K2 = 0, then b = b̄ = B,S = s = s.

In this lemma, (i) ranks four critical points. (ii) ranks and locates the global minimizers

B and S between b and s. (iii) and (iv) lead to simple policy structures, in certain special

cases. In particular (2.12) follows from Lemma B.1 (i) and (b) follows from

By Assumption 2.1, cen ≥ cvn. By (B.2) in the proof of Theorem 2.1, gn(y) ∈ SCCnKn,CvnKv
n
.

Applying Theorem 1.2 in Chapter 1 with properly defined critical points, we immediately

obtain the optimal policy structure for ordering with the expedited supplier and salvaging,

as given by Table 2.1 (a). For the regular supplier, since αEfn−1(z −Dn) ∈ SCCnKn,CvnKv
n

by (B.1) in the proof of Theorem 2.1, we can apply Theorem 1.2 again and use Corollary 1.2

to obtain the optimal policy structure given by Table 2.1 (b).

B.2 Additional numerical studies
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Appendix C

Appendix for Chapter 3

C.1 Proofs

Proof of Lemma 3.1. Let {s(n∗X), r(n∗X), q(n∗X)} denote the optimal solution to (3.20) at

the equilibrium participating capacity n∗X obtained from (3.21), then clearly

{s(n∗X), r(n∗X), q(n∗X), n∗X} is a feasible solution to (3.19), with objective value ΠX(n∗X).

Note that better solutions to (3.19), if any, can only be achieved at n > n∗X since ΠX(n)

increases in n (as will be shown later in each regime X). However, any such solution

(s, r, q, n) ∈ CX at n > n∗X does not satisfy constraint (3.18) because

π(s, r, n) ≤ πX(n) ≤ πX(n∗X) = F−1

(
n∗X
N

)
< F−1

( n
N

)
,

where the first inequality follows from (3.22), the second inequality is due to πX(n) decreas-

ing in n (as will be shown later in each regime X), and the last inequality follows from the as-

sumption that F (·) is continuously increasing on [0,∞). Therefore, {s(n∗X), r(n∗X), q(n∗X), n∗X}

is also the optimal solution to (3.19) and we have Π∗X = ΠX(n∗X).

Proof of Proposition 3.1. We start with the following observations about the optimal

solution.

(i) Allocating all capacity n towards serving riders (i.e., r = 0, q = 0) is feasible (hence

optimal) if and only if n ≤ nC1 . To see this, let

SC1 = (S11, S12, S12
t21

t12
, S22). (C.1)

Then nC1 = SC1 · 1 = S − (Λ21 − Λ12)t21 is the maximum service capacity without

repositioning (r = 0). Therefore with r = 0 and q = 0, s ≤ nC1 ⇔ n ≤ nC1 by (3.25);

if n > nC1 , then r = 0, q = 0 is not feasible.
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(ii) Allowing for repositioning capacity r12 ≥ 0, the maximum service capacity achievable

(assuming n is sufficiently large) is
nC1 + r12

t21
t12
, with r21 = 0 if r12 ∈ [0, nC2 − S]

S, with r21 = (S12 + r12) t21
t12
− S21 > 0 if r12 > nC2 − S

.

To see this, from (3.24) we have s21 = (s12 + r12) t21
t12
− r21, hence for r12 ∈ [0, nC2 −S],

max
0≤s≤S,r21≥0

s = max
0≤s≤S,r21≥0

s11 + s12 + (s12 + r12)
t21

t12
− r21 + s22 = nC1 + r12

t21

t12
,

where the maximum is achieved at s11 = S11, s12 = S12, s22 = S22, r21 = 0. Note

that the service capacity reaches its upper bound S when r12 reaches nC2 − S, i.e.,

nC1 + (nC2 − S) t21
t12

= S. For r12 > nC2 − S, the maximum service capacity stays at S

with s = S, but r21 = (S12 + r12) t21
t12
− S21 > 0 by (3.24).

With these observations, we can derive the optimal structure given by the Proposition.

Zone (1) follows directly from observation (i). In zone (2) and (3) where n > nC1 , by

observation (ii), the optimization problem with least repositioning travel cost (i.e., avoiding

unnecessary repositioning capacity) can be simplified as

max
r12

{
nC1 + r12

t21

t12
: nC1 + r12

t21

t12
+ r12 ≤ n, r12 ∈ [0, nC2 − S], r21 = 0

}
.

When nC1 < n ≤ nC2 (zone (2)), the inequality constraint is binding and the optimal solution

is

r12 = (n− nC1 )
t12

t12 + t21
, r21 = 0, s = SC1 +

(
0, 0, (n− nC1 )

t21

t12 + t21
, 0

)
, q = 0.

For n > nC2 (zone (3)), the inequality constraint is not binding. With all the demand served

(s = S), the extra capacity waits in queues and the optimal solution is

r12 = nC2 − S, r21 = 0, s = S, q ∈
{

(q1, q2) : q1 + q2 = n− nC2
}
.

Proof of Corollary 3.1. (i) The validity condition (3.22) in Lemma 3.1 requires that the

per-driver profit is maximized subject to (3.24)–(3.26) at any n > 0 under the platform’s

optimal capacity allocation prescribed by Proposition 3.1. Note that

π(s, r, n) =
(γ̄p− c)s− cr

n
.
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By Proposition 3.1, s = n, r = 0 for n in the scarce capacity zone (0, nC1 ], clearly π(s, r, n)

is maximized; for n in the ample capacity zone (nC2 ,∞), s = S and r = (nC2 −S, 0) involves

the minimum repositioning capacity r = nC2 − S, hence π(s, r, n) is also maximized.

For fixed n in the moderate capacity zone (nC1 , n
C
2 ], further increasing π(s, r, n) requires

(γ̄p− c)∆s− c∆r > 0 ⇒ ∆r <
γ̄p− c
c

∆s.

Since s is maximized under the platform’s optimal capacity allocation, it can only be de-

creased or remain unchanged, i.e., ∆s ≤ 0. Hence

∆r <
γ̄p− c
c

∆s ≤ t12

t21
∆s ≤ 0, (C.2)

where the second inequality follows from Assumption 3.2. We next show that (C.2) cannot

hold due to the platform’s optimal capacity allocation and the flow balance constraint:

• By Proposition 3.1, the platform’s optimal capacity allocation in the moderate ca-

pacity zone (nC1 , n
C
2 ] has s11 = S11, s12 = S12, s22 = S22 and r12 > 0, r21 = 0, hence

s11, s12, s22 cannot be increased while r21 cannot be reduced. It then follows from

∆r12 + ∆r21 = ∆r < 0 by (C.2) that r12 must be reduced. To conclude, any change

of these capacity variables must satisfy

∆s11,∆s12,∆s22 ≤ 0, ∆r12 < 0, ∆r21 ≥ 0. (C.3)

• By flow balance constraint (3.24), i.e., (s12 + r12)/t12 = (s21 + r21)/t21, its change

satisfies

∆s12 + ∆r12

t12
=

∆s21 + ∆r21

t21
,

which implies

∆s21 =
t21

t12
(∆s12 + ∆r12)−∆r21 ≤

t21

t12
(∆r12 + ∆r21)−

(
1 +

t21

t12

)
∆r21 ≤

t21

t12
∆r,

(C.4)

where the two inequalities follow from ∆s12 ≤ 0 and ∆r21 ≥ 0 in (C.3), respectively.

By (C.3) and (C.4), we have

∆s =
∑

∆sij ≤ ∆s21 ≤
t21

t12
∆r,
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which is a clear contradiction with ∆s > t21
t12

∆r from (C.2). Therefore π(s, r, n) is indeed

maximized subject to (3.24)–(3.26) and the validity condition holds.

(ii) The existence and uniqueness of the participation equilibrium follows directly from

the fact that πC(n) is continuously decreasing in n with zero limit value as n→∞.

Proof of Lemma 3.2. Drivers’ expected steady-state profit rate under policy π̃(η̃; s, q)

in (3.32) follows from Renewal Reward Theory. We next derive its specific expression for

η = (η1, 0). W.L.O.G., we calculate the time functions over cycles starting and ending at

the low-demand location (1). Let plk = λlk/(λl1 + λl2) denote the probability of serving a

lk-ride at location l. The expected service, repositioning and queueing time functions are

as follows:

• The expected service time in a cycle is given by

T s(η; s) = (1− η1)

[
p11t11 + p12

(
t12 +

1− p21

p21
t22 + t21

)]
+ η1

(
1− p21

p21
t22 + t21

)
,

where 1−p21

p21
t22 gives the expected time serving local demand at location 2. This

follows from the fact that the number of local rides at location 2 a driver serves

(“failures”) before picking a ride back to location 1 (“success”) follows a geometric

distribution of “success” probability p21.

• The expected repositioning time in a cycle is simply T r(η) = η1t12.

• The expected queueing delay in a cycle is given by

T q(η; s, q) = (1− η1)

(
W1 + p12

1

p21
W2

)
+ η1

1

p21
W2,

where 1
p21
W2 gives the expected queueing time at location 2. This follows from the

fact that the number of queueing delays (“trials”) at location 2 a driver encounters

before picking a ride back to location 1 (“success”) follows a geometric distribution

of “success” probability p21. Wl = Ql/(λl1 + λl2) is the queueing time at location l

due to Little’s Law.

Substituting the above time functions in (3.32) we have:

π̃(η1; s, q) =
(γ̄p− c)

[
(1− η1)s21

t12
t21

(s11 + s12) + (η1s11
t12
t11

+ s12)(s21 + s22)
]
− cη1s21

t12
t21

(s11
t12
t11

+ s12)

(1− η1)s21
t12
t21

(s11 + s12 + q1) + (η1s11
t12
t11

+ s12)(s21 + s22 + q2) + η1s21
t12
t21

(s11
t12
t11

+ s12)
.

(C.5)
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Proof of Proposition 3.2. With η2 = 0, and hence r21 = 0 by (3.33), the repositioning

decision reduces to picking η1, and the driver-incentive compatible capacity allocation set

is given by

D =

{
(s, r, q) ≥ 0 : r21 = 0, η1(s, r) ∈ arg max

η̃1

π̃(η̃1; s, q)

}
. (C.6)

Differentiating π̃(η1; s, q) in (C.5) wrt η1, we get

∂π̃

∂η1
=

s21
t12
t21

(s11
t12
t11

+ s12)
[
(s21 + s22)γ̄p−

(
s21 + s22 + s21

t12
t21

)
c
]

[
(1− η1)s21

t12
t21

(s11 + s12 + q1) + (η1s11
t12
t11

+ s12)(s21 + s22 + q2) + η1s21
t12
t21

(s11
t12
t11

+ s12)
]2

× [q1 − (q∗1(s) + k(s)q2)] ,

where

q∗1(s) =
(s11 + s12)s21

t12
t21

+ (s21 + s22)s12

(s21 + s22)−
(
s21 + s22 + s21

t12
t21

)
c
γ̄p

, k(s) =
(s11 + s12)− s11

c
γ̄p

(s21 + s22)−
(
s21 + s22 + s21

t12
t21

)
c
γ̄p

.

