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ABSTRACT. Two imbeddings of a graph G are considered to be 
adjacent if the second can be obtained from the first by moving one or 
both ends of a single edge within its or their respective rotations. 
Thus, the collection of imbeddings of G may be regarded as a "stratified 
graph", denoted SG. The induced subgraph of SG on the set of 
imbeddings into the surface of genus k is called the "kth stratum", 
and one may observe that the sequence of stratum sizes is precisely the 
genus distribution for the graph G. It is proved that the stratified 
graph is a complete isomorphism invariant for the category of graphs 
whose mini.u. valence is at least three and that the spanning subgraph of 

SG corresPonding to moving only one edge-end is a cartesian product of 
graphs whos. underlying isomorphism types depend only on the valence 

sequence for S. 
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1. Introduction 

The set of imbeddings of a graph G admits a natural concept of 

adjacency between imbeddings. We thereby obtain a graded lIedge-colored ll 

graph, denoted 5G, that we call the "stratified graph" for G. A few 

preliminaries and the formal definition of 5G appear in this section, 

shortly below. 

The stratified graph 5G is very much larger than G itself. 

Indeed, each point of SG typically has more neighbors than G has 

vertices. Some of the structure of such a neighborhood is described by 

Cayley graphs we call "circular arrangement graphsll, which we examine in 

Section 2. In Section 3, we study the general structure of the neighbor­

hood of any point in SG with particular attention paid to cliques. In 

Section 4, we show how to reconstruct a graph from a neighborhood of any 

point in the colored stratified graph, thereby established the colored 

stratified graph as a complete invariant of isomorphism type over the 

category of all graphs of minimum valence at least 3. The uncolored 

stratified graph is considered in Section 5 and related to the medial 

graph of an imbedding. The cubic case is analyzed completely and is 

shown to provide a large supply of constant link (Zykov regular) graphs. 

Beyond the inherent topological interest in the formulatio~ of this 

non-superficial complete invariant for isomorphism type, one might well 

wonder about the usefulness of something so large in isomorphism testing. 

In Section 6 we illustrate how two graphs might be Hnearly isomorphic ll , 

yet distinguishable by accessible properties of their stratified graphs. 

Throughout this paper, a graph is "simplicial", that is, it has no 
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multiple adjacencies or self-adjacencies. It is taken to be connected, 

unless one can readily infer otherwise from the immediate context. 

The closed orientable surface of genus j is denoted Sj' By an 

imbedding we mean a cellular imbedding into a closed orientable surface. 

In general. the methods described here are readily adaptable to the non­

orientable surfaces and to the collection of all closed surfaces. 

In the present exposition, it is assumed that the reader is familiar 

with the fundamentals of topological graph theory. as described by Gross 

and Tucker [1987J, or -- with minor terminological differences -- by 

White [1984J. 

We regard two imbeddings as adjacent if one can be obtained from the 

other either by moving an edge-end in the rotation at its vertex to 

somewhere else in that rotation, or by moving both ends of the same edge 

within their respective rotations. The set of embeddings of a graph G 

may be regarded as the points of a stratified graph 5G, in which we 

visualize a labeling of each point by the genus of the corresponding 

imbedding surface for G. 

We think of the point-labels as altitudes. The two kinds of 

imbedding-adjacency (i.e., one edge-end or both) are called VM-lines and 

EM-lines, for ·vertex modification ll and Uedge modificationll, respectively. 

(We like to draw them in the mnemonic colors "violetU and lI ecru ll.) For 

clarity, we refer to "vertices" and lIedges" in G, and to "points" and 

"lines" in 5G. 

The induced subgraph in 5G on all the G-imbeddings into 5j is 

-2-



called the jth stratum for (the imbedding system of) the graph G and is 

denoted S~. Lines of SG that lie within a single stratum of G are 

called lev~ lines, All other lines of SG run between consecutive strata 

and are called transverse lines (or transversals). 

