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ABSTRACT 

In the design of random access CSMA prot~cols for time-constrained 

applications such as packetized voice, the distribution of message waiting 

times is of critical importance. It is shown that the ordering or scheduling 

imposed on message transmissions by a particular random access protocol 

greatly affects the messege waiting time distribut';on. We present a random 

access protocol which can provide a large class of distributed message 

scheduling disciplines based on message arrival times. Moreover, thi s 

protocol can adaptively vary to provide an optimal service discipline in 

response to cnanging system demands. 

Analytic models are derived for the waiting time distribution for the cases 

of FCFS, LCFS and RAN~OM scheduling and the analytic results are compared with 

simulation. Other possible scheduling disciplines are discussed and the 

impact of the distributed scheduling discipline on the per7IJrmenCe of timer 

constrained applications is examined. 

*Thi s work was supported in part by Nati ona l Sci ence Foundati on Grant NSF 
EC5-S110319 and the Defense Acvancad Research Projects Agency Project N00039-
82-C-0427. 



1. Introduction 

The usa of carrier sense multiple access (CSMAl chennels for data 

communication has been studied now for aLmost a decade. Much of this research 

has focused on davelopi ng random accesa strateg; es whi ch parmi t users to 

efficiently share a channel in a distributad fashion. The primary performan~e 

metric used to evaluate these rendom access stratagies has been the classicaL 

tradaoff between time delay and throughput. 

For many data communi cat; ons app li cati ons, average time da Lay and 

throughput are adequata to charecterize the relevant parformanca trsdeoffs. 

Howaver, for many time-constrained applications, [e.g. packetized vOica, 

di stributad sansor networks [01 stri buted Sensor Networks 78] 1 in whi ch data 

must either be transmitted within a cartain time Limit or be Lost, the 

addi ti ona l performenca metri c of Loss must be consi dered. Thus, rather than 

the two way tradeoff between time delay and throughput, there is a three way 

tredeoff among the performanca maasures of loss, threughputand time delay. 

We wi Ll show that for time-censtrsi ned cOlMluni cati on over CSMA channals, 

the orderi ng imposed on the massege transmi ssi ons by a parti cu lar channe l 

accass strategy is a critical factor in determining system performanca. That 

is, whi Le a random access strategy does provi de for di stri buted shari ng of a 

resource, the chennel access mechanism itseLf also functions as a distributed 

scheduling mechanism which permits messages distributed among the stations on 

a channel to be trens~lttad sccording to some explicit or impLicit scheduling 

poLicy. A single general random access protocol besed on a generaLization of 

current window mechanisms [Galleger 78] [TowsLay 82] can be used to obtain a 

large class of distributed scheduling disciplines based on messaga arrival 

times. Moreover, such a genera li zed wi ndow mechen; sm can adapti ve ly vary 

during system operation to provide an optimaL service discipline in response 

to changing system demands. 

In the folLowing section we describa this random access protocol and 



discuaa its use III a distributed scheduling mechanism. In section 3 wa then 

study three parti cu lar cas.. in whi ch the protoco l provi des FCFS, LCFS end 

RANDOM scheduling and present Ipproximeta analytic models for the waiting tim. 

distribution for each of theae three discipline.. The enalytic results ara 

shown to compare favorably with simulation reaulta. 

Using these rasults, we then cOllpare the time deLay versus throughput 

varsus Loss parformance of the three di &tri buted schedu Ling di Ici pL i nes 1 n 

section 4. Another scheduling discipline which specificaLLy attempts to 

maximize the percentage of messages with waiting times beLow a specified time 

bound is then suggested end discussed. Finelly, the performanca resuLts are 

used to i l Lustrete severa l important features of the achadu l; ng functi on 

performed by a random access protocol and the impact of the scheduLing 

function on the time-constrained performsnce of the protocol. 

2. A Protocol for Time-Constrained Com.unicet1on Over e CSMA Channel 

In this section we describa a random accass protocol suitable for time­

constrained conmunication over a CSMA channel and demonstrata its uae as a 

distributed scheduUng mechanism. A probabilistic model of the protocol's 

behavior is derived in order to obtain average performance meesures for the 

contention resolution phese of the protocol. 

