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Abstract

Current NAC technologies implement a pre-connect phaseentine status of a device is checked against
a set of policies before being granted access to a netwodkagost-connect phase that examines whether the
device complies with the policies that correspond to it il the network. In order to enhance current NAC
technologies, we propose a new architecture basdeebaviorsrather tharroles or identity, where the policies
are automatically learned and updated over time by the mesydfehe network in order to adapt to behavioral
changes of the devices. Behavior profiles may be presentatbasty cards that can change over time. By
incorporating an Anomaly Detector (AD) to the NAC server ordach of the hosts, their behavior profile is
modeled and used to determine the type of behaviors thatdbewaccepted within the network. These models
constitute behavior-based policies. In our enhanced NABit@cture, global decisions are made using a group
voting process. Each host’s behavior profile is used to caenppartial decision for or against the acceptance of
a new profile or traffic. The aggregation of these partial s@mounts to the model-group decision. This voting
process makes the architecture more resilient to attacksn Bfter accepting a certain percentage of malicious
devices, the enhanced NAC is able to compute an adequatéatediVe provide proof-of-concept experiments of
our architecture using web traffic from our department nekw@ur results show that the model-group decision
approach based on behavior profiles has a 99% detectionfrateomalous traffic with a false positive rate of
only 0.005%. Furthermore, the architecture achieves satamcies for both the pre- and post-connect phases.

Keywords. Network Access Control Technologies, Intrusion Detecigistems.

1 Introduction

Network Access Control (NAC) technologies manage the acokdevices to a network and mitigate against inside
threats within a network. This is accomplished by implermegnta two-tier strategy: the pre-connection and the
post-connection phases. The pre-connection phase chdwithevr a device attempting to connect to a network
complies with a set of policies. These policies typicallglide checking the status of the antivirus (AV) software in
the device and whether or not the required patches for ther®Bstalled. If the device is not up-to-date, it is either
guarantined or rejected from connecting to the network. pb&t-connection phase controls whether the policies
(AV software, patches) are still being complied with by thewmork hosts. It may also include traffic monitoring
meant to detect any anomalous traffic using Signature-basA@domaly-based Detection Systems (AD).

The current generation of NAC technologies rely on the uséxefd roles in the network. A list of roles is
initially declared manually using a pre-determined setltdracteristics. Devices are then provided with roles in
the network that can only be changed manually. These roes@ronly used to decide what devices are granted
access to the network, but also to monitor what type of astare allowed for each device. In reality, networks are
very dynamic environments where devices may change roleswrroles may have to be created. Unfortunately,
updating and defining new roles manually becomes very deimgehd highly inefficient as time elapses. Ideally,
we seek a solution that can define and update roles autoithatigdnout the inception of a human in the loop.

In this paper we introduce a new Behavior-Based Network s8scgontrol architecturdBB-NAG in which the
behavior profiles of network hosts modeled by an AD are useditomatically compute and update behavior-based
policies to enhance security. This new strategy enhanaesrmtNAC technologies by accounting for host behavior



and its changes. The use of behavior profiles allows us tovattcally conform to changes in behavior and update
security policies without human intervention. In our prepd architecture, AD sensors are used to model the profile
of the hosts in the network. Profiles are communicated bycdsvas a representation of their typical behavior.
As behaviors change, updated models computed by the AD ptared as new behavior profiles. These behavior
profiles can be used as a declaration of intent of behaviothitnmanner, devices that drift from their profile are
either under attack or have lied about their typical behavio

In terms of deployment, BB-NAC can be implemented eitherragagent NAC architecture where the AD is
installed directly on each of the hosts in the network, oeralitively as an agentless NAC architecture using a
unique AD installed on the NAC server. Here a NAC server desiatserver that sits on the edge of the network and
listens to incoming and outgoing traffic. In an agent NAC #eglture, each host computes its behavior profile and
communicates it to the NAC server. In an agentless NAC achite, the NAC server itself models the individual
behavior of each host in the network and stores its profilallpcBy modeling each profile individually, rather than
as a group, profiles of similar behavior can be clusteredttegeand differentiated from other types of behavior.
As an aside, we note that our architecture can be appliedtteones without a central control like Mobile Ad-hoc
Networks (MANETS) by eliminating the NAC server from the hitecture. The latter is beyond the scope of this
paper. In the following sections, we present a generalizstription of the architecture that can be implemented
either as an agent or as an agentless version with minor roatiifins.