The size of the j!h stratum is denoted g.(G}, 
J 

or simply gj' if 

there ;s only one graph whose imbeddings are under consideration. Thus, 

the sequence 

gO,gl,g2' .,. 

of stratum sizes is just the genus distribution for the graph G. 

Conversely, we observe that the problems of describing the structure of 

the stratified graph SG is precisely a refinement of the problem of 

calculating the genus distribution of G. 

Thus, stratified graphs are a proper member of the hierarchy of 

graph invariants that correspond to distributional information about the 

entire system of cellular embeddings of a graph, described by Gross and 

Furst [1988J. There are already several calculations of formulas for 

genus distribution, region-size distribution, and other invariants at the 

low end of that hierarchy. 

The first such calculation for any infinite classes of graphs was the 

result of Furst, Gross, and Statman [1989J establishing the genus distribu­

tions of closed-end ladders and of "cobblestone paths". Gross, Robbins, and 

Tucker [1989] have derived the genus distributions of bouquets, by using a 

formula of Jackson [1987J concerning representations of the symmetric group. 

Rieper's thesis [1987] includes a computation of the region-size 
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distributions for bouquets and several other significant results, based on 

enumerati v~D!thods of Redfi el d [1927J. Mull, Ri eper, and White [1987J 

enumerated the congruence classes of imbedding distributions of wheels and 

of complete graphs. Rieper [198~ has also calculated the stratified graphs 

for cobblestone paths. 
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2. On circular arrangement graphs and the VM structure of the stratified 
graph ._ 

~. 

Two clfi1c permutations on d symbols are considered to be adjacent 

if the first can be transformed into the second by moving a single symbol. 

For instance, if we move the symbol i within the "standard d-cycle" 

C=(12 •.. d) 

to a new location preceding the sumbol j, we obtain the adjacent d-cycle 

(1 ... i-I ;+1 ... j-l i j ... d) if i < j 

or (1 ... j-l i j ... i-I i+l ... d) if i > j. 

Under this notion of adjacency the collection of d-cycles form what we 

call the circular arrangement ~ on d symbols, denoted CAd' Circular 

arrangement graphs are highly symmetric: they are Cayley graphs. Recall 

that the Cayley graph for the group A given a generating set X has A 

as vertex set and edges between a and ax for all a in A and all x 

in X. Left multiplication by A on the vertices of any Cayley graph for 

A gives a subgroup of the automorphism group of the Cayley graph, and is 

transitive and fixed-point free on the vertex set. In fact, the existence 

of such an action of a group A on a graph G makes G a Cayley graph 

for A. 

THEOREM 2.1 The circular arrangement graph CAd is a Cayley graph 

for the full s~tric group Ld-l on d-l symbols with generating set 

the collectfOft of all cycles of consecutive integers, that is cycles of the 

form (i 1+1 ••• j-l j). 1" i < j < d, together with all powers of the 

standard d-l cycle (1 2 ••. d-l). 

Proof. Write each d-cycle so that the symbol d appears last. Then 
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each d-cycle written in this standardized cycle form can be described 

uniquely bY-I permutation ° of the symbols 1,2, ... , d-l, which 

tells the order in which these symbols occur in the d-cycle. We do not 

think of ° itself in cycle form, but rather as a rearrangement of the 

symbols I, 2, ... , d-l. Suppose that the n-cycles C1 and C2 are 

adjacent by moving symbol i, where i < d. Then the corresponding 

permutations 01 

when the symbol 

and 02 agree as arrangements of the symbols 1, ... , d-l 

i is deleted. If 1T is any other permutation of 

I, ...• d-l. then 1T 01 and 1T 02 agree as arrangements when the 

symbol 1T(i) is deleted. Thus 1T 01 and 1T 02 correspond to adjacent 

d-cycles. Suppose instead that C1 and C2 are adjacent by moving the 

symbol d. If C1 is written as a cycle in standard form with d last 

and if C2 is then obtained from C1 by moving d to the position 

immediately before the ith symbol in the standard cycle form for C1, 

then the arrangement 02 for C2 is obtained from the arrangement 01 

for C1 by cyclicly shifting right d-i times. If 1T is any permutation 

of 1 •... , d-l, then n 02 as an arrangement is also obtained from 1T 01 

by cyclicly shifting right d-i times. Therefore 1T 01 and 1T 02 again 

correspond to adjacent d-cycles. 