2.1. Description of the Protocol 

Let us assume that each ·station on the multiple access chennaL possesses a 

clock which defines the current time, t, and that the clocks at all stations 

are synchroni zed. Eech stati on wi l L lDai ntai n a va lue for Bach message whi ch 

arrives at the station called the pseudo erriYal time of the message. The 

initial value of a message's pseudo arrival time is the actual arrival time of 

the message et the station; e message's pseudo arrival time may change as 

described below. In addition, each station will also maintain a velue, 

t-past, such that all messagas currently at any station heve a pseudo arrival 

time greater than tJlast; all stations initialize tJlast to the initial clock 

va lue. Fi n& l ly, each stat; on has a pseudo random number generetor and each 

stati on i ni ti a li zas the generator wi th the same seed and therefore produces 

the sama sequence of pseudo-random numbers. 

------------- _._.- .. -



The operation of the protocol is shown belOW in figure 1. The pseudo­

arr1val times of all messages which have not yet been successfully transmitted 

are shown below the time axes in this figure. The protoco l functi ons as 

follows. All stations continuously monitor the channel and after each 

successful ~essage trans-ission, eech station usas ita rando~ number generator 

and a scheduling policy to be dsscr'1bed below to select a window of time 

between t-P88t and the current time, t; the selection of this window is shown 

an the second time axis in figure 1. Since aLL stations have the same value 

of t-psst and generata the same sequence of ~ndom numbers, all stations will 

select the sSlle window of tille. After a w1ndow has been selectsd, all 

stations with messsgee .ith pseudo ,errivsl'timee .hich fall within this window 

of till. attempt t~ transmit the measage., 
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If no stations have a message with a pseudo arrivsl time which falls in 

this window, then an a.pty slot occurs an the chennel and all stations select 

a new i ni til l wi ndow aftar updati ng thei r vslues of t-PBst and the pseudo 

arrival time of eny message as discussed below. If exactly one message falls 

within this initial .indow, then its transmission begins immediately. 



If lIIora than ona ltation hili 8 message with a pseudo arrival time which 

faLla within the time window, than two or mora stations attempt to transmit II 

message and a collision occurs. All stations continue to monitor tha channel 

and attempt to resolve th1l collflion by splitting the initial time window in 

helf. The stations then use their randoll! number ganerator and the scheduling 

policy described below to IIIlact one of the two helves of the initial window 

n shown on the third tima axil in figure 1; lince III stations use the Bame 

sequence of pseudo random numbers, III stations will select the same half of 

the spli t wi ndow. The random eccess procedure is then repeated usi ng the 

selected half of the split window aB the new time window. If no message hes a 

peeudo arrivel time which falls in the selected helf' of e split window, an 

eIIIpty slot will occur on the chennel and eLL stati ons will then select the 

relllaining helf of the split window, immediately split this new window (since 

it is known to contain two or more me868ges), choose one of' tha halves of the 

newly split window, and repeat the above access procedure using that half' of 

the newly split window. This splitting process continues until a singLe 

message is finally transmitted. 

All stati ons perform the wi ndowi ng process and thus each stati on knows the 

width, Wi, and the starting time, tl, of' avery time window which contains 

8i ther no message arr; vels or a si ngLa message arri va l. Once a wi ndow wi th 

exact ly zero or ona message a rri va Ls hes been se lected and the message (i f 

any) has baen transmitted, all stations can effectively remove this window ~ 

time f.!:.Qm consideration, as if the window of time had never occurred. The 

effect of removing this window of time is twofold. First, all stations with a 

message with a pseudo arrival time before tl must update the pseudo arrival 

tillle of the massage by the width, Wi, of the window. Secondly, since the 

pseudo arrival time of each message which arrived before t l hes been increased 

by Wi, there is a gap of time from t-PBst to t,Jl8st+w l for which it is known 

thet there are n2 messages present and 111 stations can update t-past 

accord; ngLy. The effect of updeti ng the va Lue of t-past and the pseudo 

arrival times is shown on the f'ourth time axis in figure 1. 

