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Abstract,

We study optimal algorithms and optimal information
in an average case model for linear problems in a Wiener
space. We show that a linear algorithm is optimal among
all algorithms. We illustrate the theory by interpolation,
integration and approximation. We prove that adaption

does not help.



1. Introduction

In a series of pioneering papers commencing with (4],
Larkin studied average case error, mostly for linear problems
in a Hilbert space equipped with a Gaussian measure. The
average case model was further developed in [8], [13], and
(14).

Following the average case model of ([(13], in this
paper we study linear problems in a Wiener space. A
Wiener space is a Banach space of continuous functions .
equipped with a Wiener measure. Linear problems in a
Wiener space were first studied in (7], where optimality
was considered in the class of linear algorithms. This
paper investigates optimality in the class of all algorithms.
It also studies optimal information and adaptive information.

We summarize the main contents of this paper.

In section 3 we formulate the problem and recall the
concepts of information, algorithm, radius of information,
optimal information and optimal algorithm.

We address the problem of interpretation in section 4



and we derive the optimal algorithm, which turns out to be
linear, and the radius of information.

Based on the results in section 4, we study the pro-
blem of approximation of continuous linear functicnals in
section 5. We derive the optimal algorithm and the
radius of information. As a specific case, we investigate
the problem of integration.

In section 6 we study the problem of approximation
of bounded linear operators. As a specific case we study
the approximation problem.

In section 7 we discuss adaptive information versus
nondapative information, and we show that adaption does

not help for linear problems in a Wiener space.

2. Wiener Space.

Since the original work by N. Wiener in the 1920's,
Wiener measures have received a great deal of attention,
because of their usefulness in the applied fields of
statistical and quantum mechanics as much as for their
intrinsic mathematical interest, see [l15], [l6], [l] and
(2].

In this section we recall the definition of the
classical Wiener space and measure: for more detailed

discussion, see [3].



Let Pl denote the set of real-valued continuous

functions f in the unit interwval [0,1l] with £(0) = 0.

Fl is a Banach space with the supremum norm [[f| = sup |£(e) |
o<t

Let B be the Borel g-field of Fl,and let w be a Wiener

measure defined on B. Recall that w 1is uniquely defined

by
(2.1) w((f € F,: (f(tl),...,f(tn)) € E})
2 4 A (u,-u )2
=@ T g Pl €t ]
xdul oo dun,

where n > 1, 0 = tO < tl Y tn <1, uy = 0, and E

is a Borel set in Rn. Here du1 .. dun denotes the Lebes-

. n : . .
gue measure in R . The space Fl with a Wiener measure is

called a Wiener space, For a measurable function

G: F; - R, fF G(f)w(df) is understcod as the Lebesgue
1

integral with respect to w. If G(f) = V(f(tl),...,f(tn)),

where V: R" » R and 0 < & <...< t S 1, then

r =
(2.2) . p G(£f)w(df) g V(f(tl),...,f(tn))w(df)
1 1
n 1 2
o n - % = n (u.-u._l)
= (2?") 2 11 (tl-ti_l) 2 vf‘".urV(ul,._.,un)exp[_E T —t-th—L—-—
i=1 - - i=l "1 i-1
X dul cae dun,
where t_ = 0 and u_ = 0.

0 0

]



In particular,see [3, p. 38], for G(f) = f(tl)f(tz)’ where

0ttt <1,

(2.3) fp f(tl)f(tz)w(df) = min{tl,t }.

1 2

We need the following

Proposition 2.1l: 1If s(t) is of bounded variation, contin-

uous from the right and s(0) = 0, then

t

-.1
rs
Otds(t) + q;tds(t),

(1) * ol f(t)ds(t). £(t)w(df) = "
\-Fluo v

.

where 0 < t < 1,
. W1 2
(ii) IF [dof(t)ds(t)] w(df)
1l

-t

At 1 1
"o[uouds(u)]ds(t) + fo[tftds(u)]ds(t).

If s(t) is continuocus, then

PO ~ pl N - - E ’ -l.
(iii) ~Fl'0f(t)s(t)dt f(t)w(df) = fots(t)dt+tfts(t)dt,

where 0 < t < 1.
. 1 2
(iv) F_ [P f(t)s(t)dt] " w(df)
~Fl « 0

1 t 1 1
= r r )
= ~o[s(t)uous(u)du]dt + ‘O[ts(t)‘ts(u)du]dt.