(C.7)

The sign of ∂π̃/∂η1 only depends on the sign of q1 − (q∗1(s) + k(s)q2). Note that η1(s, r) =

r12/(s11
t12
t11

+ s12 + r12) from (3.33), by (C.6):

(i) When r12 = 0, η1(s, r) = 0 requires ∂π̃/∂η1 ≤ 0, hence q1 ≤ q∗1(s) + k(s)q2;

(ii) When r12 > 0 and s11 + s12 > 0, η1(s, r) ∈ (0, 1) requires ∂π̃/∂η1 = 0, hence q1 =

q∗1(s) + k(s)q2 with q∗1(s), k(s) > 0;

(iii) When r12 > 0 and s11 + s12 = 0, η1(s, r) = 1 and q∗1(s) = k(s) = 0, all drivers

reposition at location 1 without waiting in a queue.

It follows that the driver-incentive compatible capacity allocation set given by (3.35).

Proof of Proposition 3.3. We want to show there is a unique feasible capacity utilization

satisfying (3.24)–(3.26), (3.36)–(3.38) and (3.35), i.e., (s, r, q, n) ∈M given by (3.39). Note

that r21 = 0 by (3.35). By (3.24) and (3.36) we can express service capacities in terms of

s12 and r12:

s11 = s12
S11

S12
, s21 = (s12 + r12)

t21

t12
, s22 = (s12 + r12)

t21

t12

S22

S21
. (C.8)
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We will focus on s12, r12, q, and recover the remaining quantities using (C.8). The other

constraints, (3.25), (3.35), (3.37), (3.38) and (3.26), are rewritten below.

nM1
S12

s12 +

[
t21

t12

(
1 +

S22

S21

)
+ 1

]
r12 + q1 + q2 = n, (C.9)

q1


≤ q∗1(s) + k(s)q2 if r12 = 0

= q∗1(s) + k(s)q2 if r12 > 0

, (C.10)

(S12 − s12)r12 = 0, (C.11)

(S12 − s12)q1 = 0,

(
S21 − (s12 + r12)

t21

t12

)
q2 = 0, (C.12)

0 ≤ s12 ≤ S12, 0 ≤ t21

t12
(s12 + r12) ≤ S21, r12 ≥ 0, q ≥ 0. (C.13)

We make the following observations about the feasible solution.

(i) The allocation where all capacity serves rider demand, i.e., r12 = 0, q = 0, s12 =

n
nM1

S12, is feasible if and only if n ≤ nM1 . (a) “⇒”: this is immediate; this also implies

that if n > nM1 , then r12 > 0 or q > 0. (b) “⇐”: given n ≤ nM1 , suppose first that

r12 > 0, then (C.11) implies that s12 = S12, thus s > nM1 and n > nM1 , a contradiction;

second, that q1 > 0, then (C.12) implies that s12 = S12, thus s ≥ nM1 and n > nM1 , a

contradiction; or third, that q2 > 0, then (C.12) implies that s21 = S21, r12 > 0, thus

n > nM1 is still a contradiction. Hence n ≤ nM1 ⇒ r12 = 0, q = 0, s12 = n
nM1

S12, which

satisfies (C.9)–(C.13) and is thus feasible.

(ii) When n > nM1 , any feasible solution must serve all demand at location 1, i.e., s12 =

S12, and moreover, q∗1(s) ≡ q∗1(S). By (i), n > nM1 implies that r12 > 0 and/or q 6= 0,

and either of these assertions implies that s12 = S12 by (C.11) and (C.12). To show

that q∗1(s) ≡ q∗1(S), we substitute s11, s21, s22 in q∗1(s) in (C.7) by (C.8),

q∗1(s) =
(S11
S12

+ 1) t12
t21

+ (1 + S22
S21

)

(1 + S22
S21

)− (1 + S22
S21

+ t12
t21

) c
γ̄p

s12,

which is equal to a constant multiplying s12. For s12 = S12, we have that q∗1(s) ≡ q∗1(S).

With these two observations, we derive the feasible solution given by the Proposition.

Zone (1): the result follows directly from observation (i).
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Zone (2): for nM1 < n ≤ nM2 := nM1 + q∗1(S), observation (ii) gives s12 = S12 and

q∗1(s) = q∗1(S), so (C.9), (C.10) and (C.13) immediately imply that r12 = 0. Putting

s12 = S12 and r12 = 0 into (C.12) we get q2 = 0. It also follows from (C.9) that q1 = n−nM1 .

In this zone q1 increases with n while r12 = q2 = 0. The feasible solution is summarized as

r = 0, s =

(
S11, S12, S21

Λ12

Λ21
, S22

Λ12

Λ21

)
, q = (n− nM1 , 0).

Zone (3): for nM2 < n ≤ nM3 := nC2 + q∗1(S), if s12 = S12 and r12 = 0, then q2 = 0 by

(C.12), which implies that q1 ≤ q∗1(S) by (C.10). By (C.9), this contradicts the fact that

n > nM2 . It follows that r12 > 0, and (C.10) yields q1 = q∗1(S) + k(s)q2. Together with

s12 = S12, it is then easy to verify that (C.9), (C.12) and n ≤ nM3 imply that q2 = 0. In this

zone r12 increases with n while q1 = q∗1(S), q2 = 0 and the feasible solution is as follows:

r12 > 0, s =

(
S11, S12, (S12 + r12)

t21

t12
, (S12 + r12)

t21

t12

S22

S21

)
, q = (q∗1(S), 0).

Zone (4): for n > nM3 , the above argument still implies that r12 > 0 and q1 = q∗1(S) +

k(s)q2. And, by (C.9) and (C.13) we get that q2 > 0. It then follows from (C.12) that

r12 = S21
t12
t21
− S12 = nC2 − S and s = S. In this zone q1 and q2 increase with n while s and

r stay constant. The feasible solution is given by

r = (nC2 − S, 0), s = S, q = (q∗1(S) + k(S)q2, q2).

This completes the proof.

Proof of Corollary 3.2. (i) By Proposition 3.3, at any n > 0 there is a unique feasible

driver capacity allocation under the constraints in (3.40), hence the per-driver profit is

naturally maximized and the validity condition (3.22) in Lemma 3.1 is satisfied.

(ii) Substituting s and r from Proposition 3.3 into (3.27) yields

πM (n) =
(γ̄p− c)s− cr

n
=



γ̄p− c zone (1) (n ≤ nM1 ),

nM1
n (γ̄p− c) zone (2) (nM1 < n ≤ nM2 ),

S21+S22

S21+S22+S21
t12
t21

γ̄p− c zone (3) (nM2 < n ≤ nM3 ),

1
n(γ̄pS − cnC2 ) zone (4) (n > nM3 ).

(C.14)
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It is easy to see that πM (n) is continuously decreasing in n and that limn→∞ πM (n) = 0.

Therefore, the participation equilibrium condition (3.28), n = NF (πM (n)), has a unique

solution n∗M .

Proof of Proposition 3.4. We have the following observations about the optimal solu-

tion.

(i) Allocating all capacity n towards serving riders (i.e., r12 = 0, q = 0) is feasible (hence

optimal) if and only if n ≤ nA1 := nC1 . This is the same as observation (i) in the Proof

of Proposition 3.1. Also notice that constraint (3.35) is satisfied.

(ii) If for some capacity level n1 the service capacity s > nA1 , then for all capacity levels

n2 ≥ n1 the optimal solution involves repositioning. First, note that by the definition

of nA1 , s > nA1 , which implies that r12 > 0 (which holds at n1), and hence we only

need to show that the optimal service capacity at n2 is higher than nA1 . It suffices to

find one feasible solution at n2 that has the same service capacity as at n1, which is

higher than nA1 . To achieve this, let the service capacity vector s and the repositioning

capacity r12 > 0 at n2 be the same as those at n1, respectively, and put the extra

capacity n2 − n1 into q satisfying q1 = q∗1(s) + k(s)q2. In this way all constraints are

still satisfied while the service capacity s > nA1 remains unchanged.

(iii) r12 > 0 for all n > nA1 +q∗1(SA1 ), where SA1 = SC1 defined in (C.1) such that SA1 ·1 = nA1 .

It suffices to show that at capacity levels in the right neighborhood of nA1 +q∗1(SA1 ), the

optimal service capacity is higher than nA1 , which then, by observation (ii), will prove

the result. To show this, for an arbitrarily small ε > 0, let nε be the minimum feasible

total capacity to provide service vector SA1 + (0, 0, ε, 0), and hence service capacity

nA1 + ε > nA1 . Following constraints (3.24)–(3.26) and (3.35), we have

nε = nA1 + ε+
t12

t21
ε+ q∗1(SA1 + (0, 0, ε, 0)),

and n0 = nA1 + q∗1(SA1 ) for ε = 0. It is easy to see that nε increases in ε, since by
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definition (C.7),

∂q∗1(s)

∂s21
=

((s11 + s12)γ̄p− s11c)s22
t12
t21[

(s21 + s22)γ̄p− (s21 + s22 + s21
t12
t21

)c
]2 > 0, ∀s22 > 0, s11 + s12 > 0,

(C.15)

i.e., q∗1(s) increases wrt s21 when s22, s11 + s12 > 0. Therefore, the optimal service

capacity must be higher than nA1 at capacity levels in the right neighborhood of nA1 +

q∗1(SA1 ).

(iv) r12 = 0 for n ∈ [nA1 , n
A
1 + δ] for a small δ > 0. We first prove this for the optimal

solution at n = nA1 +δ by establishing that for any feasible q1 it must be that q1 < q∗1(s),

from which we deduce r12 = 0 from (3.35). Then, observation (ii) yields the same result

for n ∈ [nA1 , n
A
1 + δ]. Pick

δ = min

q∗1(SA1 ),
(S12)2

S12

(
1 + t21

t12

)
+ S21 + S22

 ,

so that nA1 + δ ≤ nA1 + q∗1(SA1 ), δ < S12 and

δ <
(S12)2

S12

(
1 + t21

t12

)
+ S21 + S22

(
1 +

t21

t12

)
⇒ S12(S12 − δ)

S21 + S22

(
1 +

t21

t12

)
> δ. (C.16)

First note that the optimal solution at nA1 + δ must have s ≥ nA1 , since a feasible

solution s = SA1 , r12 = 0, q1 = 0, q2 = δ yields s = nA1 . Therefore

r12, q1 ≤ δ, s21 ≥ S12
t21

t12
, s12 ≥ S12 − δ > 0, (C.17)

where the first inequality follows from s ≥ nA1 and capacity constraint (3.25), the

second is by s ≥ nA1 , and the third follows from the second and (3.24) in that s12 =

s21
t12
t21
− r12 ≥ S12 − δ.