The selection of the pOSition of the initial window and the method by which 

one of the two halves of a spLit window is selected determine the scheduling 

poLicy implemented by the random access mechanism. Suppose that the time 



between t-past and t (the current time) divides into n windows of width w; we 

note three special cases: 

1. The first (oldest) of the n windows is always selected as the 
initial window and the first half of a split window is always 
chosen before the second. 

2. The last (newest) of the n wi ndows is always se lected as the 
initial window and the second half of a split window is always 
chosen before the first. 

3. Each of the n windows is equally likely to be chosen as the initial 
window and both halves of a split window are equally likely to be 
chosen fi rst. 

Case (1] above implements FCFS scheduling, case (2] implements LCFS 

scheduling and case (3] implements RANDOM scheduling. In the most general 

case: 

4. Each of the n windows is selected with some probability according 
to some discrete probability distribution ~ and the first half of a 
split window is selected with probability q and the second half .is 
selacted with probability 1-q. 

Depend; ng on the di stri buti on J chosen in (4] and the va lue of q, anyone 

of a large class of scheduling diS-Giplines can be selected. As we will see, 

the optimal selection of ~ and q wilL be dependent on current system demands 

including throughput and loss tolerances. 

2.2. Analysis of the Average Performance of the Window Mechanism 

In this section we derive an approximate expression for the averege message 

scheduling time of the protocoL. In order to obtain this expression we will 

fi rst follow Towsley (Towsley 82], Molle [Molle 81] and others and 

analytically determine the exact velue of the message scheduling delay under 

seturation conditions, which occur when the average arrival rate exceeds the 

average time needed to schedule and transmit a message. Specifically, we will 

make use of the property that at saturati on, the average wai ti ng ti me is 

unbounded and thus the di {ference between !h..i current time and t past is 

always greater than ~ window width chosen. 



Once the average scheduling deley under saturation conditions has been 

obtained, the actual message arrival rate at which saturation occurs can then 

be determi ned. Thia va lue for the aatureti on arri ve l rate and the average 

message scheduling time at saturation can then be used to provide an 

approximate expression for the message scheduling delay for arrival retes less 

then seturati on. 

We will sssume that time is slottad in units of 2tO' where to is the end­

to-end propagation delay of the channel. Furthermore, we will sssume that all 

stations can detect message colliSions (CSMA-CO] and can abort transmission of 

It cOllided message in a negligible amount of time. Finelly, we assume thet 

the message errive la to all stati ons together consti tuta a poi sson procass 

with rata ).. (arr1 va la/slot] • 

Since the overall arrival process is poisson, at J!!:L point in tillie, the 

inter-(pseudo]arrival times of unsent lIIeasages waiting at all stations are 

exponentfa l ly di str; buted wi th maan 1/)... Thi s fact can be 1 nducti ve ly 

established Since, due to the memory less property of the exponential 

d; str; buti on, the removal of a ti me wi ndow and the concommi tant shi fti ng of 

pseudo-arrival times as dascribed above preserves this exponential 

i ntererri val property. One important consequence of the exponantia l nature of' 

tha inter-(ps8ude]arrival tilDas is that any two windows of tima between the 

current time and tJlast which are of equal length are statistically identical 

with respect to the pseudo-arrival timas. Thus the order in which windows are 

se lacted has no effect on the average message schedu li ng de lay and thus the 

aVerage message schedu li ng time II ; ndependent of the scheduli ng di sci p line 

implemented ~ the protocol. 

Let us now proceed to determine the averege message scheduling time which 

in general, will be a function of the arrival rete, A. Define: 

i(}J - average time (in slots) to schedule a message for traffic 
arri ve l rate )... 

As discussed earlier, in order to obtain an approximate expression for sDJ, 

we wilL first determine the exect velue of sDJ, under saturation conditions. 