For the procf, see [3]. |



3., Formulation of the Problem,

Let F, be a Wiener space, and let F, be a separable

1 2

Hilbert space. Let

(3.1) S: Fl-*Fz

be a continuous linear operator, called a solution operator.

We seek an approximation to S(f) for all £ € Fl,

given function values of f at n points:

0 < t1 <...<K tn < 1. That is, the information N 1is

defined as N: Fl - Rn, and

(3.2). N(f) = [f(tl)""’f(tn]’ for all £ € Fl.

An approximation to S(f) is provided by 4 (N(f)) where

(3.3) ot N(F)) > F,.

We call 4 an algorithm using information N. The

(global average) error of ., is defined as

(3.4) el = ([ SO -0 | Pwian 12,
1

Let 3(N) be the class of all algorithms 4 using
N for which the error of , 1is well defined, i.e.,
hs(+) - o(N(-))f{2 is a measurable function. We stress
that the assumption about the measurability of

Is() - @(N(-))”2 is not restrictive as is shown in [11].




We wish to find an algorithm 4* from %(N) with the smallest

error. Such an algorithm is called an optimal algorithm,

and its error is called the radius of information, denoted

by

(3.5) r(N) = e(a*,N) = inf e(yp,N).
»€3(N)

An n-th optimal information N* minimizes the radius of
information among all information y = (N: N(f)=[f(tl),...
'::’f(tn): 0] < tl <-~-< tns l}, i.e.,
(3.6) r(N*) = inf r(N).

Ney

To verify whether an algorithm is optimal, we need

Lemma 3.l: Given information N, an algorithm o* € 3(N)

is optimal iff

(3.7) fF (S(f) - o* (N(f)) o(N(£)))w(dEf) =0
1

for all ¢ € §(N).
The proof is similar to that of theorem 4.4 in [13]
and is omitted.

From Lemma 3.1, we can easily derive

Corollary 3.1: Given information N, let ¢i and 33 be

optimal algorithms for the continuous linear solution



Operators sl and Sz, respectively. Then

the algorithm o* = Glmi + 32@5 is an optimal
algorithm for the solution operator S = alsl + azsz,

where ay and_cz2 are arbitrary real numbers. n

4, Interpolation.

In this section we study the interpolation problem,

that is, we approximate
S(f) = £(t), where 0 < t < 1,
given informatiocn
(4.1) N(f) = [f(tl),...,f(tn)], where 0 < tl <.o..< tn‘g 1.

The solution of the more general problems will follow from
the soclution of this simple problem. We shall show that
there exists an optimal linear algorithm, which is piece-
wise linear interpolation. The radius of information
will also be derived.

We first prove the optimality of piecewise linear
interpolation. Let fk = f(tk), k=1,...,n, and let

fo = 0 and to = 0.  We have

Theorem 4.1: FOr the interpolation problem, piecewise




linear interpolation is optimal. More specifically, let

(4.2) o*(£),...,£)

n
t, .-t t-t
k+1 K . .
— £+ - £ sy 1f £ <ttt , for some k from
f R W kS5 (0,...,n-1},
\‘ £, if £ CE<L.

Then @* is an optimal linear algorithm among all algori-

thms from §(N). ||
Proof: It is obvious that g4* is optimal if t = £, for’
some k from (0,...,n}, since e(N,p*) = O for this case.

Thus it is sufficient to consider the following two cases:

(1) & < t<t k =0,1,...,n-17 (ii) & < t <1,

k k+1’
if tn < 1.
Case (i). By Lemma 3.1, we need only to show that
£ -t t-t
= k+1 k
(4.3) T ="_[£f(t) - ——f - ——¢ loo(E,,..., £ Jw(dE)
Fl tk+l tk k tk+l tk k+1 1 n
=0

for all o € &(N). Let

(4.4) I=1I,-1I, -1

1 2 3’
where
= r t
I1 . F f(t)w(fl"f"fn)w(df)’