We conclude that the vertices of CAd can be identified with 

elements of the full symmetric group Ld-l and that left multiplication 

by an element of Ld-l is a graph automorphism of CAd' It follows 

that CAd is a Cayley graph for L d-l- The associated generating set 

is recovered by looking at vertices of CAd adjacent to the identity 

element of Ld-l' which corresponds to the standard d-cycle C. Moving 

symbol i to the position immediately preceding j in C is achieved, 
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when ; < j, by applying the inverse of the cycle of consecutive integers 

(1 1+1 ••. j-l), and when i > j by applying the cycle (j .•• ;-1 1). 

Cyclic right shifts of 1 2 d-l are achieved by applying powers of 

the standard (d-l)· cycle (1 2 ... d-l). 0 

The spanning subgraph of SG containing only the VM-lines is called 

the VM-subgraph. The proof (omitted) of the following structure theorem 

is an exercise in definitions. 

THEOREM 2.2 let G be a graph with valence sequence d1, •.. , dn. 

Then the VM-subgraph of SG is isomorphic (as a graph, neglecting altitude 

labels) to the cartesian produce of n circular arrangement graphs on 

d1, d2, ... , dn symbols, respectively. 0 

Theorem 2.2 raises the recognition problem for stratified graphs: 

which labelings of cartesian products of circular arrangement graphs are 

realizable as VM-subgraphs of stratified graphs? Since CA 3 is just 

the complete graph K2 on two vertices, the case of 3-regular graphs 

is of particular interest: which labelings of the n-cube Qn are 

isomorphic to the VM-subgraph of the stratified graph for a 3-regular 

graph? 
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3. Links of points in the stratified graph 

If v is a vertex of a graph G, then the link of v is the subgraph 

of G induced by the set of all vertices adjacent to v (this does not 

include v itself). Given a point p in the statified graph SG, let 

L(p) and VL(p) denote, respectively, the link of p in SG and the 

link of p in the VM-subgraph of SG. Call L(p) the total link of p 

and VL(p) the VM link of p. The purpose of the sections of this paper 

following this section is to show how to recover an underlying graph G 

from the total link L(p) of any point in the stratified graph SG. In 

order to do this, we must understand the adjacency structure of L(p). 

If two points of L(p) are obtained from p by moving one or both 

ends of the same edge e, then those two points are adjacent to each othe~i 

again by moving ends of the edge e. Call such an adjacency or such a line 

in L(p) standard. The structure of L(p) would be reasonably easy to 

describe if all lines in L(p) were standard: each edge e in G gives 

rise to a clique of points in L(p) corresponding to all the embeddings q 

which agree with p except for the placement of the ends of edge e. Call 

such a clique an edge clique. Every line in L(p) is in some edge clique. 

Two edge cliques share a point q if and only if the two edge e1 and e2 
corresponding to those cliques are consecutive at some vertex v in the 

imbedding .P.' (that is, e2 immediately follows e1 in the rotation at 

vertex v Ir vice versa) and q is obtained from p by switching e1 
and e2 at vertex v. Call q a switch pOint. 

Unfortunately. there are extra adjacencies. that is. adjacencies 

which are not standard. For example, suppose that P. q. and r are 

imbeddings which agree at every vertex except vertex v. where the 

rotations are 
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p: ... eOele2e3e4··· 

q: ... eOe2e3ele4··· 

r: ... eOe3ele2e4'" 

Then q and r are both in L(p), the former by moving e1 and the latter 

by moving e3. However, q and r are also adjacent to each other by 

moving e2. This is not a standard adjacency in L(p). Call it an extra 

adjacency of type 1. 