Define: 



S t - the average number of s lots needed to schedu le a message at sa . saturatl0n. The last slot (in which only 1 message is 
transmitted) is DQ1 considered part of the scheduling time. 

sk - the number of slots needed to schedule a message given a window 
is known to contain k messages, with k >=2. 

qk . , 1 
- probability that i messages are in one helf of a window given 

there are k messages in the wi ndow. Due to the memory less 
property of the interarrival process, qk i is given by: , 

qk,i = (~) 2-
k 

Pi - probebiLity of i arrivals in a window. If the Length of a 
window is given by the paremeter P (in units of time slots], 
then: 

Now, Ssat can be expressed in terms of sk by conditioning on the number of 

arrivals in a window: 

or co 

Ssat = Pq + k£? Pk(1+s kJ 

- PO 

co 

(1 ] 

The added 1's in the terms (1+skJ and (1+Ssat J in (1] are due to the fact 

thet 1 time slot is fi rst requi red to learn that zero or two or more 

coLLisions hava occurred. We can now condition sk on the events of zero, one, 

or more than one message in the selected half of a split window. Note that if 

no message occurs in the selected half of a split window (this occurs with 

probabi l i ty qk,O)' no slot is needed to determi ne that two or more messages 

occur in the remaining half of the split window and that half can be split 

immediately. Conditioning sk thus gives: 

or 

k 
sk = qk,O(1+(sk-1 ]) + Qk,1"O + i~2qk,i(1+si) 

k-l 
sk = (1 - qk,l - qk,O) + i~2q!s,jSj 

[1 - qk,O - qk,k J 

(2) 

wi th the i ni ti a l condi ti on ~ = 0.5" Va lues for sk can be i terattve ly 

obtained from (2] above and then substituted into (1) to determine the value 

for Seat. Note, however, that Seat is a function of the yet unspecified value 

af~. Clearly, the value of this perameter should be chasen ta minimize the 



value of Ilat. Numerical methods can be used to ahow that Saat achieves a 

minimum value of 1.24 alota when ~ hea I Vllue of 1.2. Thul, whetever tha 

actual arrival rate at which saturation occurs, the initial window Size, ta, 
should b. choa.n such that ~ = 1.2 and thus Ssat = 1.24 alota, independent of 

the arrival rate at which saturation occurs. 

Equetion [1 J thus gives the message schedUling delay undar saturation 

conditions to be 1.24 slots; let ua now determina the actuel errival rate at 

which saturation occurs. FoLLowing Lam [Lam SO], we note thet the overall 

chennel utilization p (the errival rate times the average time for scheduling 

and transmitting a message) must be bounded abova by unity. If wa define a as 

the retio of the and-to-end propagation delay, tar to the fixed message 

length, then tha langth of a message in slots 1& given by 1/[2DlJ and the 

channel utilization bound is axpressed 8S: 

>J1/(20aJ + iOJ) <= 1 [3] 

The &aturation value of the arrival rata, ~at' is that valua of A for which 

the equality in (3) holds and thus: 

or Asat = 1 / (1/(2a) + 1.24) ( 4) 

If we define the effective channel throughput, P', to be the fraction of the 

channel which is utilized by successfully transmitted messages, [i.a. pi = 
)I(2crl ) then the effective chennel throughput at saturation or the maximum 

effective channel utilization is given by: 

P I -sat - 1/(2011 = 
1/(2Dll + Ssat 

1 

The ane lysis thue far has provi ded the averege message schedu Li ng da lay 

under saturation conditions as weLL as the actual message arrival rate (and 

thus effective throughput) at which saturation occurs. We also know that as ~ 

end thus pi approaches zero, the averege messege scheduling delay also 

epproaches zaro since an arriving message would alweys be sent without 

contention upon arrival. Given these two andpoint values, we will approximate 

the intermadiate paints of the average messege scheduling time, s(p'), by 

fitting a function of the form pi / (9 - Pi) to these endpoint values, where 

s is a suitably chosen constant. The results of this approximation are 



compared with the average message scheduling times obtained through simulation 

for various message sizee in figure 2. In the following section, the average 

message scheduling times will be used to study the waiting time distribution 

under different scheduling disciplines. 