t}<+l-E
I, =" - -+ £ ol(f,, » € Jw(df),
2 Fl tk+l tk k 1 n
and
e
I, = % = o(f,,..., £ )w(dE).
3 l tk+l tk k+l 1l n
Let £ = £(t). Then from (2.2) we have
20 2 % fe1”"
(4.5) I, = (2m) " g (-t ) “rLLL° @ (uy, u )
2 i1 i i-1 oy tk+l t uk n
n (ul-u l)2 -
x exp[-z‘z . ]dul...dun,
i=l 1 i-1
(4 6) I = (2’?) II (t-- : ) P...P @(u ’l..)u)
3 i1l i i-1 - _mtk+1 tklk+l 1 n
n (u,-u _1)2
x exp[-Z ¢ P ]dul.. du_,
i=1 i~1
where uy = 0, and
n+l 1 l _;
2
(4.7) 1, = (2m) [[le(t -t ) °] (x- &) (tk+l
1
n 2
x (T (t--t._ ) 11
j=k+2 + 71
K 12 ¢ i
© .-, --
x r °:u-cp(u u Jexp(-3[ £ ig&‘* = +*ut B
U.'.l t l’...’n 2 . t E-t
-0 =@ . i=1 l i-1

( : )2
el “t’+ 2 (u; -, 1)
“T i=k+2 TiT%5-1

t
k+1

.dukduzduk+l...du



_ntl _ 1 B! 1
= 2m 2 rmo(t-t, ) e, e (Rt 2t o) 3
J R Se+1” %% X K+l
. 2 2
X o (u u_)exp(-3 ; S L ] XP[l(uk+l i ]
s} 2 e e oy N _
e e L n 2i=1 BiTRig 2 Bl %
(u--u ) ( u- 2
x { ® u-exp{-—=I[ £ K Der1” %) ]}dus-l}du...du .
_ t 2 t— t -E t 1 n
5% k+1
Since
o - ) - 2
1 (ut uk (U1<+l ut)
S ug exp[—s - ])dug
- t-% Ers1”® :
1 1 1 1
= = = .5 (t- ) + ( t)u
- 292 ot z(t_tk)z(tk+l-t)2] “% “k+}t S+ B8y
5 tk+l k
exp[-= (uk+l uk) ]
X - ’
2 fe %
we have
n+l 1 1 1
- n - —
(4.8) I, = (27) 2 [ 1 (t.-t. ) 210(t -t )2 (E-t) 2
: 1 ' i;l -1 x+1 'k k k+1
=) 0 n (u, ul-l)z
< T Mlstug e uexplg § ——=ly
-0 -0 l 1 i i—l
1
1 (Yo~ u\() l. 2 -
x [- . 1 (2-)% (¢t SRR B
k+1~ Tk
L (k- )u, . +(t . -F) ( u )
-2 k) Tk+l kel Y% 1 k1
X(t, -8 "] A (-5 <% - Jldu ...du
- k+1 k k+1 tk
l — -
-= n - © t -t t—t
2 2 k+1
= 2m “Im (gm0 GrLLn ¥ Jo (u
PETRAE S S SNSRI NUPET S K+1 tkuk+l

10
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Case (ii). By Lemma 3.1, we need only to show that
= r t)-on* =
(4.9) J 'Fl[f(t) 0 (fl,...,fn)]m(fl,...,fn)w(df) 0

for all o € %(N).
From (4.2) we have

(4.10) J

p -
vFl(ft fn)@(fl,...,fn)w(df)

«F

* o fop(f,,..., £ )w(df)-"
X o () LW (df) PR CTRTR AL

We ncw compute

n+l n 1 1
P feu (£ £ )w(df) = (2m) 2 [ 3 (E.-t. ) %](E-t) 2
NS i I o et -1 n
1 i=1
2
© =) (u.-u. )
" o (u u)exp(-s § ==L
x Moo [ ugolug, e uexpl-5 L oo
- =@ i=1 "1 "i-1
l(uE-u )2
x exp| > ]dul...du du-
- n t
t-tp
n+l 1 1
n - -= ® ©
= (2n) 2 [D (t.-t ) 2](E-t ) 2 Mo Pa(u, e ,u)
jop b oi-l n’ e n
n (u.-u, )2
x expl-= __A;_&:i__]
2i01 BTt

11
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2
x {i ug expl(=3— ]duE}dul...dun.
- t-t
n
Since
p i )® % %
Poy— st n __ - = (%_
! utexp[ > T ]dut (t tn) (2r) u
- t-t
n
we have
.n -
(4.11) 'Fl fta(fl,...,fn)w(df)
_n+l 1 1
- 2. 1 - 2, .z
= en TR (e ) T
2 1 1
n . TR P LR S
PoLr - -
X U...U[@(ul,...,un)exp[ 2 L tc ] (t tn) (27) un]dul..
-® -x i=1l 7i Ti-1
'n 1
- I 255
= - r n
(2v) [. (ti ti-l) u...vuno(ul,...,un)
i=1 -0 -C0
n (u.-u, )2
e i 1-1
X exp[-2 Fa— ]dul...dun
i=1 i Ti-1

r
fo £ o(El, ..., £ )w(dE).