Then,

q∗1(s) =
(s11 + s12)s21

t12
t21

+ (s21 + s22)s12

(s21 + s22)−
(
s21 + s22 + s21

t12
t21

)
c
γ̄p

≥
s12s21

t12
t21

+ s21s12

S21 + S22

≥
S12(S12 − δ) t21

t12

(
1 + t12

t21

)
S21 + S22

> δ,
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where the the second inequality follows from the second and third inequalities in

(C.17), and the last inequality is by (C.16). Finally the first inequality in (C.17)

leads to q1 ≤ δ < q∗1(s), which implies that r12 = 0 by constraint (3.35). Hence

we have shown r12 = 0 at n = nA1 + δ. By observation (ii), the optimal solution at

n ∈ [nA1 , n
A
1 + δ] has service capacity s = nA1 and no repositioning.

(v) An optimal solution can serve all demand (s = S) if and only if n ≥ nA3 := nC2 +q∗1(S).

“⇐”: given n ≥ nC2 + q∗1(S), it is easy to verify that the capacity allocation s = S, r =

(nC2 − S, 0) and q1 = q∗1(S) + k(S)q2 with q1 + q2 = n − nC2 is feasible and serves all

demand (hence optimal). “⇒”: an optimal (hence feasible) solution that serves all

demand must have s = S, r = (nC2 − S, 0) and q1 = q∗1(S) + k(S)q2. By (3.25) this

yields n = nC2 + q∗1(S) + k(S)q2 + q2 ≥ nC2 + q∗1(S) = nA3 .

With these five observations, we can derive the optimal solution given by the Proposition.

Zone (1) follows directly from observation (i) and zone (4) follows from observation (v).

In (nA1 , n
A
3 ], not all drivers are serving riders and not all riders are served. There exists a

threshold nA2 such that nA1 < nA2 < nA3 which separates zone (2) and (3) apart: in zone

(2), (nA1 , n
A
2 ], optimal solution has service capacity s = nA1 , no repositioning (r = 0), and

extra capacity queues at location 1 with q = (n − nA1 , 0); whereas in zone (3), (nA2 , n
A
3 ],

optimal solution involves repositioning (r12 > 0), serves s > nA1 , and extra capacity queues

at location 1 with q = (q∗1(s), 0).1 Note that nA2 > nA1 by observation (iv). nA2 < nA3 follows

from nA2 ≤ nA1 +q∗1(SA1 ) by observation (iii) and nA1 +q∗1(SA1 ) < nC2 +q∗1(S) = nA3 by property

(C.15). Furthermore, the fact that optimal solution involves repositioning at any capacity

level in zone (3) follows from observation (ii).

The following proofs of Lemma 3.3 and Propositions 3.7–3.8 refer to two technical

lemmas, Lemmas C.1 and C.2. The statements and proofs of these lemmas as well as the

proof of Proposition 3.5 are relegated to the Supplemental Materials.

1The steady state system flow equations do not differentiate between queueing in locations 1 and 2 in this
capacity regime. A more detailed transient analysis would show that when the platform makes admission
control decisions, it would choose to clear the queue in the high-demand location given that the demand
exceeds the available capacity, and drivers would only queue in the low-demand location.
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Proof of Lemma 3.3. (i) When condition (3.46) holds, there is strategic demand rejection

at the low-demand location when n ∈ (nA1 , n
A
3 ]. Substituting s and r from Proposition 3.4

into (3.27) yields

πA(n) =
(γ̄p− c)s− cr

n
=



γ̄p− c zone (1) (n ≤ nA1 ),

nA1
n (γ̄p− c) zone (2) (nA1 < n ≤ nA2 ),

1
n [(γ̄p− c)s∗ − cr∗] zone (3) (nA2 < n ≤ nA3 ),

1
n(γ̄pS − cnC2 ) zone (4) (n > nA3 ).

(C.18)

Note that there is no (simple) explicit expression in zone (3), in which the platform

may reject riders at the low-demand location if condition (3.46) holds. Nevertheless,

we show in Lemma C.2 (see Supplemental Materials) that πA(n) is decreasing in n and

limn→∞ πA(n) = 0. Hence there is a unique equilibrium participating capacity nA that

satisfies the inequalities

NF (πA(n+
A)) ≤ nA ≤ NF (πA(n−A)). (C.19)

In this case the validity condition for the two-step solution approach in Lemma 3.1 may

not hold.

(ii) When condition (3.46) does not hold, there is no strategic demand rejection at the

low-demand location. The platform’s optimal capacity allocation for n ∈ (n̂A2 , n
A
3 ] follow

pattern (1) in Lemma C.1 (see Supplemental Materials): only s21 is increasing. The proof

of the validity condition (3.22) in Lemma 3.1 is similar to that of regime C (in the proof

of Corollary 3.1): First, the logic for the scarce and ample capacity zones, (0, nA1 ] and

(nA3 ,∞), is identical to that in the proof of Corollary 3.1. Second, in zone 2–moderate

capacity without repositioning, (nA1 , n̂
A
2 ], there is zero repositioning capacity so that r = 0

cannot be reduced, hence inequality (C.2) in the proof of Corollary 3.1 is immediately

violated and it follows that the per-driver profit π(s, r, n) is maximized. Third, in zone

3–moderate capacity with repositioning, (n̂A2 , n
A
3 ], the argument is identical to that in zone

3 of regime C. In particular, any feasible deviation from the platform’s optimal capacity

allocation cannot increase the per-driver profit.
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To establish the unique solution n̂A to the participation equilibrium n̂A = NF (π̂A(n̂A)),

just notice that π̂A(n) is continuous following pattern (1) in Lemma C.1 (see Supplemental

Materials), and case (i) in Lemma C.2 shows that π̂A(n) decreases in n.

(iii) First, by definition nA and n̂A (and their associated optimal capacity allocations)

are both feasible solutions to problem (3.19) with X = A. Next, we show that no better

equilibrium can be established at n < nA or n > n̂A. On the one hand, if there exists an

equilibrium at n < nA with associated optimal service vector s, then it must be suboptimal

since

Π(s) ≤ ΠA(n) ≤ ΠA(nA),

where the first inequality is by definition that ΠA(n) is the maximum platform revenue at

n subject to (s, r, q, n) ∈ CA, and the second inequality follows from the monotonicity of

ΠA(·) given by Proposition 3.4. On the other hand, any solution (s, r, q, n) ∈ CA at n > n̂A

does not satisfy the driver participation constraint because

π(s, r, n) ≤ π̂A(n) ≤ π̂A(n̂A) = F−1

(
n̂A
N

)
< F−1

( n
N

)
,

where the first inequality follows from the validity condition (3.22) in Lemma 3.1 that

is proved in part (ii), the second inequality is due to π̂A(n) decreasing in n shown by

Lemma C.2 in the Supplemental Materials (see, in particular, case (i) in its proof), and the

last inequality follows from the assumption that F (·) is continuously increasing on [0,∞).

Therefore, the actual equilibrium participating capacity n∗A must lie in [nA, n̂A]. When

regime A does not involve strategic demand rejection, i.e., condition (3.46) in Proposition

5 does not hold, ΠA(n) = Π̂A(n) and hence n∗A = nA = n̂A.

Proof of Proposition 3.6. We first prove the case S22 = 0 and then establish the thresh-

old level Ŝ22 > 0.

(1) When S22 = 0, we have the following four properties (i)–(iv) regarding the platform

revenue and per-driver profit under optimal capacity allocation allowing or disallowing

strategic demand rejection:

(i) Condition (3.46) in Proposition 3.5 immediately holds.
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In the following, we show that under S22 = 0 (hence s22 = 0), the 3 patterns of optimal

capacity allocation as a function of participating capacity n ∈ (nA2 , n
A
3 ) established in

Lemma C.1 and its proof in the Supplemental Materials can be significantly simplified.

Setting s22 = 0 in the derivatives (C.39)–(C.41) and using n = g(s) by (C.33), we get

∂n

∂s11
=
∂g(s)

∂s11
=

(
1 +

t12

t21

)
γ̄p− c

γ̄p−
(

1 + t12
t21

)
c
,

∂n

∂s12
=
∂g(s)

∂s12
=

(
1 +

t12

t21

)
γ̄p

γ̄p−
(

1 + t12
t21

)
c
,

∂n

∂s21
=
∂g(s)

∂s21
= 1 +

t12

t21
.

Clearly ∂n
∂s21

< ∂n
∂s11

< ∂n
∂s12

and all are independent of the service capacity on each route,

i.e., the second derivatives are all zero. Noticing that s1(nA3 ) = s2(nA3 ) = s3(nA3 ) = S

and the patterns specified in Lemma C.1, a direct implication is that

s3(n) ≥ s2(n) > s1(n), n ∈ (nA2 , n
A
3 ),

i.e., pattern (3) yields the largest service capacity at any n ∈ (nA2 , n
A
3 ) and strictly dom-

inates pattern (1) which disallows strategic demand rejection. In fact, the platform’s

optimal capacity allocation follows pattern (3) when strategic demand rejection is al-

lowed and follows pattern (1) when disallowed. Consequently, we have nA2 = s3
−1(nA1 ),

the left end of the pattern (3) interval, and n̂A2 = s1
−1(nA1 ), the left end of the pattern

(1) interval, together with the following two properties:

(ii) nA2 < n̂A2 < nA3 .

(iii) ΠA(n) strictly increases on (nA2 , n
A
3 ); Π̂A(n) stays constant on (nA2 , n̂

A
2 ) and strictly

increases on [n̂A2 , n
A
3 ); and ΠA(n) > Π̂A(n) on (nA2 , n

A
3 ).