3. Waiting Time Distributions for FCFS, RANDOM and LCFS Scheduling 

In this section, we present analytic and simulation results for the 

distribution of message weiting times for fixed length packets in the cases in 

which the window random eccess protocol provides FCFS, RANDOM and LCFS 

scheduling. Throughout the enalysis in this section the messages waiting at 

stati ons to be transmi tted wi l l be consi de red as customers ina di stri buted 

queue. More importantly, the message scheduling time or contention resolution 

time immediately preceding a successful tr~nslDission wi II be considered as 

part of the sarvice time for that message which is successfuLLy transmitted. 

Thus the service time for a particular messege will always have two components 

: a message scheduling tima (i.e. the scheduling delay due to that contention 

peri od (i r any) whi ch resu l ts in the message begi nni ng successfu l 

transmission) and the actual trensmission time for that perticular message. 

3.1. Service Time Distribution of Messages 

In this section we determine the service time distribution for fixed length 

messages; nate that si nce the message schedu ling ti me has been shown to be 

independent of the scheduling discipline imposed by the protocol, this service 

time distribution will thus also be independent of the scheduling discipline. 

Let bet) be the distribution of the message service time, set) be the 

distribution of the scheduling time, and x(t) be the distribution of the 

message trensmission time; throughout this section, time will be in units of 

slot length. Since the service time is the sum of two independent random 

variables, the service time distribution time is given by: 

bet) = set) 8 x(tJ (5) 

where. is the convolution operetor. For the case of fixed length messages, 

x(t) is given by: 

x (t] = "0 (t - 1/ (2a] ) (6) 



where ~o is the unit impuLse function and lI(2aJ is the fixed message length. 

The distribution of the message scheduling time is more difficuLt to 

obtai n. However, 

dietr1 but; on is II 

our simuLation studies have 

good epproximation for the 

shown that the geometric 

message schaduLing time 

distribution, where the mean of the geometric distribution is taken to be the 

lDeen scheduling time 18 detemined 1n the previous section. Let iOJ be the 

average message scheduling deLay and define c1 to be the probabiLity that the 

message scheduLing deLay is i slots. Then: 

ci = c(1-c) 1 
where: 

c = 1/ [1 + iDJ) 

end the probability distribution for the message scheduLing time is thus given 

by: 
ca 

B (t) = i~O c1 '0 (t- i) (7 ) 

Finally, using the velue for x(t) and set) from (6) and (7) respectively, 

equation (S) gives the service time distribution for a message as: 

ca 

bet) = i~O ci¥O(t - (11(~) + ;) ) ( 8) 

3.2. Distribution for FCFS Scheduling 

Since the message scheduling or colLision resolution time has been modeled 

as part of the servi CB timB of the massages, our mode l of the di stri buted 

queue reduces to the case of an H/G/1 queue, where the service distribution of 

the customers is given by (8). 

The waiting time distribution for customers in an FCFS MlGl1 queue is given 

by (Klainrock 7S]: 

where . 
bet) 

(9 J 

= the density function of the residual service time thet an 
arriving customer finds for the customer (11' any) in servics . 

. 
the ~fold convolution of bet) 

P = the server utiLization, previously defined as 



For values of p not aspecially close to unity, the infinite sum in (9) can 

be truncated at some finite value of k to produce an excellent approximetion 

to wfcfs(y). The residual service time density for a given arrival rate OJ 

end a service time distribution given by (8) can be calculated (Kleinrock 75] 

to be: 

.. co 

bet) = 1 - i~O ci'-1 (t - (11(201) + i)) (10) 

( 11 ( 2011 + S ( >J ) 

where ~-1 is the unit stap function. 