1

u

From (4.11) and (4.10), we have (4.9). This completes the
proof.
Recall that the radius of information is the error

of the optimal algorithm. From Theorem 4.1, we have

Theorem 4.2: For the interpolation problem, the radius

of information is

.du
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for some k from
(0,...,n};

o, if ¢ =t ,
t Kk

(t,  .-t) (=t ) _
(4.4) £(N) = S % , if g <t <, for some
tk+l tk

k from (0,...,n-1};

t-t_ if £ <t L B

Proof: It is obvious that r(N) 0 if t = t, for some k
from (0,...,n). Suppose therefore that £ < t < t .1 for

some k = 0,1,...,n-1. Then

t’k-ﬁ-l-t t- S

2 2
£(N) = e(N,o*)" = " [£(%) f]
‘F tk+l tk k tk 1 tk +

l]zw(df).

= [p (2O wan + (B - *ft ro [£(8)]1%w(as
F1 S+l k Fy
-
%2, e, £5, BIRICH
tk+l k
tk+l-E _ - E-tk _
- B E(R)£(t )w(dE)-2—=—_ £(¥) (¢, )w(df)
S+l STy * S+1” % F k+l
tk+l t.:“tk
P OE(t ) E( )w (d£)
Tt h Sel T X Skl
tk+l E-t t}c+l--t E—tk -
—k+l .2, —k —Eri_ _ X%
tk+1_tk x tk+l %% tk+l tk+1-tk S+l %
. " v = (8,178 (B-8)
el % S+l % S+l X
So
) (€, .-t)(t-t )
£(N) = k+1 tk )

tk+1'Fk
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Finally, suppose that tn <t 1l, then
r(N)2 = e(N,ep*)2 = IF [f(E)—fn]Zw(df) = fF [f(E)]zw(df)
1 1
- 2 -
- 2~”Flf(t)f(tn)w(df) + UT‘Fl[f(tn)] w(df) = t-t .
So

r(N) = t-tn,

which completes the proof.

5. Approximation of Ccontinuous Linear Functiocnals.

In this section, we consider the optimal algorithm
and the radius of information for a solution operator S,
which is a continuous linear functional. The problem of
integration is considered as a specific case.

Since Fl is a subspace of the space C[0,1l], S has a

continuous linear extension to C. Therefore, by the

Riesz representation Theorem,
1
(5.1) S(£) = fg £(t)d s(t),

where s 1is of bounded variation, continuous from the right,
and s(0) = 0.

Given information as in (4.1l), we have

Theorem 5.1: For the solution operator S of the form

(5.1),
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(5.2) o (£1seees £

is an optimal linear algorithm among all algorithms from

8(N), where

£f. = £(t.), i=1,...,n.
i i
t . t
1 p i+l i+l
. e ——— ! - r‘
(5.3) Si T -t.[ti+l°t. ds(t) S tds (t)]
i+l i i 1
1 < 55
- T oe [ti-l'rt. ds(t) - [ tds(t)],
i i-1 i-1 £, .
LAl
i=1,...,n-1, and
t t
an = ft ds(t) + T _t [ftn tds (t)-t _ljtn ds(t)]. W
n n n-1 n-1 n n-1
Proof: For 0 = to < tl <ooo KL tn < tn+l =1, let
(1) _ 1 _ (1) _ . (1)
A = m(ti ti-l)’ and let tj = ti—l + 3jA ,

j =0,1,...,m; i =1,...,n+l. By the definition of
Riemann-Stieltjes integral we have
n+l m-1 .
(1

Iéf(t)ds(t) =uin ¢ g £ef) (st
mo i=1 j=0 I

(1)
j+1

(i)

-s(t.
)S(J

1.