In terms of execution, the BB-NAC architecture performs-poanection and post-connection checks based
upon a group decision made by the NAC server using the prajiiébe devices already in the network. During
pre-connection, a device attempting to access the netwasepts its profile to the NAC server that conducts a
voting process among the stored profiles of the hosts alrgatlye network to reach an access control decision.
During post-connection, the validity of the traffic exchadgs similarly voted by the profiles in the network. If
the group decision is positive, the device is granted admessrvices. Otherwise, the device is either quarantined
or rejected from accessing a service. Individual hosts dgadicipate actively in the voting process, but rather
it is the NAC server that conducts the voting among the grduipdividual models (profiles) stored on the NAC
server. Throughout the paper, we refer to decisions madesmtanner amodel-group decisianSuch model-group
decision process increases the survivability of the nétvingr minimizing the influence of malicious profiles. As
mentioned previously, profile clustering is introducedttaia a more fine-grained definition of network behavior. In
this manner, only hosts in clusters with sufficient knowkegarticipate in the voting process. Below we summarize
the main contributions of this paper:

e A new technique to automatically learn and update accessat@olicies using behavior. This approach
enhances existing NAC technologies by providing, to the bé®ur knowledge, the firsbehavior-based
network access control.

e A novel access control model based on a model-group decsmress. Individual host’s behavior profiles
stored on the NAC server are used to compute partial deaisibime aggregation of these partial votes amounts
to the model-group decision.

¢ An architecture resilient to attacks. The access contralehoontinues to work even after allowing a certain
number of malicious devices into the network.

e An implementation for agent or agentless NAC technologg.installing an AD on the NAC server or on
the hosts, the model-group decision process is conductéitebdMAC server in similar fashion.

e An architecture that is independent of the type of AD sensedu content ADs, volumetric ADs, or others.
In Section 2 we describe related work. Section 3 introdubesBB-NAC architecture. Section 4 shows experi-

mental results and latency analysis of our architectuneallyi, Section 5 covers conclusions and future work.
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2 Reated Work

To the best of our knowledge, we are the first to introdbebavior model exchanges a security feature. Possi-
bly the closest concept to our approach was developed byldlead Lee [5], [4] and [6] in their Proof-Carrying
Code (PCC). However, our approach differs in the fact thhtbi®r can be automatically learned from observation,
whereas proofs are specified by hand. Furthermore, ourtaothie proposes the exchange of behavior models
instead of safety proofsCooperative Anomaly Detection Sensbeasve been explored in WORMINATOR [8], COS-
SACK [7] and CATS [3] where a distributed environment shakests to strengthen each individual local security
capabilities. We implement the concept of cooperation érttodel-group decision process by allowing each host
to participate in the access control decision rather thahgharing alerts.

A number of NAC technologies are currently available in tharket. TheTrusted Network Conne€TNC) is
an initiative of theTrusted Computing Grouihat proposes a non-proprietary standard to enable thecemi@nt of
security policies on endpoint€isco Network Module for Integrated Services Routdfsrs an agentless solution
authenticating, authorizing and remediating devices eotau wired or wirelessly to the network. T@esco Profiler
executes an in-depth control of the endpoint devices of #tevark by passively monitoring their traffic. The
Network Access ProtectidiNAP) platform fromWindows provides a client and server-side platform ( Longhorn) to
implement policy validation, network access limitationf@mnatic remediation and ongoing compliance. Compared
to all other previous NAC technologies, our architecturesubehavior computed by an AD instead of roles (host
posture) as a security feature.

3 TheBB-NAC Architecture

We start with the conjecture that behavior modeled by an AD loa used as a means to enhance and automate
security enforcement in a NAC architecture. We assume tladtlgs or behavior models represent the typical
behavior of a device. As opposed to roles, profiles can bevaatioally computed and updated by an AD as a device
changes behavior over time. In our architecture, devicislig present their profiles to the NAC server prior to
entering a network. Devices are also required to presdraidamodelhat represents a collection of all previously
seen bad attacks modeled using the same AD. The bad modalmegdise amount of knowledge the device has
about known bad behaviors and might be considered a gerstiahi of the set of rules or signatures used in a
standard AV.