Suppose instead that G has edges uv, vw, and wu, and that in the 

embedding p the edges uv and vw are consecutive at vertex v, that vw 

and wu are consecutive at vertex w, and that wu and uv are consecutive 

at U; call such a triangle in the imbedding p a consecutive triangle. 

Let qu be the imbedding obtained from p by switching edges uv and vw 

at vertex v and by switching edges vw and wu at vertex w. Thus qu 

is obtained from p by moving edge vw. Define qv and qw similarly. 

Then qu and qv agree at vertex w but differ at vertices u and v. 

Thus qu and qv are adjacent by moving the edge uv. This is an extra 

adjacency in L(p). There are a 1s0 extra adjacencies between qv and qw 

and between qw and quo Call these tyPe 2 extra adjacencies. 

The following theorem shows that the two types of extra adjacencies just 

described are the only extra adjacencies in L(p). To help in the analysis, 

let us call I point in L(p) a VM point if it is VM-adjacent to p and a 

EM point othlr.rtse. 

THEOREM 3.1 The only extra adjacencies in L(p) are type 1 or type 2. 

Proof. Let q and r be points in L(p). If q and r are VM 

points differing from p at vertices u and v respectively, u ~ v, then 
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the only way they can be adjacent is if they are obtained from p by 

moving op~ ends of edge uv; that is, they are standardly adjacent. 
c-'--

SuppoSi that q and rare VM points differing from p at a 

single vertex v and that q and r are obtained from p by moving 

edges e1 and e3, respectively. Suppose in addition that q and r 

are adjacent by moving an edge e2 that is different from e1 or e3; 

that is. q and r are joined by an extra line in L(p). If e2 were 

deleted. then q and r would be identical and would agree with p 

except for edges e1 and e3• Thus without e2, we would have edges 

e1 and e3 consecutive at vertex v in p, say in the order e1 e3, 

and also consecutive in q and r, but in the oppos He order e3 e1 
(reca 11 that in q only edge e1 is moved and in r only edge e3 is 

moved) . Now consider the placement of edge e2 at vertex v in p. If 

the order is e1 e2 e3 in p, it must be e2 e3 e1 in q since only e1 
moves and e1 goes after e3 in q. Similarly the order must be 

e3 e1 e2 in r, since only e3 moves this time and again e1 goes after 

e3· Therefore if the order is e1 e2 e3 in p, we have an extra adjacency 

of type 1. Suppose the order at p is e2 e1 e3 instead. Then the order 

in q must be e2 e3 e1 since only e1 moves and e1 goes after e3. 

But then q is adjacent to p by moving e3. Since r is already 

adjacent tQ.-J~ by IDOv1ng e3t it follows that q and rare standard1y 

adjacent by.wtng e3• Similarly, if the order in p is e1 e3 e2, 

then q and r are standard1y adjacent by moving edge e l . 

Suppose that q is a VM point and r is an EM point. If q 

agrees with p except at the vertex u and r agrees with p except at 

v and w, where v ~ u and w ~ u, then there can be no way of changi ng 
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q at all three vertices u, v, and w simultaneously. Thus q and r 

are not adjacent. If q agrees with p except at vertex u and r 

agrees with p except at u and v, then the only adjacency between 

q and r ;s a standard one obtained by moving the ends of edge uv. We 

conclude there are no extra adjacencies between VM and EM points. 