We use the solution of the interpolation problem for

(1)

each tj to solve our problem. By Theorem 4.1, we have

(1) (i)

. t. -t t -t :
(1) i 9 j i-1
'rFl(f(tj )—[ti_ti_lf(ti_lh—t-i:__—l—f(ti)] Yo (£),.. ., £ Jw(dE)

=0,



and

(n+l)
fFl[f(tj )—f(tn)]m(fl,...,fn)w(df) = 0,

for all 5 € 3(N) and i = 1,...,n, jJ = 0,1,...,m.

Thus
n+l m-1 .
(1) (1) (L)
Jo bz o BT Is(e, J)-s(e,77)]
Fl i=1 j=o  J g+l ]
n m-1 t, t(i) t(i)
-% T [;f“;f—-f(t )t ;9‘;7———'f(t )]
i=1l §=0 "1 -1 i "i-1
-1
(1) iy, " +1 1
x [s(ei)-s (el ))J—jfof[tn)[s(tgil SEETCISaRID
Y © (‘fl’.‘.,fn)W(df) = O,
and so
n+l m-1 (i) (1)
(5.4) 1lim jF { ¢ T f£(t. [s(t i ) s(t )ﬁ
mee -1 i=1 =0
n m-1+t —tgi) tfi)-ti
-z Il £(t, ) + T (E,))]
i=1 =0 tl iP5 Ut L O
m-1
< Is(elip-s(elth - 1 e sl -s e

3=0

X (£, 0., £ )w(dE) = 0.

From the definition of Riemann-Stieltjes integral we

have

16



and (5.6) we have

1
n

r
N

1 i=1-

n-1
[P f(t)ds(t)-[.z {

n+l ti
= {cf
Fiiay”

Bi1

— n
t - [vrt

n-1

n t

f(t)d5(t)- z F

1—1 t

“E(t)ds (t) - T B, £ Jo(f)

Y
ds(t)-f
t

i-1

-1

< w(fl,..

[————_—_

1
" [fof(t)ds(t)—w*(fl,...,fn)]w(fl,,,,

17

:fn)W(df)

...,fn)w(df)

ial Eisl
e lase)- f. 1*+lids(e)]

l

tds(t)]]f(ti)

tds(t)-t

t.

1

t. -
1

n-1.

-t

t
s N

tn-l

‘ A
dS(t)]]f(tn)_J

,n+l.

(5.5)  uaf, T Wil g, g wan
me 1 j=0
t, ,
= [ g E®)e(f, ... £ )w(df)]ds(t), 1 = 1,...
i- 1
We shall show that
(5.6) fti [fe £(E)@(£,,... £ )w(Af)]ds(t)
i-1 1
ti
= !F [ft. f(t)@(fl,---,fn)dS(t)]w(df),
1 i-1
and the proof will be completed, since from (5.4), (5.5{
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1
£(t;))ds(t) - [

f(tn)ds(t)}qxfl,...,fn)w(df)
i Ti-1 n

t.
1
fti {fFl f(t)Q(fl,...,fn)w(df)}ds(t)

i-1
. L)+ — L F(t.))
i-1 ti-tig i

n t. t.-t t-t
Z — f(t

1

x qxfl,...,fn)W(df)}ds(t) - ft {IF f(tnﬂw(fl,...,fn)w(df)}ds(u

n 1
n+l m-1

o (1) (i), _ (i)
= lim IF {z L f(tj )[s(tj+1) S(tj )]

m+ 1 i=1 j=0

n m-1 t.-t(i) (1) :

L. -¢
1 . ]
- % z inrzl——f(ti_l)*_%Z:EIfz— f(ti)][s(t(l))-s(égl))l

i=1 j=0 i~ Fi-1 i+l
m-1
_ (n+l), (n+1) _
jEof(tn)[s(tj+l ) s(tj )]}3(f1,...,fn)w(df) = 0,
i.e.,
1 n '
p p - =
U [“Of(t)ds(t) ‘: Sifi]@(fl,...,fn)w(df) = 0 for all
1 i=1
2 € %(N):
where Bi's are given in (5.3).
We now derive (5.6).
Let G(t,£f) = f(t)w(fl,...,fn) and let ft = f(t) for
ti-l <t <L ti' Then
ti ti
r = ¢
. G(t,£f)ds(t) = ¢(fl""’fn)~t. f(t)ds(t).
i-1 - i-1
ti ’
: ‘ r
Since @(fl,...,fn) € Lz(Fl,w) and Jti_lf(t)ds(t) € Lz(Fl,w),
&5
"
(5.7) e G(t,f)ds(t) € Ll(Fl,w).