BB-NAC then follows the two-tier strategy commonly used iAGlarchitectures except that thee-connectand
post-connecphases are both based on a model-group decision processctetdn the NAC server i.e., an alert is
raised whenever a set of profiles agree on the access cortisiah being made. Furthermore, the access control
policies in the NAC are computed and updated automaticalltha ADs compute new models. Thee-connect
phasechecks whether a device entering the network has up-tordateare knowledge. Devices that do not have
sufficient malware knowledge are quarantined or rejecteahfentering the network altogether. On the other hand,
the post-connect phasie responsible for a continuous check of the traffic exchdrmgethe hosts in the network.
The two-tier strategy is applied on a per-port basis. In tagecof multiple ports, the two-tier strategy is executed
separately for each individual port. The device is acceptdg when it is deemed normal for all ports. Next, we
describe the pre- and post-connect phases in more detail.

3.1 Pre-connect Phase

The pre-connect phase is responsible for checking whetdewige attempting to enter the network has sufficient
malware knowledge. During this phase, a device presentefhavior profile as well as its bad model to the NAC
server. If the device is coming from a different network, fhrefiles presented are the ones modeled by the AD



""""""" | Port ‘X’
Network omy oMy [ Mg
L omg [ [ Mg ]
NAC Status

Figure 1: Basic setup of the BB-NAC architecture. The NAGseestores the behavior profiles and bad models of
each host in the network. It also stores the cluster infaonatHere,M; = {P;, B;}.

during its previous interactions. Otherwise, if the devigbrand new, we assume that it is equipped withaailla
profile or that it is given one by the network administrator prior tarng its interaction. Next, the NAC checks
whether the device’s bad profile contains sufficient malvii@mation to be accepted to the network. This step is
similar to conventional NAC approaches where the statusefV is checked to determine whether it is up-to-date.
However, in our solution the access control decision is thasethe group knowledge of malware among the hosts
already in the network. This is unlike current NAC architeets where the amount of malware knowledge required
is manually set up as a policy.

In order to attain a more accurate access control, only kagiissimilar profiles to the one attempting to enter the
network will be involved in the access control decision. NA&C server divides the devices into clusters representing
different behaviors. These individual clusters are theapoasible for the access control decision. If the device is
accepted, the NAC server will add its profile to the corresiog cluster. For simplicity, in this paper we assume
that the clusters of behavior are formed based omldwtaration of naturgorovided by the device itself i.e., a device
declares itself to be elient or aserver As a rule, it is required that a device of the same type ajrexikts in the
network. Obviously, it may be the case that a device lies ait®true nature. However, if a device starts behaving
anomalously, it will be detected in the post-connect phase.

Figure 1 shows the basic setup of our architecture. As caed $or any giveriPort 'x’ there are two differen-
tiated clusters: one for clients and one for servers. Fon eacster, the NAC server stores both the profile and the
bad model of its host members. We ugg to denote the set of behavior profil&;§ and bad modelR;) for each
hosti i.e., M; = {P;, B;}. The behavior-based access control policy is determinedHsther or not the device’s
knowledge of malware is considered sufficient by the membetke cluster of identical nature. In short, each of
the bad profiles in the cluster participates in a voting pssde make an access control decision defined as:

V=0 w)/n (1)
k=1



v; =1, Zf B; C Bevice
v; =0, Zf B; D Bevice (2)

wheren denotes the number of hosts that vote, where eachwaquals 1 when the new device knows at least
as many bad attacks as hesandv; = 0 when the new device knows fewer attacks that hiost represents the
fraction of hosts in the cluster that consider the devicad model has sufficient malware knowledge. The driving
principle behind this calculation is a quantitative measugnt that can grant or deny entrance to the network based
on the agreement of a certain percentage of network hostgeoflt may be the case that a group of malicious
profiles collude to manipulate the vote. However, our asgttiire can withstand such attacks as long as the number
of malicious profiles in the network does not dilute the patage of agreement required among host profiles. In
Section 4, we describe the impact of possible attacks onrchitacture.