Finally suppose that both q and r are EM points and that q 

and r are obtained from p by moving both ends of edges uv and wx 

respectively, where at least u, v, and ware distinct. Suppose in 

addition that q and r are adjacent. Then x = u or x = v, since 

the movement of a single edge cannot change an imbedding at four distinct 

vertices. Assume x = v. By hypothesis q and r differ at both vertices 

u and w. Thus in order for q and r to be adjacent, they must agree 

at vertex v and there must be an edge uw, which can be moved to change 

the embedding q at u and w into the embedding r. Since q moves 

edge uv and r moves edges vw, in order for q and r to be the 

same at vertex v the edges uv and vw must be consecutive in p, q 

and r at v. Since q agrees with p at w but is adjacent to r by 

moving edge uw, it must be that imbedding r at vertex w is obtained 

from p not only by moving vw, as hypothesized, but also by moving uw. 

Therefore vw and 

Similarly~ uv and 

Therefore uv. vw, 

adjacency is type 2. 

uw are consecutive at vertex w in both p and 

uw are consecutive at vertex u in both p and 

and wu form a consecutive triangle and the extra 

o 

r. 

q. 

With Theorem 3.1 in hand, we know where all the lines in L(p) come 

from. To recover G from L(p), we will also need to use the coloring 

of lines at VM or EM. The following lemmas describe the structure of 
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the VM link of p, namely VL(p). 

LEMMA-3.2 The link of a vertex in CA3 is a single vertex. The link 

of a vertex in CA4 is a 4-cycle. The link of a vertex in CAd' for 

d> 4, consists of d copies Hl ,H
2

, ••• ,Hd of the complete graph Kd_2 

arranged in a circle so that Hi shares exactly one vertex with Hi _l and 

exactly one vertex with Hi +l , and, in addition, for each ; there is an 

extra edge joining a vertex of Hi with a vertex of Hi+2 (the joined 

vertices are not shared vertices). In particular, the link of a vertex in 

CAd' for all d> 2, is connected and nonempty. 

Proof. Consider the general case of d> 4 first. Since CAd ts 

vertex symmetric, we can just look at the lines of the standard d-cycle C. 

There are d - 2 different positions the symbol i can occupy in an 

arrangement of the symbols 1, ... , d-l other than position i itself. 

Thus the set of vertices in CAd obtained from C by moving symbol i 

induce in the link of C a complete graph Hi' The subgraphs Hi and 

Hj share a vertex if and only if i and j are consecutive in cycle C, 

that is j = i + 1 or i = j + 1. The extra edge joining vertices in Hi 

and Hi +2 is that corresponding to an extra adjacency of type 1. 

For d = 3, clearly CAl is a two-vertex graph so the 1 ink of a vertex 

is a sing1. vertex (technically, the description for d> 4 still holds 

since 3 copi.s of Kl each sharing a vertex with the other is simply a 

single vertex). For d· 4, one might expect the link to be a 4-cycle 

together with both diagonals as the extra edges, but again the description 

requires the extra edges to be between vertices in Hi and Hi +2 that 

are not shared with another Hj • When d = 4, each of the two vertices in 
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Hi is a shared vertex. Alternatively, one can check that the two vertices 

(2314) and (3124) joined by an extra edge, although apparently obtained by 

moving 1 and 3 respectively, are also obtained by moving 4 and hence 

are already standardly adjacent. 0 

The clique structure of L(p) ;s complicated by extra adjacencies, 

but it is still possible to give a complete description. The extra lines 

of type 1 join vertices in edge cliques which do not share a switch point. 

Hence each of these lines ;s a clique of size two. If t is a consecutive 

triangle in the imbedding p, then the three switch points in L(p) 

corresponding to t form a standard triangle, and the three extra 

adjacencies of type 2 created by t form a second triangle in L(p). 

Finally, a third type of triangle is created in L(p) by t among any 

two EM points q and r joined by an extra line of type 2 together with 

the switch point shared by the edge cliques containing q and r. Call 

these three types of triangles in L(p), respectively, the VM triangle, 

the EM triangle and the VEM triangles (there are three of them) created by 

the consecutive triangle t. As long as G is not K4, it is impossible 

to have a configuration of four consecutive triangles in the imbedding p 

based on four vertices in G. It follows that each of the triangles 

created by a consecutive triangle is not contained in a larger clique. 