i-1



On the other hand, since ti-l < t <L ti’

n+
: T2
‘PFlG(t’f)W(df) = urFlftCD(flJ-‘-:fn)w(df) = (211‘)
1 1 1
2 2 =% % '
x [0 (et ) Z10e o0 Slemt ) Tl fugelug,eup)
jAL o -
2 2 2
1 (u.—u._l) (ui-ut) 1 (ut_ui-l)
x exp[-5 L =Ty Jexpl-7C ¢ 2 ¢t . |
i#L 3 j-1 i i-1
X dul...dui_ldutdui...du
_n+l L ipt 2o o
= @m 2 0g k-t ) 21em0) Feeee ) 20 felu
Sty Ti-1 i -1 Ak T
J#AL IR
(u.-u, l)2 ® (u.-u )
= —d 1=i . -
x expl-3 T —¢ ¢ 1 [ug =Pl ¢
#7331 e
2
(u_-u )
1't Ti-1
- ldu }du,...du
i-1
Since
2 2
P [ (ug-ug )™y (89 ) | du
e FPLTTT x 2 t-t £
- i i-1
3 . 2 3 (et Jug(e -0,
= em?rieme ) fe-e_ (g0 T
i i-1
(u,-u, )72
x exp[-3 ———=l
2 t.-t ’
-1
(5.8) f_ G(t,f)w(df)
«F
1
n 1 _ -
_ 2 n O i B LA ST W O
= @m “§ (-t ) L Sy
j=1 J 13 - | - 1" Ti-1

19
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2

p B (u.-u, l)

1 i -
X w(ul, ve s )exp[-2 z T -t ]dul du

=1 3 3-1
2 2t
= (2=) .H (t —tj—l) [t.-t. P fio(fl,...,fn)w(df)
j=1 i Ti-
t. -t

—l— r
Tk, vF fi_lm(fl’°°-:fn)w(df)].
i "i-1 1

so IF G(t,f)w(df) is integrable with respect to s(t),
1

and (5.6) follows from this fact, (5.7) and Fubini's

theorem,. |

From Theorem 5.1 and proposition 2.1, we can easily

derive

Theorem 5.2: The radius of information N(£f)

= [f(tl),...,f(tn)], 0<t <..<t <1, for the

solution operator S as in (5.1) 1is

(5.9) r(N) = ([glffuds (wlds(t) + foltfids (w]ds (€)
1
n > n ti 1 3
+z Bit; -2 ¢ Bi[fo tds(t)+tift.ds(t)] +2 ¢ SiBjt.} ,
i=1 i=1 i 1<i<jgn
B
where Bi's are given in (5.3).
For the more specific solution operator
(5.10) S(f) = fé f(t)s(t)dt, where s(t) is continuous,

we have
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Theorem 5.3:

n

,-n.,f) = .2 Bif-

(5.11) c;*(fl a i
i=1

is an optimal linear algorithm among all algorithms from

$ (N), where

1 B+l Ci+1
(5.12) Bi = E___:E_[ti+lft s(t)dt-J‘t ts (t)dt]
i+l i i i
1 & €5
- T o Lt f s(vyde-lT es(e)de],
i "i-1 i-1 i-1
i = 1,2,...,1'1-1,
and
il 1 n | *a '
an = I s(t)dt + gy [ft ts(t)dt-tn_lj‘t s(t)dt].
n n n-1 n-1 n-1

The radius of information is

(5.13) «r(N) = {fé[s(t)fgus(u)du]dt + fé[ts(t)fts(u)du]dt

2 a2 o &y 1
- P )
+ I8t -2 DB M es(r)db+e, T s(E)dt
i=1 i=1 i
1
+2 T 5ia.t.]2.
Igicign ¥ 3 Y |

We finish this section by considering the integration

problem, i.e., we consider the solution operator
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(5.14) S(f) = fé f(t)dt,

which is a specific case of (5.10) when s(t) = 1. From

Theorem 5.3, we easily get

Theorem 5.4: Given information N(f) = [f(tl),...,f(t )1,
n

0 < tl <owol tn < 1. For the integration problem,

Pt % ik £ W iS5
R BT R 2 n

(5.15)  g*(£,..