Figure 2 depicts the voting process. Btep 1the NAC server listens to a new server attempting to connect
to the network. This new server presents its profile and badeiim the NAC server. Duringtep 2 the NAC
server conducts the voting process among bad models inubtecko determine whether the malware knowledge is
sufficient. Finally atStep 3the accepted server is added to the cluster of serverssapubiile and bad model are in
the NAC server. In terms of deployment, the voting procesdvigsys conducted by the NAC server using the stored
host profiles for both the agent and agentless versions a@rtifeétecture.

3.2 Post-connect Phase

The post-connect phase performs a continuous check ondfiie treing exchanged by the hosts in the network.
The goal is to guarantee normalcy of behavior in the netwdrkour architecture, this is achieved by using the
profiles of each individual host in the network that are sdarethe NAC server. Armed with these profiles, BB-

NAC determines whether or not the traffic is considered adonsausing a model-group decision process. The
post-connect phase makes use of the clusters computed prafemnnect phase. Profiles of similar behavior are
clustered together so that only profiles akin to the sourcgegtination of the traffic participate in the decision of
traffic normalcy. Our architecture conducts a voting preoebere each profile votes for or against the normalcy of
the observed traffic. The voting process is defined as:

V=0 Pea®)/n (3)
k=1

where P, 4 represents the behavior profile of héstor directiond (ingress or egress) in a cluster withhosts.
Because the traffic can be analyzed either at a packet or flel tadenotes the granularity (packet or flow) at which
the traffic is tested against the AD profiles. The outpuPpf;(¢) equals 1 if the traffic unit is considered normal by
P, 4 and otherwise 0 if it is considered anomalodsrepresents the fraction of hosts in the network that comside
the traffic unit to be normal. In Section 4, we discuss the ichjmd malicious devices trying to manipulate the
voting process. Another key ingredient of the post-conpéeise is that the observed traffic is used to compute new
behavior profiles for each of the hosts as time elapses. Bitiserved traffic is considered normal by the cluster, it is
used to compute a new profile for the members involved in tiobaxge. On the other hand, if the traffic is deemed
anomalous, it is used to update the bad models of the hodte ialdster. These new computaticastomatically
update the pre-connect and post-connect security politgssies concerning concept drift are addressed in Section
4.3. In terms of deployment of the agent version of the agchitre, new profiles are computed by the hosts and
communicated to the NAC server which stores them locallyanragentless version, on the other hand, the NAC
server itself computes the new profiles and stores themlyocéh both versions, the voting process is always
conducted by the NAC server among the profiles stored lacally
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Figure 2: Schematics of the Pre-connect Phase.

Figure 3 depicts a possible scenario during the post-camtese. In this setting, traffic is exchanged from host
1to host 5 Step ). During Step 2the NAC server implements two checks. First, it checks twethe output traffic
of host 1 is considered normal by host 1 and all the other pfil its cluster. Second, it checks whether the input
to host 5 is considered normal by host 5 and all the other psofit its cluster. In this instance, the second check
reveals an attack. As presented, this two-layer check mihleearchitecture more resilient to insider threats. Next,
in Step 3 the source is placed into quarantine to determine whetheotoit is infected. Lastly irStep 4 the NAC
server updates the malware knowledge of the bad models atatagpthe queue with the hosts in quarantine.

4 Experimentsand Evaluation of the Architecture

For initial evaluation of our architecture, we collectedbateaffic from the Computer Science department network
of our institution (anonymized for this submission) for aipd of three weeks. We only considered IPs within the
local network and divided them into two clusteserversandclients The nature of the machines is known from the
collection of local IPs kept by the department. Since the prel post-connect phases are executed separately for
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Figure 3: Schematics of the Post-connect phase.

each individual port, we chose port 80 to validate our aeshiire. Experiments for other ports would be executed
in a similar fashion.

For our proof-of-concept experiments, we modeled the m®fdf all the webservers (a total of four) in the
department using the anomaly detection sensor Anagram Rfiriggram is a content anomaly sensor that models a
mixture of n-grams to detect suspicious network packetqgzdd. The profile content models are saved as Bloom
filters [1] which are space and privacy preserving data sires consisting of a vector of 0Os and 1s. In general,
Bloom filters suffer from false positives but not from falsegatives. Furthermore, Bloom filters can be exchanged
among devices and NAC servers minimizing the risk of priveimjation. Although we only used Anagram, it is
important to note that our architecture is flexible enoughltow any AD to be used.