Thus each of these triangles is a clique by itself, and every clique of 

size larger than 3 is an edge clique. We summarize this discussion in 

the following theorem. 

THEOREM 3.3 Let G be a graph of minimum valence 3 and p a point 

in SG. Then the cliques of L(p), listed by size, are as follows: 
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1) there are no cliques of size 1; 

2) every clique of size 2 is an extra line of type 1; 

3) every clique of size 3 is a VM, EM, or VEM triangle 

created by a consecutive triangle in p, or the edge clique 

of an edge in G joining two vertices of valence 3; 

4) toll cliques of size 4 or greater are edge cliques. 0 
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4. The ca.plete invariance of colored stratified graphs 

We will show that a graph 6 can be recovered in a canonical way 

from the link of any point in the stratified graph S6, if we are given 

the coloring of lines of S6 as VM or EM. An edge uv in a graph G 

is contracted by deleting the edge, identifying u and v, and removing 

any resulting multiple adjacencies. 

THEOREM 4.1 Let G be any graph of minimum valence 3 and let p be 

any point in the stratified graph S6. Then 6 is isomorphic to the 

graph obtained from the link L{p) by deleting all EM points and then 

contracting all VM lines. 

Proof. The link of a vertex in a cartesian product is the disjoint 

union of the links of the coordinates of that vertex in the factors of the 

cartesian product. Therefore the VM link VL{p) consists of n disjoint 

graphs of the form described in Lemma 2.3, one for each of the n vertices 

of G. Since each of these graphs is connected, again by Lemma 2.3, each 

component of VL{p) corresponds to a vertex of G. Moreover, there is a 

line joining points in different components of VL(p) if and only if the 

corresponding vertices of G are joined by an edge (extra lines of type 1 

only join points in the same component of VL(p) and extra lines of type 2 

only join EM points in L{p)). Thus if EM points are deleted and VM 

lines contracted. each component of VL(p) will contract to a single point, 

corresponding to a single vertex of G, and the points will be joined by 

lines if and only if the corresponding vertices in G are joined by 

edges. 0 
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COROLLARY 4.2 The VM/EM colored stratified graph is a complete 

isomorphis. invariant for simplicial graphs of minimum valence 3. 0 

Although the interest of this paper is simplicial graphs, one can 

also recover multiple adjacencies and self adjacencies. The number of 

points in a component of VL(p) determines the degree of the corresponding 

vertex of G. The number of EM lines joining different components of 

VL(p) determines the number of edges joining the corresponding vertices 

of G. Once the degree of each vertex and number of mUltiple adjacencies 

have been determined, the number of self-adjacencies at each vertex is 

determined. The simplicial structure of G is already determined by 

Theorem 4.1. We therefore have the following corollary for non-simplicial 

graphs. 

COROLLARY 4.3 The VM/EM colored stratified graph is a complete 

isomorphism invariant for all graphs of minimum valence 3. 0 
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5. The uncolored stratified graph 

We would like to be able to recover G from its stratified graph SG 

without using the VM coloring, but simply from the adjacency structure 

alone. In this section, we show how this can be done for cubic graphs, 

that is regular simplicial graphs of valence 3. We also consider the 

case when G has minimum valence 4. 

Suppose that G is a cubic ~ and that p is a point in SG. 