Similarly, the per-driver profit rate as a function of participating capacity n ∈ (nA2 , n
A
3 )

under each pattern established in the proof of Lemma C.2 in the Supplemental Materials

can be simplified as follows. Setting S22 = 0, we immediately find π′(n) = 0 within

each pattern given by (C.53)–(C.57). Note that under pattern (1), π′(n) < 0 for

n < s1
−1(nA1 ) = n̂A2 . As a result, we have the following property about per-driver

profits:
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(iv) πA(n) remains constant on (nA2 , n
A
3 ); π̂A(n) strictly decreases on [nA2 , n̂

A
2 ) and

stays constant on (n̂A2 , n
A
3 ); πA(n) < π̂A(n) on (nA2 , n̂

A
2 ) and πA(n) = π̂A(n) on

[n̂A2 , n
A
3 ).

(2) If n∗A ∈ (nA2 , n̂
A
2 ), there must be nA2 < nA < n̂A < n̂A2 following from πA(n) < π̂A(n)

in (1.iv) and the monotonicity assumption on F (·). Hence by ΠA(n) > ΠA(nA2 ), ∀n ∈

(nA2 , n̂
A
2 ) and Π̂A(n) ≡ ΠA(nA2 ),∀n ∈ (nA2 , n̂

A
2 ) due to (1.iii), there must be Π̂A(n̂A) =

ΠA(nA2 ) < ΠA(nA). By Lemma 3.3 (iv) strategic demand rejection is optimal.

(3) If n∗A ∈ [n̂A2 , n
A
3 ), it follows from πA(n) = π̂A(n) in (1.iv) that n∗A = nA = n̂A and thus

Π̂A(n∗A) < ΠA(n∗A). By Lemma 3.3 (iv) strategic demand rejection is optimal.

By continuity, the above results still hold for sufficiently small S22. Specifically, we have

the following observations:

(i) The platform’s optimal revenues allowing or disallowing strategic demand rejection,

ΠA(n) and Π̂A(n), are both continuous in n and S22.

(ii) The resulting per-driver profits allowing or disallowing strategic demand rejection,

πA(n) and π̂A(n), are both continuous in n ∈ (nA2 , n
A
3 ) and S22.

(iii) The drivers’ opportunity cost distribution F (·) is continuous and strictly increasing.

(iv) Due to (ii) and (iii), the equilibrium participating capacities allowing or disallowing

strategic demand rejection, nA and n̂A, are both continuous in S22.

Since we have shown in the first part that Π̂A(n̂A) < ΠA(nA) always holds for n∗A ∈ (nA2 , n
A
3 )

at S22 = 0, it follows from (i) and (iv) that Π̂A(n̂A) < ΠA(nA) still holds for sufficiently small

S22 > 0. We also know that condition (3.46) in Proposition 3.5 does not hold for sufficiently

large S22, hence by continuity there exists Ŝ22 > 0 such that Π̂A(n̂A) < ΠA(nA), ∀S22 ∈

[0, Ŝ22), i.e, strategic demand rejection is optimal in a neighborhood of S22 = 0.
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Proof of Proposition 3.7. (1) Given a level of participating capacity n, the platform

revenue rate under the three control regimes {M,A,C} is computed as follows:

ΠM (n) = arg max
s,r,q

{Π(s) : (3.24)− (3.26), (3.36)− (3.38), (3.35)},

ΠA(n) = arg max
s,r,q

{Π(s) : (3.24)− (3.26), (3.35)},

ΠC(n) = arg max
s,r,q

{Π(s) : (3.24)− (3.26)}.

These formulations share the same objective function, but have a decreasing set of con-

straints from M → A→ C, from where (3.51) holds.

(2) and (3): Based on (3.31), (C.14) and (C.18), it is straightforward to verify that

πM (n) ≤ πC(n) for any n, and to verify that πM (n) ≤ πA(n) ≤ πC(n) for n ≤ nA2 and

n > nA3 (i.e., zone (1), (2) and (4) in Proposition 3.4 for regime A). For nA2 < n ≤ nA3 (zone

(3) of regime A), using Lemma C.1 one can verify that πA(n) ≤ πC(n) always holds, and

πM (n) ≤ πA(n) holds if (3.46) is not satisfied. This proves (3.52) and (3.53).

Proof of Proposition 3.8. Note the following properties about ΠX(·), πX(·) and n∗X :

(i) Proposition 3.7 (1), ΠM (n) ≤ ΠA(n) ≤ ΠC(n),∀n. It is also easy to verify that ΠX(n)

is continuously increasing in n for X ∈ {M,A,C}. This property follows immediately

for the centralized control regime X = C. For regimes X ∈ {M,A}, one can verify

that increasing capacity can be allocated into IC queues as in (3.35) without any

reduction in the capacity that serves rider demand.

(ii) πX(n) is decreasing in n with limn→∞ πX(n) = 0 for X ∈ {M,A,C}. Moreover, πX(·)

is continuous for X ∈ {M,C}, and is continuous for X = A if (3.46) is not satisfied.

This follows from (3.31), (C.14), (C.18) and Lemma C.2.

(iii) Let π1(n), π2(n) : R+ → R+ be candidate per-driver profit functions that are decreas-

ing in n (but may be discontinuous) with limn→∞ πi(n) = 0, i = 1, 2. Let n∗i be

defined as NF (πi(n
∗+
i )) ≤ n∗i ≤ NF (πi(n

∗−
i )) and πi(n

∗
i ) satisfies NF (πi(n

∗
i )) = n∗i if

n∗i is a discontinuity of πi(·). If π1(n) ≤ π2(n),∀n, then n∗1 ≤ n∗2 and π1(n∗1) ≤ π2(n∗2).

To see n∗1 ≤ n∗2, by definition of n∗1 and π1(n) ≤ π2(n), ∀n, we have

n∗1 ≤ NF (π1(n∗−1 )) ≤ NF (π2(n∗−1 )). (C.20)
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Suppose n∗2 < n∗1, then n∗+2 < n∗−1 , by definition of n∗2 and (C.20) we have

n∗2 ≥ NF (π2(n∗+2 )) ≥ NF (π2(n∗−1 )) ≥ n∗1,

contradicting n∗2 < n∗1. Hence, it must be that n∗1 ≤ n∗2. It then follows from

NF (πi(n
∗
i )) = n∗i , i = 1, 2 that π1(n∗1) ≤ π2(n∗2).

With these three properties and Proposition 3.7, we are ready to prove the three parts in

this Proposition. Parts (2) and (3) follow from Property (ii), (iii) and Proposition 3.7 (2),

(3). The ranking of n∗X given by (3.55) and Property (i) imply that Π∗M ≤ Π∗C and Π∗A ≤ Π∗C

in Part (1). The only thing left to show is Π∗M ≤ Π∗A and we complete this considering

whether (3.46) holds.

If (3.46) is not satisfied, then Part (3) implies that n∗M ≤ n∗A and hence Π∗M ≤ Π∗A by

Property (i).

If (3.46) is satisfied, then πA(·) may be discontinuous in zone (3) of regime A. Consider

the value of n∗M and notice (C.14) and (C.18): In zone (1) or (4) (n∗M ≤ nM1 < nA1 or

n∗M ≥ nM3 = nA3 ), πM (n∗M ) = πA(n∗M ) and hence n∗A = n∗M , Π∗A = Π∗M ; in zone (2)

(nM1 < n∗M ≤ nM2 ), it is obvious that nM1 < n∗A since πA(n) = πM (n) for n ≤ nM1 ,

therefore Π∗M = ΠM (nM1 ) < ΠA(n∗A) = Π∗A; in zone (3) (nM2 < n∗M < nM3 = nA3 ), since

πA(n) > πM (n∗M ) for n < nM3 = nA3 , there must be n∗M < n∗A and hence Π∗M < Π∗A.

Therefore Π∗M ≤ Π∗A for any n∗M , and this completes the proof of Part (1).

Proof of Corollary 3.3. Using the expressions of πX(n) for X ∈ {M,A,C} in (3.31),

(C.14), (C.18), respectively, and Proposition 3.7 (3), we have

πA(n)


> πM (n) n ∈ (nM1 , nM3 ), (3.46) not satisfied

= πM (n) n ≤ nM1 or n ≥ nM3
, πC(n)


> πA(n) n ∈ (nA1 , n

A
3 )

= πA(n) o.w.

.

(C.21)

(1) For performance gains from admission control (control regime A over M), if n∗M ≤

nM1 or n∗M ≥ nM3 , clearly n∗A = n∗M since πA(n) = πM (n) in these ranges; hence Π∗M =

Π∗A, π
∗
M = π∗A and there is no gain. If nM1 < n∗M < nM3 and (3.46) is not satisfied, then

it must be n∗M < n∗A. To see this, (C.21) implies that πA(n∗M ) > πM (n∗M ), therefore

n∗M = NF (πM (n∗M )) < NF (πA(n∗M )). Since (3.46) is not satisfied, n∗A = NF (πA(n∗A), and
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from the monotonicity of πA(·) we deduce that n∗M < n∗A. As a result, Π∗M < Π∗A and

π∗M < π∗A following the proof of Proposition 3.8.

(2) For performance gains from centralized repositioning (control regime C over A) we

have a similar argument as the above proof of Part (1) and the details are omitted.

Proof of Proposition 3.9. (1) According to Corollary 3.3, if (3.46) is not satisfied, the

platform revenue rate gain from admission control is positive only when n∗M ∈ (nM1 , nM3 ).

This yields

Π∗M ≥ ΠM (nM1 ) = γpnM1 , (C.22)

where the equality holds for n∗M ∈ (nM1 , nM2 ]. By Corollary 3.3, n∗M ∈ (nM1 , nM3 ) also implies

that π∗M < π∗A, thus n∗A ∈ (nM1 , nM3 ) since otherwise n∗M = n∗A and π∗M = π∗A. This yields

Π∗A ≤ ΠA(nM3 ) = ΠA(nA3 ) = γpS, (C.23)

where the equality is approached by n∗A → nM3 = nA3 .

Given that N ≥ nM3 = nA3 , n∗X = NF (πX(n∗X)) can take on values in [0, nM3 ] depending

on the choice of F (·), for X ∈ {M,A,C}. Consequently, the bounds in (C.22) and (C.23)

can be approached and therefore

max
F (·)

Π∗A −Π∗M
Π∗M

≤ γpS − γpnM1
γpnM1

=

(
Λ21

Λ12
− 1

)
1

1 + 1−ρ2

1−ρ1

1
τ

.