In order to compute the profiles, we used between 370K and tlé4 training packets obtained from the first
two weeks of the collected traffic. These profiles were trainetil stability was reached i.e., the point in time when
the ratio of observed n-grams divided by the total number-gfams was below a threshold. In addition, tie



modelsfor each webserver were computed following the techniqueeriged by Wang et al. [11]. Each profile was
trained with signature content from Snort rules [9] and W800 virus samples collected fromxheaven$l10]. In
terms of actual deployment in a network, the BB-NAC archiiex would have to be installed in a NAC server at
the edge of the network. In addition, the NAC server wouldehtavstore the profiles and bad models of each of the
webservers in theerver cluster

4.1 Evaluation of the Pre-connect phase

In order to add artificial diversity to our network and createnore meaningful proof-of-concept experiment, we
compute a bad model for each of the four webservers in suctyahateach bad model contains 10% less malware
knowledge than its previous model. Such computation is teasimulate the behavior of users that have forgotten
to update their AVs one or multiple times. Thereserverls bad model contains all the collection of Snort rules and
virus samplesserver2s bad model contains 10% less thegrverlrandomly excluded from the collectioserver3s

bad model contains 10% less thsgrver2randomly excluded from the collection, asdrverds bad model contains
10% less tharserver3randomly excluded from the collection. While in a real netikvpercentages may vary from
server to server, a value of 10% was arbitrarily chosen figrgroof-of-concept experiment to validate that the access
control policy functions properly.

In our setup, we assume that three out of the four webservermmambers of the network and that the fourth
device (self declared as a server) attempts to enter theonetwrhis configuration allows us to evaluate three
different scenarios: (i) Only one server agrees on the daoep of the new server (one out of three, 33%), (ii) Two
servers (66%) agree on the acceptance of the new servetijigrdl (hree (100%) servers agree to accept the new
server to the network. Given the fact that the bad modelsegreesented as Bloom filters, each vote in the voting
process is calculated as follows:

v; =1, Zf |Bz A Bdevice‘ / ‘Bz‘ =1
v; =0, Zf |Bz A Bdevice‘ / ‘Bz‘ <1 (4)

wherew; is the vote of servei, B; is the bad model of servér and B..i.. iS the bad model of the device
attempting to enter to the network. Hererepresents the bitwise AND between two Bloom filters dndenotes
the number of 1s of the resulting AND. Equation 4 calculakesftaction of 1s in common between a network host
bad model and a new device bad model with respect to the nuohbees in the network host’s bad model. In other
words, the cardinality of the AND measures how differentiariar two models are to each other. If the device’s
bad model is equal to or it is a superset of seiMaad model, its final vote is; = 1. Otherwise, if the new device’s
bad model is a subset of the servdrad model its final vote is; = 0. The final group vote is represented by the
percentage of devices that agree on the decision, as eggdressquation 1.

In order to avoid attacks in which the new device presentatlfilter filled with all 1s as its bad model, or one
computed with good and bad traffic meant to trick the vote inagign 4, the presented bad model is also checked
against all normal profiles already in the network. If normraffic is detected as part of the bad model, the device
is rejected. This process is accomplished by calculatiegND cardinality of the presented bad model with each
of the host profiles. Any cardinality above the false positiate of the Bloom filter (which means that common
n-grams exist) will reject the device.

Table 1 shows the pre-connect results after conducting atiag/process for the three different scenarios pre-
viously described. The top entry in each column represdr@server attempting to get connected to the network.
The remaining three servers represent the devices makengddtision. For instance, in Column 2 we assume that
the hosts already in the network aserverl server2andserver3while server4is attempting to enter the network.



| Scenario || serverdin | server3in | server2in | serverlin |

(i) 33% REJ ACC ACC ACC
(ii)66% REJ REJ ACC ACC
(i) 100% || REJ REJ REJ ACC

Table 1: Voting process results for the Pre-connect phA&C denotes a device accepted to the network REJ
denotes a device rejected from entering to the network.

In Column 3,server] server2andserver4are considered to be the network hosts aed/er3is the one attempting
to access the network. Similar reasonings apply to the m@ngcolumns.