Each component of VL(p) consists of a single point, which means in 

Theorem 4.1 no edge contractions are necessary. Thus G is isomorphic 

to the subgraph of L(p) induced by the points of VL(p). The trouble 

is that without the VM coloring, we cannot directly detect which points 

in L(p) are in VL(p). Nevertheless, the entire adjacency structure of 

L(p) is not difficult to describe. Each EM point in L(p) is 

standardly adjacent to two VM points: each edge-clique in L(p) 

consists of a triangle containing one EM point (corresponding to 

moving both ends of the edge) and two VM points (corresponding to moving 

either end of the edge). There are no extra lines of type 1. However, 

since every triangle in a cubic graph is a consecutive triangle, for 

every triangle t in G there is a triangle of extra lines of type 2 

in L(p) joining the three EM points corresponding to moving both 

ends of each of the three edges of t. We can summarize this discussion 

as follows. 

THEOREM 5.1 Let G be a cubic graph and p any point in SG. Then 

the link of p can be obtained from G by doubling every edge, inserting 

an extra vertex of valence 2 in each added edge, and for each triangle 
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t in G, adding a triangle joining the three new vertices on the doubled 

edges of triangle t. In particular, if the graph G is not K4, then G 

is the subgraph of L(p) induced by all points of valence 6 which are 

themselves adjacent to at least three points of valence 6. 

Proof. We must verify only the last statement about points of valence 

6. Each VM point in L(p) is adjacent to three other VM points and to 

three EM points. Thus each point in VL(p) has valence 6 and is adjacent 

to at least three other points of valence 6. Each EM point has valence 

2, 4, 6 depending on whether the edge of G moved by that EM point lies 

on no, one, or two triangles in G. However, an EM point is adjacent to 

any two VM points. Therefore, if an EM point of valence 6 is adjacent to 

three or more points of valence 6, at least one of these points must be EM 

as well. The resulting adjacent EM paints, each of valence 6, must 

correspond to two edges of G, each of which lies in two triangles of G 

and both of which lie on the same triangle of G. It is easily verified 

that this can only happen if G is K4. Therefore the points of valence 

6, which are adjacent to at least three points of valence 6, are 

precisely the pOints of VL(p). 0 

COROLLARY 5.2 If G is cubic, then the link of every point in p is 

the same. 0 

Thus for cubic graphs, the stratified graphs SG, all have constant 

link and are ·Zykov regularM graphs (Brown and Connelly [1973J.) In fact, every 

triangle-free cubic graph G is the link of some finite, constant-link 

graph, after each edge of G is doubled and a vertex of valence two is 

inserted in each added edge. 

-18-



COROLLARY 5.3 The uncolored, unlabelea stratified graph is an 

isomorphisa invariant for cubic graphs. 

Proof. By Theorem 5.1, we need only distinguish the stratified graph 

for K4 from the stratified graphs for other cubic graphs. This is 

simply a matter of counting vertices: if G has n vertices and 

m=3n/2 edges, then SG has m+m vertices. Therefore K4 is the only 

cubic graph whose stratified graph has 10 vertices. 0 

For noncubic graphs, we are unable to recover G from the link of a 

point p in SG, but we can recover some interesting information about 

G and the imbedding p itself. Given any graph G, the line ~ LG 

for G has a vertex for each edge in G and an adjacency between two 

vertices if and only if the corresponding edges in G are incident to the 

same vertex of G. Given an imbedding p of G, the medial ~ MG p 

has a vertex for each edge in G and an adjacency between two vertices if 

and only if the corresponding edges in G are consecutive at some vertex 

of G in the imbedding p. Clearly MGp is a subgraph of LG, and is 

regul ar of valence p. If G is cubic, then MG = LG for every imbeddi ng p 
p of G. In general. however. MGp depends on the imbedding p. It also 

depends on G, but does not determine G; for example, the medial graphs 

of an imbedding and its dual imbedding are isomorphic. For an interesting 

application of medial graphs to self-dual graphs, see Archdeacon and Richter 

[1989]. Our main theorem shows how to recover the medial graph MGp from 

the link of a pOint p in the uncolored stratified graph SG, for most 

graphs G. 