To approach this upper bound, we need n∗M ∈ (nM1 , nM2 ] and n∗A → nM3 = nA3 so that

Π∗M = γpnM1 and Π∗A → γpS. (Refer to Figure C.1 (a) and (c) for an illustration.) This

holds for opportunity cost distributions F (·) satisfying

F−1(nM2 /N) = πM (nM2 ) and F−1(nM3 /N) = πM (nM2 )+,

i.e., the value of F at πM (nM2 ) is fixed at nM2 /N (⇒ n∗M = nM2 ) and F grows sufficiently

fast to nM3 /N = nA3 /N at πM (nM2 )+ = πA(nA3 )+ (⇒ n∗A → nA3 = nM3 ); in words, there is a

sufficiently large mass of potential drivers with opportunity cost around πM (nM2 )+.

(2) According to Corollary 3.3, the platform revenue rate gain from centralized reposi-

tioning is positive only when n∗A ∈ (nA1 , n
A
3 ). This yields

Π∗A ≥ ΠA(nA1 ) = γpnA1 , (C.24)
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where the equality holds for n∗A ∈ (nA1 , n
A
2 ]. By Corollary 3.3, n∗A ∈ (nA1 , n

A
3 ) also implies

that π∗A < π∗C . Thus, n∗C ∈ (nA1 , n
A
3 ), since otherwise n∗A = n∗C and π∗A = π∗C . This yields

Π∗C ≤ ΠC(nA3 ) = γpS, (C.25)

where the equality holds for n∗C ∈ [nC2 , n
A
3 ).

Given that N ≥ nM3 = nA3 , n∗X = NF (πX(n∗X)) can take on values in [0, nA3 ] depending

on the choice of F (·), for X ∈ {M,A,C}. Using the bounds in (C.24) and (C.25) we have

max
F (·)

Π∗C −Π∗A
Π∗A

≤ γpS − γpnA1
γpnA1

=

(
Λ21

Λ12
− 1

)
1

1 + 1
1−ρ1

1
τ + ρ2

1−ρ2

Λ21
Λ12

.

To achieve this upper bound, we need n∗A ∈ (nA1 , n
A
2 ] and n∗C ∈ [nC2 , n

A
3 ) so that Π∗A = γpnA1

and Π∗C = γpS. Noticing Proposition 3.7 (2) and Property (ii) in the proof of Proposition 3.8

about πA(·), πC(·), this holds for opportunity cost distributions F (·) satisfying

F (πA(nA2 )) ≤ nA2 /N and F (πC(nC2 )) ≥ nC2 /N (C.26)

when πA(nA2 ) < πC(nC2 ). When πA(nA2 ) ≥ πC(nC2 ), (C.26) cannot be satisfied by any F and

hence the upper bound is not tight.

Proof of Proposition 3.10. Since πM (n) = πA(n) = πC(n) for n ≤ nM1 and n ≥ nM3 ,

the per-driver profit rate gain from admission control only (regime A over M) and from

admission control plus centralized repositioning (regime C over M) can be positive only for

n∗M ∈ (nM1 , nM3 ), and n∗A, n
∗
C ∈ (nM1 , nM3 ) simultaneously. It follows from the (decreasing)

monotonicity of πX(·), X ∈ {M,A,C} that

π∗M ≥ πM (nM3 ), π∗A ≤ πA(nM1 ) = γ̄p− c, π∗C ≤ πC(nM1 ) = γ̄p− c. (C.27)

Therefore,

max
F (·)

π∗A − π∗M
π∗M

= max
F (·)

π∗C − π∗M
π∗M

≤ γ̄p− c
πM (nM3 )

− 1 =
1− ρ2

τ − (1− ρ2 + τ)κ
.

To achieve this upper bound, we need n∗M ∈ [nM2 , nM3 ) and n∗A, n
∗
C ∈ (nM1 , nA1 ] so that the

equalities in (C.27) are satisfied. If nM2 ≤ nA1 = nC1 , these conditions hold for F (·) satisfying

F (πM (nM2 )) ≥ nM2 /N and F (πA(nA1 )) ≤ nA1 /N. (C.28)

If nM2 > nA1 = nC1 , then (C.28) cannot be satisfied by any F and the upper bound is not
tight.
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C.2 Supplemental Materials

C.2.1 Supplemental Lemmas and Proofs for Control Regime A

Under regime A, the lower capacity threshold nA2 of zone (3)—moderate capacity with

repositioning—and the optimal capacity allocation within this zone, do not have explicit

expressions (see Proposition 3.4). Lemmas C.1 and C.2 fill in the remaining details.

Given a level of participating capacity n, Proposition 3.4 shows that the optimal capacity

allocation in zone (3) has r12 > 0, r21 = 0 and q = (q∗1(s), 0). Therefore, the constraints of

Problem A at a given capacity n, (3.24)–(3.26) and (3.35), simplify to

s+

(
t12

t21
s21 − s12

)
+ q∗1(s) = n (C.29)

and 0 ≤ s ≤ S, t12
t21
s21 > s12. Note that s determines r12 by the second term and q by q∗1(s).

Lemma C.1 shows that there are three possible optimal capacity allocation patterns at

any level of participating capacity in zone (3). These patterns differ in terms of whether

demand is rejected at the low-demand location, and if so, for which route(s).

Lemma C.1. Under control regime A, the optimal capacity allocation of any fixed partici-

pating capacity n ∈ (nA2 , n
A
3 ] (moderate capacity zone with repositioning) is determined by s

that takes one of the following 3 patterns with the largest service capacity, maxi∈{1,2,3} si(n):2

(1) No demand rejection at the low-demand location: only s21 is increasing in this zone.

s1(n) = (S11, S12, s21, S22) subject to (C.29), n ∈ (s1
−1(nA1 ), nA3 ].

(2) Rejecting cross-traffic demand at the low-demand location: for small n, s21 is increas-

ing while s12 = 0; for large n, s21 = S21 and s12 is increasing.

s2(n) = (S11, s12, s21, S22) subject to (S21−s21)s12 = 0 and (C.29), n ∈ (s2
−1(nA1 ), nA3 ].

2Note that si(n) denotes the total service capacity out of participating capacity n following pattern i,
and its inverse function si

−1(s) gives the required participating capacity for total service capacity s under
pattern i.
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(3) Rejecting local and cross-traffic demand at the low-demand location: for small n, s21 is

increasing while s11 = s12 = 0; for medium n, s21 = S21, s11 is increasing and s12 = 0;

for large n, s21 = S21, s11 = S11 and s12 is increasing.

s3(n) = (s11, s12, s21, S22) subject to (S21 − s21)s11 = (S11 − s11)s12 = 0

and (C.29), n ∈ (s3
−1(nA1 ), nA3 ].

Proof. By Proposition 3.4, the optimal capacity allocation of given participating capacity

n ∈ (nA2 , n
A
3 ] has r12 > 0, r21 = 0 and q = (q∗1(s), 0). Therefore, for fixed n, Problem A

reduces to maxs,r,q{Π(s) : (3.24)−(3.26), (3.35)}, and it can be reformulated as maximizing

the total service capacity over the service capacity vector s:

max
s

s (C.30)

s.t. g(s) := s+

(
t12

t21
s21 − s12

)
+ q∗1(s) ≤ n (C.31)

0 ≤ sij ≤ Sij , ∀i, j. (C.32)

Note that g(s) is the total capacity expressed with respect to s. Relaxing the equality

constraint (3.25) to the inequality constraint (C.31) does not matter since positive q2 and

q1 = q∗1(s) + k(s)q2 are feasible by (3.35) (but not optimal by Proposition 3.4). Constraint

r12 = t12
t21
s21 − s12 > 0 is omitted since a violation results in s21 ≤ t21

t12
S12 ⇒ s ≤ nA1 , clearly

suboptimal in zone (3).

To prove the lemma, we first establish that any optimal solution to problem (C.30)–

(C.32) for n ∈ (nA2 , n
A
3 ] must satisfy the following four necessary conditions:

(a) All capacity is used within this zone and s21 has a lower bound:

g(s) = n, (C.33)

0 < S12
t21

t12
≤ s21 ≤ S21. (C.34)

(b) Rejecting local demand at the high-demand location (s22) is suboptimal:

s22 = S22. (C.35)
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(c) Rejecting cross-traffic demand (s12) is more profitable than rejecting local demand (s11)

at the low-demand location:

(S11 − s11)s12 = 0. (C.36)

(d) Neither demand stream at the low-demand location is partially served unless s21 is fully

served:

s12(S12 − s12)(S21 − s21) = 0, (C.37)

s11(S11 − s11)(S21 − s21) = 0. (C.38)

We establish conditions (a)–(d) using the KKT conditions for the reformulated maxi-

mization problem (C.30)–(C.32). Before writing the KKT conditions, we first derive the first

and second partial derivatives of g(s) which will be used later. The first partial derivatives

are

∂g(s)

∂s11
=

s21(1 + t12
t21

) + s22

(s21 + s22)γ̄p−
(
s21 + s22 + s21

t12
t21

)
c
(γ̄p− c) > 1, (C.39)

∂g(s)

∂s12
=

s21(1 + t12
t21

) + s22

(s21 + s22)γ̄p−
(
s21 + s22 + s21

t12
t21

)
c
γ̄p >

∂g(s)

∂s11
> 1, (C.40)

∂g(s)

∂s21
= 1 +

t12

t21
+

(s11(γ̄p− c) + s12γ̄p)s22
t12
t21[

(s21 + s22)γ̄p−
(
s21 + s22 + s21

t12
t21

)
c
]2 γ̄p > 1, (C.41)

∂g(s)

∂s22
= 1−

(s11(γ̄p− c) + s12γ̄p)s21
t12
t21[

(s21 + s22)γ̄p−
(
s21 + s22 + s21

t12
t21

)
c
]2 γ̄p < 1. (C.42)

For second partial derivatives, we do not need the ones involving s22. Fixing s22 and letting

g(s11, s12, s21) = g(s), the Hessian of g(s11, s12, s21) is given by

H(g) =
s22

t12
t21
γ̄p[

(s21 + s22)γ̄p−
(
s21 + s22 + s21

t12
t21

)
c
]2


0 0 γ̄p− c

0 0 γ̄p

γ̄p− c γ̄p −
2(s11(γ̄p−c)+s12γ̄p)

(
γ̄p−

(
1+

t12
t21

)
c
)

(s21+s22)γ̄p−
(
s21+s22+s21

t12
t21

)
c

 .