As can be seen in Column gerverdis rejected in all cases since its bad model is the one withetist malware
knowledge of all. Wherserver3attempts to enter the network, its malware knowledge is @rsep ofserver4
Therefore, itis only accepted when one device needs to agrtéiee pre-connect decision. However, becagsger3
is only a subset of the bad modelss&rver2andserver] it is not accepted for higher rates of required agreement.
Similar reasonings apply faerver2andserverl Note that different specific percentages in the voting @ssaesult
in a more or less strict access control. More importantlg, rsults show that as long as the specific percentage of
clean profiles is kept in the network, the voting process tdliresilient to attacks by malicious devices that lied
about its bad profile in order to manipulate access controfturlé work will focus on applying control-theoretic
concepts in a feed-back loop to provide an automated mearadibfating the sensitivity of the decision process. In
case of failure, a network manager may fine tune the decisioreps to impose a predefined policy.

Devices rejected during this phase are placed in quaramthrexe the device's bad model is tested against a
group of known attacks, so that a new reinforced bad modelqilfilter) can be computed. The main advantage
of having the malware knowledge in a model (Bloom filter), @pa@sed to having a list of signatures, is the fast
processing time. AND-ing Bloom filters and calculating ¢aadities is a much faster process that comparing signa-
tures. Finally, we emphasize the importance of balanciegsthictness of the access control with the latency of the
system. Obviously, very demanding access control poligipeally result in longer latencies due to quarantines.
However, less demanding access control policies risk éurditacks to the network.

4.2 Evaluation of the Post-connect phase

We used the third week of collected traffic to test the posireat phase in the BB-NAC architecture. For every
incoming packet to any of the webservers, each server vaiehe normalcy of the packet using its model or
behavior profile. The evaluation of the post-connect phasachieved by computing the false positive (FP) and
detection rates (DR) of the voting process. In this contBf,represents the percentage of normal traffic falsely
identified as anomalous by the group of network hosts, whiRedenotes the percentage of bad traffic deemed as
anomalous by the group of hosts. In order to measure the FBRrat the voting process, we poisoned the collected
traffic with the following known worms and viruses captureon real traffic: three versions of CodeRed, CodeRed
II, WebDAV, a php forum attack, Mirela and the nsiislog.dliffer overflow vulnerability (MS03-022) which exploits
the 1IS Windows media service.

We explore four different scenarios for the voting proc€gsA 25% of agreement among webservers is required.
Since we are only considering four webservers this traesltd a voting process in which only one vote is needed
for an anomalous designation. (ii) A 50% of agreement amoalbservers is required, which means that at least
two webservers have to agree on the anomalous nature of Heewveld traffic. (iii) 75% of the webserver’s profiles
have to agree on the decision (3 webservers in our network)ighA 100% agreement, in which all profiles have
to agree on the decision. These percentages representadaitge spread designed to reveal the trend of the FP and



[ Percentage] DR | FP | [ Server] DR [ FP |

() 25% 100% | 0.032% serverl| 100% | 0.02%
(i) 50% 99% | 0.02% server2|| 83% | 0.009%
(iii) 75% 99% | 0.005% server3|| 99% | 0.015%
(iv) 100% || 83% | 0.001% serverd| 99% | 0.01%
Table 2: DR and FP: Group rates. Table 3: DR and FP: Individual rates.

DR in the voting process. Because we are using the contesedbsensor Anagram as the AD, each profile votes
based on whether the content of the packet (n-grams) besteptevas seen during the training of the AD.

Table 2 summarizes the group FP and DR rates for the four sosrdescribed. As can be seen, when only
one server vote is sufficient to decide whether the traffimisnaalous (25% row), the DR is 100% and the FP is
0.032%. As the percentage of servers that need to agre@gegethe DR decreases since it becomes more difficult
for the four profiles to agree on the identification of anomaldraffic. On the other hand, the FP rate decreases
considerably as the percentage of servers that have to egreases. Obviously, with more servers involved in the
vote there is a greater amount of information about nornaditrand hence it is less probable for normal packets to
be mistakenly classified as anomalous. Given that high DRam&P are the objectives of a good sensor, it appears
that choosing an agreement of the 75% of the servers protiedsest collaborative solutiofor the architecture.
Such policy guarantees a very low FP of 0.005% and a DR of 99%ter(yercentages translate into either smaller
DR or larger FP rates. As in the pre-connect phase, the sealgib show that as long as the specific percentage of
clean profiles is met (e.g., 75% in our example), the votiragess will be robust to attacks by groups of malicious
profiles trying to manipulate the vote. For example, in a mekwvith 100 initial clean profiles, a group attack would
need to introduce at least 35 malicious profiles in order litelithe 75% agreement (75% of 135 profiles is 101 and
the network would only have 100 clean profiles).