Fi gure 3 shows the computed wai ti ng time di stri buti ons for the case in 

which the random access protocol provides FCFS service; the sum in equation 

(91 was terminated at k=9 to obtain these values. Waiting time distributions 

are shown for 3 different traffic arrival intensities for message lengtha 10 

and 50 ti mes the end-to-end channa l propaga ti on de lay (OFO .1 and OFO .02 , 

respective lyl • The degree to whi ch thsse ana lyti c results in fi gure 3 agree 

wi th the simu lati on va lues i ndi cate that good approxi mati ons were introduced 

to obtain the analytic form of wfcfs(tl. 

3.3. Oiatribution for LCFS Scheduling· 

In order to computa the waiting time distribution under LCFS scheduling, 

the entire weiting time of a message can be considered as a series of waiting 

time components as shown below in figure 4. A message has no waiting time 

with probability 11 , With probebility 1-Y1 a message has a first weiting time 

component with a distribution given by d1 (tl. A message which finishes the 

first waiting time component begins service with probability Y2 and requires a 

second waiting time component (with a distribution d2(tl ) with probability 1-

12 " In general, 1i rap resents the probability, given that a message has 

completed i-1 waiting time components, that it will begin service; after 

component i-1. Note that in order for a message to have exact ly i wai ti ng 

time components, it must not enter service after completing each of the first 

i-1 wai ti ng time components and must enter serv; ce after the i th component. 

Thus the probabi l ity that a message has exact Ly ; wai ti ng time components ; s 



91 ven by: (1-J' 1 1 [1-J' 2 1 ' . • [1-J' i lY 1+1' The di stri but1 qn of the Length of 

the ith component is given by di (tl, 

figure 4 

If a message experiences any waiting time at all, then the first component 

of its weiting time, d1 [t], results from the residual service of enother 

lIIessage already in service when the message arrivee; thus ~[tl is given by . 
bet). Since the· scheduling discipline is LCFS, the remaining components of 

the message's waiting time result from messages which arrive after the 

message,· but are transmitted before the message; thus diet) is·given by bet) 

for 1>1. 

Using the above model of the waiting time, the distribution of the waiting 

time is given by: 

wlcfs(t) = Y1¥O(t) + [1-Y1]Y2b(tJ + i~2 (1-Y1)'''(1-YilYi+1b(tJetJi-2(tJ (11J 

where ¥1 and bet] are as previously defined and bi- 2 (tl is the (i-21fold 

convolution of the service time distribution. 

values, {j'i}' To do thi s, defi ne : 

We now computa the unknown 

qo - probability that no messages are waiting to be sent (queue is 
empty) at equilibrium. 

Pi - probebility of i arrivals during a residual service time. 

, 
Pi - probability of i arrivals during a message's service time. 

pf - probability that j messages have arrivad during thy first k 
components of tha message waiting time given that the kth component 
of the message waiting time has just ended. 



fl~ - probabi l i ty that j messages have arri ved duri ng the fi rst k-1 
J components of the message weiting time given thet the kth component 

of the message waiting time has just begun • . 
Clear ly, 11 = qo and 12 = Po. The va lue of qo can be determi ned from an 

anaLysis for tha number in the queue as in (Lam 80]. Since the ith weiting 

time component is the last component if and onLy if exactLy i-1 messages have 

arrived during the first i waiting tillle components, the remaining values for 

{Yil are given by 1i = P1-1' The values for fl!+1 end p!+1 can be iterativeLy 

determined from the initiaL condition p} = Pj' First, flf+1 can be computed 

from pf as folLows. The reLationship between these two sets of probabilities 

is shown below in figure 5. 

{fl~+1 ] 
J 
1 

fi gure 5 

Note that for aLL j Lass then k-1, pf is known to be zero 5i nee in order 

for a messege to compLete k waiting tima components, k-1 or more messages must 
." 

have arr.ived since its own arrivaL. Now, if a message begins the k+1st 

wai ti ng time component, there must have been stri ct ly more than k-1 messages 

after component k was compLated (otherwise the message weiting time would have 

ended after component k); thus al though P~-1 wes non zero at ~he end of the 

kth weiting time component, at the beginning of component k+1, it is known 

that fl~~~ = O. For values of j greeter than k-1, the ra ti 0 of !l1+1 and fl1:~ 
should equal the ratio of p1 and P1+1' However, the actual values of fl!+1 and 

fl1:~ must be normaLizsd since at the beginning of component k+1, ~~~ = O. 