is the optimal linear algorithm among all algorithms from

8(N), and the radius of information is

‘ 1 1 2 1.2
(5.16) (M) = (3 + 2 tn+ltn - tn+l n + 4tn+l n
1
0 1
1 2 2 2
e T leE Ly o)) L

We now find the n-th optimal information N* for the

integration problem. From (5.16) we have

2
r (N*) _ 1 2 2
at, 4Pttt TN R

SO

* - % = * - t*
TS B S S-S
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-*= *='- .= « o 0 3 s -
Let t§+1 ti t. Then ti it i 1, n
t;+l = 2-nt, and
2 1 1 ©2 3 2.2
r(N*)» =3 - 12n(4n 1)t + nt nt.
Since
2
ac(Nx) = - i n(4n2-l)t2 + 2n2t-n = 0,
at 4
2
€= on+l

We summarize the above in

Theorem 5.5: For the ;ntegration problem, the n-th optimal -

information is N* (f) = [f(ti),...,f(tg)], where
__2i -
(5.17) tz = Snel ’ i=1,...,n.

The radius of information is

e —t
(5.18) T = o)

The optimal linear algorithm using this optimal information

is

n .
(5.19) o* (£4,..., £%) = z £557) | |
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5. Approximation of Bounded Linear Operators.

In this section we study the approximation of bounded

linear solution operators from a Wiener space Fl to a

separable Hilbert space F2.
Let [el,...,en,...] be an orthonormal basis in Fz.

S.(f)e., where S, (f
J()eJ where J()

= (S(f),ej), j =1,2,..., is a continuous linear function-

(=] (-]
Then S(£f) = ¢. S(f),e.)e., = L.
(£) = £ (5(5),e5)ey = £,

al on Fl. We denote a continuous linear extension of

Sj to C Dby the same Sj’ and we have
(6.1) s.(£) = [t £(t)as, (v),
J 0 J

where sj is of bounded variation, continuous from the

right, and sj(O) =0, §j=1,2,... . It is straightforward

to verify

Theorem 6.1: Given information N(£f) = [f(tl),...,f(tn)],

0 < tl <LK tn < 1, there exists a linear algorithm g*,
optimal among all algorithms &(N), which is

(6.2) o* (N(£)) = ¢

; £ .,
; a;(N( ))ej

1
where mg are the optimal algorithms for the solution

operator Sj, i.e.,

n
of (£, E) = T 8 f,
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t, t
1 i+l i+l
B.. = —(t, ,° ds. (t) - tds, (t)]
ij ti+l ti i+l ti j ti J
1 ti ti
- - [t f ds.(t)-f tds.(t)], i = 1,...,n-1,
Bi7Fi-y vy 3 fi-1 3
t t
1 1 n n
g, = M ds.(t) + (e tds, (t)-t__ ds.(t) ],
nj vt 3 £, tn-l L1 3 n lftn_1 j
sj is given in (6.1), j = 1,2,...
The radius of information is
2 Al .t 1., .1;
= prp e r r .
(6.3) r(N) (jzl[~0[~0udsj(u)]dsj(t)+§O[tutdsj(t)]dsjft)
noo2 2 € 1
+ 57 37.t. -2 T8, [l Ttds, (e)+t [ ds.(t)]
jop 3% j=1 13 -0 J i ti j
' 1
+2 z B'ijakjti]}z. B
1<ick<n
We now consider approximation of £ in Lz-norm, that
is, we have the solution operator S:Fl-?FZ, where §S(f) = £,

and F, = {f: “fH2 = {fl [f(t)]2 dt}%}. Applying Theorem 6.1
0

we conclude

Theorem 6.2: Given information N(f) = [f(tl),...,f(tn)],
0 < tl <o tn < 1, for the problem of approximation,

the optimal algoerithm is
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St e £ Suge
tk+l-tk k tk+l—tk k+1 k+1
k=0,...,n-1,
(6.4) o* (N(£)) (u) =
i £ if £ <ugl,

and the radius of information is
6.5 = [-]" n;‘.l t -t )2 + -l(l—t )2}1/2 .
(6.5) r(N) = 6 k—O( k+1” Tk 5 n .