To test our theory that collaborating ADs are more powettaint individual ADs, we ran an experiment where
only the server-specific AD’s tests a packet without takimigp iaccount the decision of other devices with similar
behavior. In this setting, only the server that is the desitom of the traffic votes on the normalcy of the packets. As
in the previous experiment, the third week of collectedfitafias used together with real worms to poison the traffic.
Table 3 shows the FP and DR for each of the servers when theyeimown individual AD. The main conclusion
drawn from comparing thbest collaborative solutiom Table 2 with Table 3 is that groups of ADs collaborating
on the decision of normalcy or anomalous nature of the trdfffically enhance the FP, the DR or both global rates
when compared to individual ADs. For instance, in the casseofer? its individual DR is 83% and its individual
FP rate is 0.009%. In contrast, thest collaborative solutiomesults in an improved DR of 99% and a lower FP
rate of 0.005%. While one may argue that in some instancemtivddual DR improves and the FP rate worsens
(e.g.,server), the sum of all the individual ADs will always be worse offitinthebest collaborative solutianWe
conclude that the collaborative voting process improvesstiturity enforcement of our architecture.

4.3 NAC Security Enforcement Over Time: Concept Drift

We present a preliminary analysis on how our architecturgaras toconcept drifti.e., the automatic update of
security enforcement policies over time. The motivatioioisaccount for and distinguish changes in the normal
behavior of users from changes in behavior generated bytaonkat Previous works such as FLORA [12] and
STAND [2] considered algorithms in which the sensor onlysted the latest observed samples. In both, new
samples were added to a set as they arrived, subsequergtingghe old samples. Furthermore, STAND detected
anomalous behavior by comparing continuous models ovex.tMide borrow these ideas in order to show how the
voting process implemented in BB-NAC conforms to concefit.dhs it is structured, Anagram considers a model
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Figure 4: Group Detection Rate for two alternative conceift dlgorithms: ANDModelsandAlIModels

stable whenever the amount of new, unseen n-grams is belewarcthreshold [11]. If we assume a first approach
where new models are computed keeping the information freewipus models, the DR rate will eventually start
to decrease. This corresponds to the expectation that tigeddhe training period goes, the more likely that bad
data will be used in the modeling. To show this directly, wlemted traffic in the Computer Science department
at our institution (anonymized for this submission) for aipe of two weeks. Using Anagram, new models were
computed until they reached stability whiteeping all the information in the Bloom filter from the pmws models
We refer to this technique &sliIModels In Figure 4 we plot the DR for a group of four webservers wtik best
collaborative solution.e., a packet is considered anomalous if 75% of the senggeaUnits in the x axis represent
each moment in time (epoch) when one or more servers in thrietomputed a new behavior profile. Initially,
the group DR for the four webservers starts at 99%. Nesttyerlcomputes a new model (epoch 1) and the group
DR remains constant. We then proceed to poison the trainfiictfor serverlandserver2and have both compute
new models (epoch 2). As a result, at epoch 2 the group detecitie decreases to 84% due to the fact that two
profiles are poisoned and thus fail to correctly classify tladfic. Subsequent epochs involve the computation of
new models by all the servers. However, the group anomalgctien is permanently damaged and does not vary
from DR of 84%. The explanation behind this damage is thatrtiring process just adds n-grams to the previous
old models but still keeps the content of the attacks. Tloeeefve conclude that a different approach is needed.
An alternative approach is one where we start new clean re@dely time a model is trained. In such a case, the
profiles erase previously seen information that may be tegdea the future. A direct consequence of this approach
is an expensive increase of the FP rate. Thus, the elimmafipreviously seen information does not appear to be a
viable alternative. Instead, we opt for a solution wherengtiene a new Bloom filter profile is computed, the new
profile is AND-ed with all its previoug) profiles keeping only common data seen in continuous trgisgts such
that: P, = P, A Pi_i ... N P,_,. We refer to this technique s#sNDModels This process allows us to detect and
eliminate anomalous content that may have poisoned thelmathde they were being trained as shown by [2]. By
keeping only the common data observed;iconsecutive models, we guarantee that as long as we havaibtak i
clean model, future models will also be clean. Obviouslg, thoment a device acquires a new different behavior,
the resultingANDModelmay be almost empty since old and new profiles might not hawehroantent in common.
This situation would generate a very high FP rate becausBltmn filter contains very femmormaln-grams. As a
solution, we repeat the AND processimes and OR the results as shown in Equation 5. Bd¢BModelrepresents
a clean model in the past, and by OR-ing them we stitch tog#tledasts old and new behaviors [12].