The above considerations indicate that the vaLues of !l~+1are given by: 
J 

fl~+1 = a O<j<k (12 ) 
J 

= p~ j )= k 
J 

1 k 
- Pk- 1 

FinalLy, given the values for !l~+1 the valuas of p~+1can be eesily computed by 
J J 



cond1tioning the event of j arrivals immediately foLLowing k+1 weiting time 

components on the number 

p~+1 
J = 

of arrivals during 

j k+1.' 
n~O Q.j-n Pn 

component k+1. Thus: 

(13 J 

The waiting time distribution for LCFS service can thus be computed using 

(11), (12) and (13) with the values of ail found above. Figure 6 shows the 

computed waiting time distributions for 3 different traffic arrival 

; ntensi ties for message langths gi ven by OF.1 and OF .02. Note that a LL the 

distributions shown in figura 6 rise repidly for time values lass then the 

message length (corresponding to messages which begin service immediately 

after a residual service is completad) and then slowly epproech the esymptotic 

va lue of 1 • 

3.4. Distribution for RANDOM Scheduling 

The waiting time distribution under RANDOM scheduling can also be 

determined using weiting time components. Specifically, the first component 

of the waiting time onca egain results from the residual service time for 

another mes6age alreedy in service when the message arrives. Also, the 

remaining components of the waiting time once again result from the service 

times of other messages; however, since the message scheduling discipline is 

RANDOM, these other messages may have arrived at any tima. 

Tha va lue for r 0 wi l l be exact ly the same as under LCFS 5i nce the 

probability that an arriving message finds the queue empty ;s independent of 

the order in which messages are selectsd for servica [Kleinrock 761. In order 

to determi ne the rana; ni ng va lues for the a;}, we can use the average number 

of messages in the di stri buted queue gi van there ; s at least one message in 

the queue (i.e. the me6sage for which the waiting time distribution is being 

computed). This conditional vslue is given by Q;(1-qOJ, where q is the 

uncondi ti ona l average number of customers ; n the queue. 5i nce RANDOM 

scheduling implies that all messages in the queue are equaLLy Likely to begin 

service next, if there are on the average, Q;(1-~) messages in the queue, one 

way to model the probability that a particular message begins service 

immediately after waiting time componant ; is: 



y. = 1 or Yi = 1 - qo 1 1>1 
- - ( 14) 
~ q 

1 - qo 

The waiting time distribution under RANDOM scheduLing can be computed using 

these vaLues of ail and equation (11). Figure 7 shows computed waiting time 

distributions for RANDOM scheduLing for three different traffic arrivaL 

intensities and messege sizes given by 0F0.1 and aFO.02. 

In the following section the resuLts for the waiting time distributions for 

FCFS, LCFS and RANDOM obtained in this section wilL be used to discuss the 

impact of the schedu Li ng di sci p Li ne imposed by the protoco l on the time­

constrained performance of the protocol. 

4. The Impact of Scheduling Disciplines on the Time-Constreined Performence of 

Random Accass Protocols 

As mentioned eerlier, many time constrained applications are characterized 

by two important features: to lerab la message loss and the constrei nt the t 

messages not received at the destination station (or equivalently not 

beginning tranamission at the sending station) within some fixed amount of 

time after arrival at the sending station are considered lost. Thus, message 

loss, as well as time delay and throughput, is an important performance 

meesure for time-constrained applications which use random access protocols. 

The time de lay versus message Loss tradeoff for a gi ven rendom access 

protocol can be determined from the distribution of the message waiting times. 

For example, the message loss versus time delay tradeoff for FCFS scheduling 

and a throughput of pI = .70 is given in figure 3 - if the waiting time bound 

~s 40 time slots, for instance, then the message loss is approximately 30%; if 

tha time bound is increesed to 100 time slots then the message Loss is only 

6%. Since the waiting time distributions determine the time delay versus loss 

tradeoff, the comparison of the time-constrained performance of two protocoLs 

requires the comparison of their waiting time distributions. In figure 8 we 

show sample waiting time distributions for FCFS, LCFS and RANDOM scheduling in 



order to provide a quantitative exampLe of the impect that a scheduling 

discipLine can have on the time-constrained performance of tha protocol. 