The optimal information N* can be derived from

2
*
ﬁéﬁﬁ_l_ =0, k =1,...,n, This yields
k

Theorem 6,3: For the problem of approximation, the optimal

information is N* (f) = [f(ti),...,f(t;)], where

3k
* =
tk 3n+l’

k=1,...,n.

The radius of information is

(6.6) r(N*) = —=—— a

J2 (3n+1)
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7. Adaption Does not Help.

In previous sections, we only studied nonadaptive

information, i.e., information which is in the following

class:

(7.1)  ¢"°" = ("7, N7 (g = [f(fli;...,f(tn)], where the

points 0 < &, <...<K tn's 1 a;Q<given simultaneously].

1

-

If the i-th point ti depends on the pieviously computed .

function values, then we have adaptive information, the

class of which we denote by
(7.2) ¥2 = (8%: NO(E) = [£(t)),...,£(t )], where

t, = ¢, (£(e.),...,£(t, .)) is measurable in Rl-l,
i i 1 i-1

i=1,...,n}.

N
Bieen U0 0,
’;:( RN

§

By

M



than
hope

than

non

(7.3)
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The structure of adaptive information is much richer
that of nonadaptive information. Therefore one might
that adaptive information can be much more powerful

nonadaptive information. As a matter of fact, since

a
<Y,

inf r(N%) < inf r(Nnon).
a_ a non __non
N €y N €Y

'Is it true that the inequality in (7.3) is strict? It

" turns

out that the answer is negative for many cases.

For approximation of linear operators in a separable

Hilbert space equipped with an orthogonally invariant

measure, it is proved in [8] and [14] that adaption does

not help. Similar result holds for the worst case, see

[9] and [10]. We have

Theorem 7.l: Let S be a continuous linear solution opera-

tor from a Wiener space to a separable Hilbert space. Then

adaption doces not help, i.e.,

(7.4)

inf r(Na) = inf r(Nnon). ll

non_ non
Nae‘ya N €Y

We provide a sketch of the proof, and for a complete one,

see [5].

(7.5)

We consider the following class of adaptive information

K — ~a - ~a —v ot .« o @ v
'y - {N . N (f) - [yll /Yn]r
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)

£(,)-£(%,
i i-1 , T A

— 17 %o
%7850l

m

<1
"

0 €. =€, ..
’ i tl-l

~ . ~ ~ -~ . ) i—l
where ti ti(yl,...,yi_l) is measurable in R s

i=1,...,n}, and the class of nonadaptive information
(7.6) v = (NOTNONE) = (Y. .Y

We prove the following inequality

no . ~
(7.7) inf (N %) ¢ inf £(3°°%
Nnoneynon §n0n€?;}on

< inf ¢(¥) < inf r(n%),

a a a
ﬂ“eyl Nev

and (7.4) follows directly from (7.3) and (7.6).

We decompose the Wiener measure as follows. For each

~non .non

N € Yl , let

w AR = w (@™ a)) for all Borel set A in R".



Then wl('lﬁnon) is a probability measure in Rn, and for

almost all ; = (51,...,yn) € Rn, there exists a unique

probability measure wz('|§) concentrated on V(ﬁnon,;)

~

= (£: N'OU(£) = ¥}, such that

(7.8) w(B) = " _ w, (BAV(¥"°",7)|¥)w. (dF) for all B € B.
~Rn 2 1

See [6 Th. 8.1, and 11] for details.

~ n . . . .
For y € R, we define the local radius of information

~non
N as

1l

(7.9)  c(N"°%,¥) = ( inf ’ ”S(f)-gnzwz(df\§)}2.

e fand o~
3€F2 vy

It is proved in ([11] that r(ﬁnon,§) is w,-integrable, and

1
~ 2 ~ ~ o~
(7.10) r(®°h° = . n r(Nnon,y)zwl(dy).
R
We have
, ~non non
Lemma 7.2: Given information N € Yl , the local

~NO .
radius of information r(Nn n,y) equals the global radius

) ~non
of information r (N ). .

30



From Lemma 7.4, we have

(7. 14) inf r(N0) < inf r(NY).

ﬁaG"{i Nae’ifa

Similarly, we can prove

non nen

(7.15) ° inf (N ) < inf (N,
Nnone?non §non€?Ton

The inequality (7.7) follows from (7.15), (7.

and (7.14).

12)

32
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