Pi = OR(t:O,sfl) (Pifs*q A Piflfs*q o A Piqus*q) (5)
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The higher the value of in Equation 5, the more difficult it will be for the enemy toaatk the architecture since
all ¢ models would have to be poisoned. Similarly, the higher tidaerof s, the moreold behaviors are kept in the
model. Going back to our previous example in Figure4 wissnererlandserver2had permanently damaged the
DR of the architecture, we applieBNDModelswith valuesg=2, s=0 and repeated the simulation (Figure 4). With
the new algorithm, the DR retains its initial value along tlagious epochs. In our experiments, we also note an
increase in the FP rate of the sensor, probably due to théhaithNDModelds eliminating content seen only in the
last training period. The approach introduced here dematest that our architecture conforms to concept drift.

4.4 BB-NAC Latency Analysis
We estimate the latency of the pre-connect phase as follows:
l=1l,+(1—p) xl (6)

wherel, represents the latency of the AND-ing between Bloom filteasiable p represents the probability that a
device has an up-to-date bad model, ancepresents the latency of the quarantine. For every ANDadjmer, we
estimated, ~ 18ms?. In case the AND operations cannot be run in paraljeshould be multiplied by the number
of hosts in the cluster. For devices with up-to-date bad rspde= 1 and Equation 6 becomés= [,. On the other
hand, if a device does not have an up-to-date bad model, itagagtined and provided with a new bad model that
represents the bad knowledge from all the other hosts. Tevisbad model is computed by OR-ing the host's bad
models, where each OR operation is completed in approxiypnagms. As an exampld, ranges from 180ms to
342ms for a cluster of 10 devices and= 0.

The latency per packet during the post-connect phase iglatdd as presented by Wang et al. in [11]:

l=((1—-FP)xlgp)+ (FP x 1) (7)

wherel g is the latency to check whether a certain n-gram is foundeérptiofile’s Bloom filter, and”" P stands for
false positive rate. A typical value fépr corresponds to about 5ms. If the checks cannot be performpdrallel

for all profiles,izr would translate ta x g wWheren stands for the number of hosts in the cluster responsible for
the access control decision. For a cluster of 10 devices dn&t & 0.005, [ ~ 5.785ms-50.56ms.

5 Conclusions and Future Work

In this paper, we have introduced a novel NAC architectui&;NBAC, which enforces security based on the exchange
of behavior profiles. Each host in the network is represemtigtd a profile and a bad model which are then used
during pre-connect and post-connect phases to detect-datéomalware knowledge and zero-day attacks. Our
architecture enhances previous NAC technologies by autoafig updating the behavior-based security policies
according to the hosts’ behavior evolution on a per-portshakhe experiments serve as a proof-of-concept for the
novel behavior-based network access control presented Wer have shown that ADs collaborating through a voting
process offer a more powerful approach to enforce secuxigr mdividual ADs. Furthermore, our experiments
confirm that BB-NAC is resilient to attacks even after acirept percentage of malicious hosts into the network.

Future work will include evaluating the two-tier strategyr fadditional ports. We are also investigating the
clustering of devices based on their profiles instead séladeclaration of natureLastly, we plan to evaluate the
performance of BB-NAC when using non-content anomaly sensbor this purpose, we are currently designing
a non-content AD that we plan to use in order to reproducelainpire-connect and post-connect tests for the
architecture.

1The numerical values discussed in this subsection werénettaising a 1.73GHIntel Pentium M Processand a set of Bloom filters
of size 16MB.
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