Hence we have

∂2g(s)

∂s2
11

=
∂2g(s)

∂s2
12

=
∂2g(s)

∂s11∂s12
= 0,

∂2g(s)

∂s11∂s21
,
∂2g(s)

∂s12∂s21
> 0,

∂2g(s)

∂s2
21

≤ 0, (C.43)

where the last inequality is strict when s11 + s12 > 0.
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Let α, βij , βij be the dual variables associated with the capacity constraint (C.31), the

upper and lower bound constraints (C.32), respectively. The KKT conditions are

(stationarity) α
∂g(s)

∂sij
+ βij − βij = 1, ∀i, j, (C.44)

(complementary slackness) α(n− g(s)) = βij(Sij − sij) = β
ij
sij = 0, ∀i, j, (C.45)

(dual feasibility) α, βij , βij ≥ 0, ∀i, j, (C.46)

(primal feasibility) g(s) ≤ n, (C.47)

(primal feasibility) 0 ≤ sij ≤ Sij , ∀i, j. (C.48)

The complementary slackness constraints (C.45) and dual feasibility constraints (C.46)

establish the relationship between primal and dual variables: βij = 0 (β
ij

= 0) when sij

is not at its upper (lower) bound; sij must be at its upper (lower) bound when βij > 0

(β
ij
> 0); α = 0 when g(s) < n and g(s) = n when α > 0. Moreover, βij · βij = 0. We

omit explicit references to the primal and dual feasibility constraints (C.46)–(C.48) in the

following proof.

Now we are ready to prove the four conditions in this lemma.

(a) When s 6= S, pick any sij < Sij , then βij = 0 by (C.45). By (C.44) this implies that

α 6= 0 and hence g(s) = n by (C.45). When s = S, g(s) = n = nA3 . These prove (C.33).

For (C.34), s21 ≥ S12
t21
t12

> 0 follows directly from s > nA1 in zone (3). By (C.45),

s21 > 0 also implies that β
21

= 0.

(b) Using β
21

= 0 from part (a) and ∂g(s)
∂s21

> 1, stationarity constraints (C.44) imply that

α < 1. Putting this and ∂g(s)
∂s22

< 1 back to (C.44), we obtain β22 > 0. Therefore it

follows from (C.45) that s22 = S22 and β
22

= 0.

(c) We prove this by contradiction using (C.44) and (C.45). Suppose on the contrary

(S11 − s11)s12 > 0 for some s11 < S11 and s12 > 0, then (C.45) require β11 = β
12

= 0

and hence (C.44) yield

α
∂g(s)

∂s11
− β

11
= α

∂g(s)

∂s12
+ β12 = 1.

This cannot happen due to ∂g(s)
∂s11

< ∂g(s)
∂s12

and (C.46). Therefore we must have (S11 −

s11)s12 = 0.
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(d) We prove the two equations in similar ways by showing that any violation will lead to

suboptimality. For (C.37), suppose on the contrary s12(S12 − s12)(S21 − s21) > 0 for

some 0 < s12 < S12 and s21 < S21, then (C.45) and β
21

= 0 from part (a) require

β12 = β
12

= β21 = β
21

= 0. It hence follows from (C.44) that

α
∂g(s)

∂s12
= α

∂g(s)

∂s21
= 1,

thus α > 0 and 1 < ∂g(s)
∂s11

< ∂g(s)
∂s12

= ∂g(s)
∂s21

. By the second derivatives in (C.43), increasing

s12 and decreasing s21 will always maintain the inequality

1 <
∂g(s)

∂s11
<
∂g(s)

∂s12
<
∂g(s)

∂s21
. (C.49)

Therefore we can keep increasing s12 (∆s12 > 0) and decreasing s21 (∆s21 < 0) simul-

taneously such that the following equality holds at any subsequent s12 and s21:

∆s12
∂g(s)

∂s12
+ ∆s21

∂g(s)

∂s21
= 0. (C.50)

In this way we can maintain

∆g(s) =
∑
i,j

∂g(s)

∂sij
∆sij = ∆s12

∂g(s)

∂s12
+ ∆s21

∂g(s)

∂s21
= 0,

i.e., keep g(s) constant, while improving the objective function (service capacity) by

∆s = ∆s12 + ∆s21 = ∆s12

(
1− ∂g(s)/∂s12

∂g(s)/∂s21

)
> 0,

which follows from (C.49) and (C.50), until s12(S12 − s12)(S21 − s21) = 0 is satisfied.

Similarly, for (C.38), suppose on the contrary s11(S11 − s11)(S21 − s21) > 0 for some

0 < s11 < S11 and s21 < S21, then (C.45) and β
21

= 0 from part (a) require β11 =

β
11

= β21 = β
21

= 0. It hence follows from (C.44) that

α
∂g(s)

∂s11
= α

∂g(s)

∂s21
= 1,

thus α > 0 and 1 < ∂g(s)
∂s21

= ∂g(s)
∂s11

< ∂g(s)
∂s12

. By the second derivatives in (C.43), increasing

s21 and decreasing s11 will always maintain the inequality

1 <
∂g(s)

∂s21
<
∂g(s)

∂s11
<
∂g(s)

∂s12
. (C.51)
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Therefore we can keep increasing s21 (∆s21 > 0) and decreasing s11 (∆s11 < 0) simul-

taneously such that the following equality holds at any subsequent s11 and s21:

∆s11
∂g(s)

∂s11
+ ∆s21

∂g(s)

∂s21
= 0. (C.52)

In this way we can maintain

∆g(s) =
∑
i,j

∂g(s)

∂sij
∆sij = ∆s11

∂g(s)

∂s11
+ ∆s21

∂g(s)

∂s21
= 0,

i.e., keep g(s) constant, while improving the objective function (service capacity) by

∆s = ∆s11 + ∆s21 = ∆s21

(
1− ∂g(s)/∂s21

∂g(s)/∂s11

)
> 0,

which follows from (C.51) and (C.52), until s11(S11 − s11)(S21 − s21) = 0 is satisfied.

It is then easy to verify that the necessary conditions (a)–(d) directly imply the three

patterns stated in Parts (1)–(3) of Lemma C.1. Note that for each pattern i, the service

capacity si(n) increases with n from n = si
−1(nA1 ), where s = nA1 is equal to the constant

service capacity in zone (2), and up to n = nA3 , the right end of zone (3). This also implies

that nA2 = mini{si−1(nA1 )}.

Next we prove the monotonicity of the per-driver profit rate with respect to n in zone

(3).

Lemma C.2. Per-driver profit rate under control regime A, πA(n), is decreasing in n for

n ∈ (nA2 , n
A
3 ].

Proof. Lemma C.1 shows that for participating capacity n ∈ (nA2 , n
A
3 ], the optimal ca-

pacity allocation may alternate among three patterns characterized by si(n), with ser-

vice capacity si(n) for i = 1, 2, 3. To prove this lemma, we show that the per-driver

profit rate given by (3.27) is decreasing for n varying within each of the 3 patterns or

at feasible transitions between patterns. First, note by (C.33) in the proof of Lemma C.1

that n = g(s) in zone (3) and hence ∂n/∂sij = ∂g(s)/∂sij . Then:
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(i) Within pattern (1): only s21 is increasing,

π′(n) =

[
(γ̄p− c)− c t12

t21

] (
∂g(s)
∂s21

)−1
n− [(γ̄p− c)s− cr12]

n2

= −S22γ̄p

n2

t12

t21

(
∂g(s)

∂s21

)−1
1 +

S11(γ̄p− c) + S12γ̄p

(s21 + S22)γ̄p−
(
s21 + S22 + s21

t12
t21

)
c

2

< 0.

(C.53)

(ii) Within pattern (2): for small n, s21 is increasing while s12 = 0,

π′(n) =

[
(γ̄p− c)− c t12

t21

] (
∂g(s)
∂s21

)−1
n− [(γ̄p− c)s− cr12]

n2

= −S22γ̄p

n2

t12

t21

(
∂g(s)

∂s21

)−1
1 +

S11(γ̄p− c)

(s21 + S22)γ̄p−
(
s21 + S22 + s21

t12
t21

)
c

2

< 0.

(C.54)

For large n, s21 = S21 and s12 is increasing,

π′(n) =
γ̄p
(
∂g(s)
∂s12

)−1
n− [(γ̄p− c)s− cr12]

n2
= 0. (C.55)

Note that π(n) is continuous at the turning (non-differentiable) point where s =

(S11, 0, S21, S22).

(iii) Within pattern (3): for small n, s21 is increasing while s11 = s12 = 0,

π′(n) =

[
(γ̄p− c)− c t12

t21

] (
∂g(s)
∂s21

)−1
n− [(γ̄p− c)s− cr12]

n2
= −S22γ̄p

n2

t12

t21

(
∂g(s)

∂s21

)−1

< 0.

(C.56)

For medium n, s21 = S21, s11 is increasing and s12 = 0,

π′(n) =
(γ̄p− c)

(
∂g(s)
∂s11

)−1
n− [(γ̄p− c)s− cr12]

n2
= 0. (C.57)

For large n, s21 = S21, s11 = S11 and s12 is increasing, we have the same (C.55).

Note that π(n) is continuous at the two turning (non-differentiable) points where

s = (0, 0, S21, S22) and s = (S11, 0, S21, S22).
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As n increases, a feasible transition from pattern i to j at n must satisfy

si(n) = sj(n) and si
′(n−) < sj

′(n+). (C.58)

Namely, pattern i and j have the same service capacity at transition n, and the service

capacity increases faster after the transition. We then discuss all three possible transitions.

(i) Between pattern (1) and (2). If for pattern (2) s12 is increasing (or just reaches 0) at

the transition, there must be s1
′(n−) < s2

′(n+) since otherwise

s1(nA3 ) = s1(n) +

∫ nA3

n
s1
′(n)dn > s2(n) +

∫ nA3

n
s2
′(n)dn = s2(nA3 ),

hence it must be a transition from pattern (1) to (2): (S11, S12, s21, S22)→

(S11, s12, S21, S22). Obviously r12 jumps up and π(n) jumps down at the transition. If

for pattern (2) s21 is increasing at the transition, we have s1 = (S11, S12, s
(1)
21 , S22), s2 =

(S11, 0, s
(2)
21 , S22). By (C.58) there must be s

(1)
21 < s

(2)
21 and hence

s1
′(n) =

(
∂g(s)

∂s
(1)
21

)−1

<

(
∂g(s)

∂s
(2)
21

)−1

= s2
′(n),

i.e., a transition from pattern (1) to (2): (S11, S12, s
(1)
21 , S22)→ (S11, 0, s

(2)
21 , S22). Sim-

ilarly we have π(n) jumps down at the transition.

(ii) Between pattern (1) and (3). Due to similarities between pattern (2) and (3), the

cases where s12 or s21 is increasing under pattern (3) have been similarly shown above.