The results in figure 8 indicate that for the given treffic intensity and 

message Size, none of the three protocols is uniformly the best in the sense 

of minimizing loss for ell possible time bounds. For small time bounds (large 

loss), LCFS is bettar than FCFS and RANDOM, while for lerge time bounds (small 

loss), FCFS is better than LCFS and RANDOM. Similar results can be found by 

comparing waiting time distributions from figures 3, 6 end 7. The resuLts in 

figure 8 slso indicats that thare can be significant performance differencas 

due to the imposed scheduling disciplfne. For example, for the ssme fixed 

ti me . bound, the messa ga . loss for FCFS and LCFS can di ffer by as much as 201; 

for the same messaga loss, the time bounds requi red by FCFS and LCFS to 

realize this loss can differ by as much ss 100%. Clearly, the scheduling 

discipline imposed by e protocol greatly affects the time-constrained 

performence of the protocol. 

Although FCFS and LCFS each perform better than the other (and RANDOM) for 

certai n ve lues of time delay and message loss, the questi on ari ses whether 

there are other scheduling disciplines which perform better thsn both FCFS and 

LCFS in such regions. Since we are interested in maximizing the probability 

that a messaga has a waiting time below some given bOllnd, a scheduling 

discipline similar to minimum slack time scheduling in deterministic 

scheduling [Coffman 76] would seem promiSing. Under minimum slack time 

scheduling, that message with a current waiting time closest to, but not 

exceeding, the waiting time bound is transmitted naxt. This message can be 

selected by choosing the beginning of the initial time window to be the 

cu rrent ti me mi nUB the w.1 ti ng ti me bound and reso l vi ng co l li si ons wi th ina 

window on a FCFS basis. Figura 9 shows simulation values for minimum slack 

time scheduling for weiting time bounds of SO, 70, and 90 time slots. From 

simu lati on studi es and as evi dent from fi gure 9, we have noted that mi nimum 

slack ti me schedu ling for a speci fi c ti me bound pe rfo rms aqua lly as we II or 

better than both FCFS and LCFS in the regi on of the wai ti ng time bound. 

However, as shown in figure 9, the increase in performance is relatively 

sma ll. 



Finally, it should be noted that all the various scheduling disciplines 

di scussed so far can be impLemented by the same genera l wi ndow random access 

mechan; sm. In practi ce, system character; sti cs such as average traff; c 

arrivaL rata, Loss toLarances and acceptabLe time deLays may very aver time. 

Si nce the re Lati ve ti me-constrai ned perfarmanca of the different schedu Li ng 

discipLines depends strongLy an thesa variabLe system characteristics, a 

crucial faatura of the generaL window mechanism which makas it particularLy 

suitabLe for time-constrained applications is the capability of the singLa 

window mechanism to impose different schaduling discipLines in response to the 

changing system charactaristics. 

5. Conclusion 

We have presented an adapti ve random access protoco L for CSMA networks 

which is based on a generalization of the time window mechanism. This 

protocoL can be used to provide any of a Large cLass of distributed scheduLing 

disciplines based on message arrivaL times. We have studied the cases in 

which the protocol provides FCFS, LCFS and RANDOM scheduLing and have 

presentad both analytic and simuLation resuLts for the message waiting time 

distribution. In addition, a protocol which specificaLly at~ampts to maximize 

the probability that message waiting times ara beLow a given bound was aLso 

introduced and discussed. 

The performance resuLts have demonstrated the criticaL impact of the 

scheduling discipLine on the time-constrainad performance of tha protocoL, 

thus indicating that the scheduling discipLine imposed by a protocoL should be 

a primary concern in the deslgn of random accass protocoLs for time­

constrained appLications in CSMA networks. 
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