THEOREM 5.4 Let G be a graph of minimum valence 3 such that no 

-19-



triangle in 6 contains more than one vertex of valence 3. Then for 

any point p in 56, the medial graph M6 is isomorphic to the graph p 

that has a vertex for each clique in L(p) of size greater than 3 and 

each clique of size three including a point of valence 2, and has an edge 

between two vertices if and only if the corresponding cliques share a 

point. 

Proof. By Theorem 3.5, every clique in L(p) of size greater than 3 

is an edge clique. Conversely, every edge in 6 incident to a vertex of 

valence greater than 3 gives rise to a clique in L(p) of size greater 

than 3. By Theorem 3.5, every clique in L(p) of size 3 containing a 

point of valence 2 is an edge clique corresponding to an edge in 6 

between two vertices of valence 3. Since by hypothesis e does not 

lie on a triangle in 6, the point in L(p) corresponding to moving 

both ends of edge e is not involved in any extra adjacencies and hence 

has valence two in L(p). It follows that the edge clique for e has 

size 3 and contains a point of valence 2. We conclude that the 

vertices in the graph constructed in the statement of this theorem 

correspond to the edges of 6. Since two edge cliques in L(p) share a 

vertex if and only if the corresponding edges are consecutive at some vertex 

in the imbedding P. the constructed graph is the medial graph M6p. 0 

We believe that the restriction in Theorem 5.4 on triangles and 

vertices of valence 3 is not necessary, and that even for general 6 the 

clique structure described in Theorem 3.5, can be used to identify which 

cliques of size 3 in L(p) are edge cliques. On the other hand, we do 

not see how to recover the original graph 6, not just the medial graph, 
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from L(p) alone. It is conceivable that nonisomorphic graphs may have 

some isomorphic links in their uncolored stratified graphs. If that is the 

case, we cannot count alone on the local structure of the uncolored 

stratified graph 56 to determine the isomorphism type of G. We 

nevertheless conjecture that the uncolored stratified graph is a complete 

isomorphism invariant. 
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6. Strata for Two ·Nearly Isomorphic· Graphs 

To draw an entire stratified graph would be quite laborious. After 
-

all, the number of imbeddings of an n-vertex graph might be about as large 

as (n!)n, the average VM-valence about n3, and the average EM-valence 

about n4. Even to draw the strata tends to be a formidable task, and to 

compute the strata sequence of a graph is evidently more difficult than 

to compute the genus distribution, which is simply the sequence of strata 

sizes. However, if our objective is to distinguish isomorphism types, 

we cannot content ourselves with genus distributions. 

Although Gross, Klein, and Rieper [1989] used elementary methods to 

construct arbitrarily many non-isomorphic 2-connected graphs with the same 

genus distribution, the construction of non-isomorphic 3-connected 

simplicial graphs with the same genus distribution was resistant until 

Rieper [1987] successfully used Redfield enumeration. Even if such 

examples were not known, the similarity in the genus distribution 

2, 38, 24 

of the circular ladder CL 3 with three rungs (a.k.a. K~K2' see Gross 

and Furst [1987]) and the genus distribution 

0, 40, 24 

of the Mobius ladder ML3 on three rungs (a.k.a. K3'3' see ibid.) is 

disquieting. since one could not expect to distinguish the two easily with 

a small sa.pl. of imbeddings. Moreover, McGeoch [1987] has proved that, 

in general, circular ladders and Mobius ladders with the same number of 

rungs have nearly identical genus distributions. In particular, they 

have the same number of imbeddings in all surfaces of genus two or larger, 

and differ elsewhere only in that the circular ladder has two sphere 
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imbeddings and the Mobius ladder none, but two fewer toroidal imbeddings 

than the Mobius ladder. 

Having explained our motivation for examining such large objects. we 

now consider the VM-strata of CL3 and of ML 3. As illustrated by 

Figure 4.1 and Figure 4.2, the VM-strata are overtly different in various 

readily apparent respects. Details of the derivations of these 

illustrations are omitted because, although numerous, they are not 

difficult. 
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