For the case where s11 is increasing (or just reaches 0) at the transition under pattern

(3), there must be s1
′(n−) < s3

′(n+) since otherwise

s1(nA3 ) = s1(n) +

∫ nA3

n
s1
′(n)dn > s3(n) +

∫ nA3

n
s3
′(n)dn = s3(nA3 ),

where
∫ nA3
n s3

′(n)dn is an integration over n from n to s−1
3 ((S11, 0, S21, S22)) and from

s−1
3 ((S11, 0, S21, S22)) to nA3 . Therefore this must be a transition from pattern (1) to

(3): (S11, S12, s21, S22) → (s11, 0, S21, S22), obviously r12 jumps up and π(n) jumps

down at the transition.

(iii) Between pattern (2) and (3). Similar to the analysis of the transitions between pat-

tern (1) and (2) where s11 ≡ S11 and we focus on s12 and s21, here s12 ≡ 0 at any
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transition between pattern (2) and (3) so that we can adopt the same approach by

focusing on s11 and s21. The details are omitted. Note that the transitions, if any,

are always from pattern (2) to (3).

Proof of Proposition 3.5. From Lemma C.1, it is optimal to reject rider requests at

the low-demand location for some n in zone (3) if and only if pattern (2) and/or (3)

provide the largest service capacity at some n ∈ (nA2 , n
A
3 ), i.e., ∃n ∈ (nA2 , n

A
3 ) such that

s1(n) 6= maxi∈{1,2,3} si(n). We need to compare the three patterns in terms of their service

capacity si(n), i = 1, 2, 3. We have the following three observations.

(i) At the right end of zone (3), s1(nA3 ) = s2(nA3 ) = s3(nA3 ) = S.

(ii) For n close to nA3 (n→ nA−3 ), it follows from Lemma C.1 that pattern (1) has s1(n) =

(S11, S12, s21, S22) with s21 varying, while pattern (2) and (3) both have s2(n) =

s3(n) = (S11, s12, S21, S22) with s12 varying. Therefore we have

s1
′
−(nA3 ) =

∂s/∂s21

∂g(s)/∂s21

∣∣∣∣
s=S

=

(
∂g(s)

∂s21

∣∣∣∣
s=S

)−1

> 0,

s1
′′
−(nA3 ) =

∂s1
′
−(nA3 )/∂s21

∂g(s)/∂s21

∣∣∣∣
s=S

= − ∂2g(s)/∂s2
21

(∂g(s)/∂s21)3

∣∣∣∣
s=S

< 0,

i.e., s1(n) is strictly convex and increasing in n near nA3 . And

s2
′
−(nA3 ) = s3

′
−(nA3 ) =

∂s/∂s12

∂g(s)/∂s12

∣∣∣∣
s=S

=

(
∂g(s)

∂s12

∣∣∣∣
s=S

)−1

,

s2
′′
−(nA3 ) = s3

′′
−(nA3 ) =

∂s2
′
−(nA3 )/∂s12

∂g(s)/∂s12

∣∣∣∣
s=S

= − ∂2g(s)/∂s2
12

(∂g(s)/∂s12)3

∣∣∣∣
s=S

= 0,

i.e., s2(n) and s3(n) both increase linearly in n near nA3 .

(iii) The proof of Lemma C.2 establishes that any feasible pattern of transitions as n

increases in zone (3) must be from pattern (1) to (2), from pattern (1) to (3), or from

pattern (2) to (3)—not vice versa.

Using the above observations, the sufficient and necessary condition that patterns (2)

and (3) provide the largest service capacity at some n ∈ (nA2 , n
A
3 ) is

s2
′
−(nA3 ) = s3

′
−(nA3 ) < s1

′
−(nA3 ). (C.59)
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To see this, if (C.59) holds, observation (i) and (ii) immediately imply that s2(nA−3 ) =

s3(nA−3 ) > s1(nA−3 ), hence patterns (2) and (3) provide the largest service capacity near nA3 .

On the other hand, if (C.59) does not hold, observation (i) and (ii) imply that s2(nA−3 ) =

s3(nA−3 ) < s1(nA−3 ), i.e., pattern (1) is optimal near nA3 . It then follows from observation

(iii) that there is no transition from pattern (2) or (3) to pattern (1) as n increases in

zone (3), hence pattern (1) is optimal throughout zone (3). Therefore (C.59) is necessary

for patterns (2) and (3) to be optimal somewhere in zone (3). Putting in the derivative

expressions from the proof of Lemma C.1 and some algebraic manipulation will transform

(C.59) to inequality (3.46) in the Proposition.

C.2.2 Driver Supply and Actual Gains in Platform Revenue and

Per-Driver Profit

In this section we illustrate the impact of the driver supply characteristics, specifically,

the outside opportunity cost distribution F , on the actual platform revenue and per-driver

profit gains, compared to the upper bounds in Proposition 3.9 and 3.10, and on the tension

between the drivers’ and the platform’s gains. For simplicity we focus on the gains from

admission control, i.e., regime A over M . (Similar effects determine the actual gains from

repositioning.)

Figure C.1 illustrates these gains for two opportunity cost distributions. Panel (a)

presents a case where admission control yields large benefits for the platform as a result of

a large increase in driver participation, and consequently only small benefits for individual

drivers. Specifically, the top chart in panel (a) shows for the three control regimes the per-

driver profits that are non-increasing functions of the capacity, and the increasing marginal

opportunity cost function F−1 (n/N). Achieving the upper bound on platform revenue

gains from admission control requires two conditions, namely, n∗M = nM2 or equivalently,

F−1(nM2 /N) = πM (nM2 ), and n∗A = nA3 . The first condition holds in the example, the

second condition requires infinitely elastic supply around the profit level πM (nM2 ), i.e., that

F grows sufficiently fast around this point such that nA3 − nM2 additional drivers join if the

per-driver profit is slightly larger, so that F−1(nA3 /N) = πM (nA3 ). The example depicted
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Figure C.1: Impact of admission control on the equilibrium capacity, per-driver profit, and
platform revenue (S = (3, 1, 4, 6), S = 14, N = 21, t = 1, γ = 0.25, p = 3, c = 0.45)

in Figure C.1 (a) shows how the upper bound can be approached if the supply increases

substantially for a moderate change in per-driver profit rate.

Panel (b), in contrast, presents a case where admission control (under regime A or

C) yields the maximum achievable per-driver profit gains as a result of a small increase in

driver participation, and consequently only modest platform revenue gains. As shown in the

top chart of panel (b), in this case the marginal opportunity cost function yields the same

equilibrium capacity under minimal control as in panel (a), i.e., F−1(nM2 /N) = πM (nM2 );

however, the driver supply is so inelastic that the number of drivers willing to participate at

the maximum profit rate (γp− c) is smaller than the minimum number required to serve all

riders without repositioning, that is, n∗A ≤ nA1 where F−1(n∗A/N) = γp− c. The platform’s

commission is too high to entice more drivers to participate.
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Appendix D

Appendix for Chapter 4

D.1 Proofs

Proof of Proposition 4.1. By the definition of δu(t) in (4.4), (4.1) can be rewritten as

xt = min{ut, θ}+

∫ δu(t)

0
1(ut−s ≥ θ + s)ds. (D.1)

(i) If ut < θ, by Assumption 4.1 we have ut−s ≤ ut + s < θ + s, s ∈ [0, t], hence xt = ut

and δu(t) = 0.

(ii) If ut ≥ θ and t < u0−θ, by Assumption 4.1 we have ut−s ≥ u0−(t−s) > θ+s, s ∈ [0, t],

hence δu(t) = t and xt = θ +
∫ t

0 ds = θ + t.

(iii) If ut ≥ θ and t ≥ u0 − θ, then since ut−δu(t) ≥ θ + δu(t) by the definition of δu(t)

in (4.4), Assumption 4.1 implies ut−s ≥ ut−δu(t) − (δu(t) − s) ≥ θ + s, s ∈ [0, δu(t)].

Therefore xt = θ +
∫ δu(t)

0 ds = θ + δu(t).

These prove (4.2). Equation (4.3) follows from (4.2) noticing the value of δu(t) discussed

above.

Proof of Corollary 4.1. The first two cases in (4.5) is straightforward. Consider the

third case. Since ut ≥ θ and u0 ≤ θ + t, by the continuity of u there exists s ∈ [0, t] such

that ut−s = θ + s, hence δu(t) = max{0 ≤ s ≤ t : ut−s = θ + s} and ut−δu(t) = θ + δu(t). It

follows that

xt = θ + δu(t) = ut−δu(t), (D.2)

xt+dt = θ + δu(t+ dt) = ut+dt−δu(t+dt). (D.3)
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Hence

ẋt = lim
dt→0

xt+dt − xt
dt

= lim
dt→0

ut+dt−δu(t+dt) − ut−δu(t)

dt

= lim
dt→0

ut+dt−δu(t+dt) − ut−δu(t)

[t+ dt− δu(t+ dt)]− [t− δu(t)]

[t+ dt− δu(t+ dt)]− [t− δu(t)]

dt

= lim
dt→0

ut−δu(t)+[dt+δu(t)−δu(t+dt)] − ut−δu(t)

dt+ δu(t)− δu(t+ dt)

[
1− δu(t+ dt)− δu(t)

dt

]
= u̇t−δu(t)

[
1− lim

dt→0

ut+dt−δu(t+dt) − ut−δu(t)

dt

]
,

where the last equality uses (D.2) and (D.3). Noticing the same limit term in the second

and last line, we can solve for ẋt as

ẋt =
u̇t−δu(t)

1 + u̇t−δu(t)
= 1− 1

1 + u̇t−δu(t)
, if u̇t−δu(t) > −1.

If u̇t−δu(t) = −1, ẋt → −∞ does not exist. There is a downward jump of x at t.

Proof of Lemma 4.1. Given tx ≥ (u0 − θ)+, (4.2) and (4.4) imply

xtx =


utx if 0 ≤ utx < θ

θ + δtx if ut ≥ θ
. (D.4)

Note that δtx = 0 and hence tu = tx when utx < θ. Then xtx = utu follows directly from

the definition of δt in (4.4). Obviously dtx = dtu when 0 ≤ ut < θ.

Consider utx ≥ θ. If u̇tu > −1, ẋtx exists and dtx > 0. It follows that ẋtxdt
x = u̇tudt

u

and hence

dtx

dtu
=
u̇tu

ẋtx
=

u̇tu

1− 1
1+u̇tu

= 1 + u̇tu ≡
1

1− ẋtx
, (D.5)

where the second and last equalities use the third case in (4.5). If u̇tu = −1, xt is discon-

tinuous and jumps downward at tx, ẋtx does not exist, and dtx = 0.

Proof of Lemma 4.2. First, conditioning on whether ut < θ or if not, whether u̇t > −1 or

u̇t = −1, partition the interval [a, b] into consecutive intervals [c1, c2], [c2, c3], . . . , [cn−1, cn],

where c1 = a and cn = b. Let IA = {i : 0 ≤ ut < θ for t ∈ [ci, ci+1]} IB = {i : ut ≥

θ and u̇t > −1 for t ∈ [ci, ci+1]} and IC = {i : ut ≥ θ and u̇t = −1 for t ∈ [ci, ci+1]}, then

[a, b] =
⋃
i∈IA

[ci, ci+1] ∪
⋃
i∈IB

[ci, ci+1] ∪
⋃
i∈IC

[ci, ci+1] (D.6)
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and ∫ b

a
f(ut)dt =

∑
i∈IA

∫ ci+1

ci

f(ut)dt+
∑
i∈IB

∫ ci+1

ci

f(ut)dt+
∑
i∈IC

∫ ci+1

ci

f(ut)dt. (D.7)

Next, calculate the integrals in the three rhs terms in (D.7). Note that it follows from the

definition of tu in (4.6) and the definition of δt in (4.4) that given any tu ≥ 0, xtx = utu for

tx = tu + (utu − θ)+.

(1) For the integrals in the first rhs term in (D.7), 0 ≤ ut < θ implies dtx

dtu = 1 by Lemma

4.1, and tx = tu. Hence∫ ci+1

ci

f(utu)dtu =

∫ ci+1

ci

f(xtx)dtx =

∫ ci+1+(uci+1−θ)
+

ci+(uci−θ)+

f(xt)dt−
∫ uci+1∨θ

uci∨θ
f(x)dx, i ∈ IA,

where the second equality follows from uci < θ, ∀i ∈ IA.

(2) For the integrals in the second rhs term in (D.7), ut ≥ θ and u̇t > −1 imply (4.7) by

Lemma 4.1. Using integration by substitution, we have for i ∈ IB,∫ ci+1

ci

f(utu)dtu =

∫ ci+1+(uci+1−θ)
+

ci+(uci−θ)+

f(xtx)
dtu

dtx
dtx

=

∫ ci+1+(uci+1−θ)
+

ci+(uci−θ)+

f(xt)(1− ẋt)dt

=

∫ ci+1+(uci+1−θ)
+

ci+(uci−θ)+

f(xt)dt−
∫ ci+1+(uci+1−θ)

+

ci+(uci−θ)+

f(xt)dxt

=

∫ ci+1+(uci+1−θ)
+

ci+(uci−θ)+

f(xt)dt−
∫ xci+1+(uci+1−θ)

+

xci+(uci−θ)
+

f(x)dx

=

∫ ci+1+(uci+1−θ)
+

ci+(uci−θ)+

f(xt)dt−
∫ uci+1∨θ

uci∨θ
f(x)dx,

where the last equality uses uci ≥ θ, ∀i ∈ IB.

(3) For the integrals in the third rhs term in (D.7), ut ≥ θ and u̇t = −1 imply discontin-

uous xt at tx and dtx = 0 by Lemma 4.1, and dtu = −dut. Hence for i ∈ IC ,∫ ci+1

ci

f(ut)dt = −
∫ ci+1

ci

f(ut)dut

= −
∫ uci+1

uci

f(u)du

=

∫ ci+1+(uci+1−θ)
+

ci+(uci−θ)+

f(xt)dt−
∫ uci+1∨θ

uci∨θ
f(x)dx,

where the last equality uses ci+ (uci − θ)+ = ci+1 + (uci+1 − θ)+ and uci ≥ θ, ∀i ∈ IC .
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Last, since all integrals calculated above take the same form, the decomposed integration

(D.7) yields the desired (4.8).

Proof of Proposition 4.2. Condition on the choice of u0, ut and xt can be written out

immediately and hence simplify the problem. If u0 ≥ θ, then ut = min{u0, θ + T − t} and

xt = min{θ + t, u0} for t ∈ [0, T ]. Note that ut and xt take symmetric values for t ∈ [0, T ],

i.e., ut = xT−t, thus the problem can be simplified as

max
u0≥θ

φ

{
G(u0)u0[T − (u0 − θ)] +

∫ u0

θ
((p(u)− w(u0))− (p0 − w0))udu

}
. (D.8)

If u0 < θ, then ut ≡ xt ≡ u0 for t ∈ [0, T ]. The problem becomes

max
0≤u0<θ

φG(u0)u0T. (D.9)

Therefore the optimal u∗0 maximizes (D.8) and (D.9), which is given by (4.22).

Proof of Proposition 4.3. By Lemma 4.2 we have∫ T

0
f(ut)dt =

∫ T+(uT−θ)+

(u0−θ)+

f(xt)dt−
∫ uT∨θ

u0∨θ
f(x)dx

=

∫ T

(u0−θ)+

f(xt)dt−
∫ θ

u0∨θ
f(x)dx

=

∫ T

0
f(xt)dt−

∫ (u0−θ)+

0
f(xt)dt−

∫ θ

u0∨θ
f(x)dx

=

∫ T

0
f(xt)dt−

∫ u0∨θ

θ
f(x)dx−

∫ θ

u0∨θ
f(x)dx

=

∫ T

0
f(xt)dt,

where the second equality follows from uT ≤ θ and the fourth equality can be obtained

by conditioning on u0 < θ or u0 ≥ θ and noticing that xt = θ + t for t ∈ [0, u0 − θ] if

u0 ≥ θ. Applying f(ut) = w(ut)ut and f(ut) = ut, respectively, the objective function can

be transformed as

φ

∫ T

0
{[p(xt)xt − w(ut)ut]− (p0 − w0)ut} dt = φ

∫ T

0
{[p(xt)xt − w(xt)xt]− (p0 − w0)xt} dt

= φ

∫ T

0
G(xt)xtdt. (D.10)
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The optimization problem hence becomes maximizing over xt:

max
xt:t∈[0,T ]

φ

∫ T

0
G(xt)xtdt

s.t. 0 ≤ xt ≤ θ + t, t ∈ [0, T ].

Since the problem is equivalent to φ
∫ T

0 max0≤xt≤θ+tG(xt)xtdt, the optimal solution is given

by

x∗t = arg max
0≤x≤θ+t

G(x)x, t ∈ [0, T ]. (D.11)

We can hence derive u∗t from (4.3) as in (4.27).

Proof of Proposition 4.4. Similar to the proof of Proposition 4.3, we have
∫ T

0 utdt =∫ T
0 xtdt and the optimization problem becomes maximizing over xt:

max
xt:t∈[0,T ]

φ

∫ T

0

{[
p(xt)xt −

∫ xt

0
w(x)dx

]
− (p0 − w0)xt

}
dt

s.t. 0 ≤ xt ≤ θ + t, t ∈ [0, T ].

Since the problem is equivalent to

φ

∫ T

0
max

0≤xt≤θ+t
Gp(xt)xtdt, (D.12)

the optimal solution is given by

x∗t = arg max
0≤x≤θ+t

Gp(x)x, t ∈ [0, T ]. (D.13)

We can hence derive u∗t from (4.3) as in (4.31).

Proof of Proposition 4.5. The first derivative of the profit gain wrt x′ is

Π′(x′) = e−
t
T̄

(
1

v
+

1

u

)
e−

x′−x∗
T̄ v

{
−
[
(R(x∗)− L(x∗))− (R(x′)− L(x′))

]
+

∫ x′

x∗

[
1

u
[(R(x∗)− L(x∗))− (R(x)− L(x))] + L(x)

]
1

T̄
e−

x′−x
T̄u dx

}
, (D.14)

and the second derivative is

Π′′(x′) = e−
t
T̄

(
1

v
+

1

u

)
e−

x′−x∗
T̄ v

{
1

T̄

(
1

v
+

1

u

)[
(R(x∗)− L(x∗))− (R(x′)− L(x′))

−
∫ x′

x∗

[
1

u
[(R(x∗)− L(x∗))− (R(x)− L(x))] + L(x)

]
1

T̄
e−

x′−x
T̄u dx

]

+ (R′(x′)− L′(x′)) +
1

T̄
L(x′)

}
. (D.15)
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Note that for x′ → x∗+,

Π′(x∗) = 0, (D.16)

Π′′(x∗) = e−
t
T̄

(
1

v
+

1

u

){
(R′(x∗)− L′(x∗)) +

1

T̄
L(x∗)

}
(D.17)

= e−
t
T̄

(
1

v
+

1

u

)
1

T̄
L(x∗), (D.18)

where the second equality follows from the definition of x∗. Therefore for finite expected

shock duration T̄ <∞, Π′(x∗) = 0 and Π′′(x∗) > 0 imply the existence of x′ > x∗ such that

Π(x′) > 0. When T̄ = ∞, both first and second derivatives are 0 but Lemma 4.4 shows

Π(x′) < 0 for x′ > x∗.

Proof of Proposition 4.6. Under the same control ut, t ≥ 0, the change in platform’s

expected profit from restricted surge duration (4.35) to guaranteed wage (4.45) is given by

∆(ut) = φ

∫ ∞
0

[∫ xt

0
w(x)dx−

∫ ut

0
w̃(x)dx

]
e−

t
T̄ dt.

For static personalized message wage policy where ut ≡ u0 ≥ θ, t ≥ 0,

∆(u0) = φ

∫ ∞
0

[∫ xt

θ
w(x)dx−

∫ u0

θ
w̃(x)dx

]
e−

t
T̄ dt

= φ

{∫ u0−θ

0

[∫ θ+t

θ
w(x)dx−

∫ u0

θ
w̃(x)dx

]
e−

t
T̄ dt

+

∫ ∞
u0−θ

[∫ u0

θ
(w(x)− w̃(x))dx

]
e−

t
T̄ dt

}
, (D.19)

where the first equality follows from Lemma 4.5. Notice that the bracket part in the first

term in (D.19) is negative at t = 0 and positive at t = u0−θ, and the second term in (D.19)

is positive. It hence follows that ∆(u0) > 0 when T̄ →∞ and ∆(u0) ≤ 0 when T̄ → 0. We

thus have the conclusion.

Proof of Lemma 4.6. (Sketch) Let W (τ0) = φET∼exp(1/T̄ ) Eq.(4.47) denote the plat-

form’s expected wage payment to repositioning drivers. We can show W ′(0) < 0, W ′(∞) >

0 and W ′′(τ0) > 0 (DETAILS), hence there exits a unique minimizer τ∗0 at which W ′(τ∗0 ) =

0.
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