CUCS-8-80

COMPUTATIONAL COMPLEXITY

J.F. Traub
Departments of Computer Science and Mathematics
Columbia University
New York, N.Y. 10027

July 1980

To appear in
ENCYCLOPEDIA OF COMPUTER SCIENCE

This research was supported in part by the National Science

Foundation under Grant MCS-7823676.

COMPUTATIONAL COMPLEXITY

J.F. Traub

For articles on related subj

ALGORITHMS, ANALYSIS OF

ALGORITHMS, THEORY OF

FAST FOURIER TRANSFORMATION

MATHEMATICAL PROGRAMMING

TURING MACHINE

ects see

The subject matter of computational complexity is the
determination of the intrinsic difficulty of mathematically
posed problems arising in many disciplines. The study of
complexity has led to more efficient algorithms than those
previously known or suspected. We begin by illustrating
some of the important ideas of computational complexity with

the example of matrix multiplication.

COMPUTATIONAL COMPLEXITY OF MATRIX MULTIPLICATION. Consider

the multiplication of 2 x 2 matrices. Let

\

a a b b . c c
A = (11 12\)' g P11 P2y - (11 ‘12
221 222 Ba1 P2 ©21 €22
/

Given A, B, we seek C = AB.

The classical algorithm computes C by

c = a b + b

11 11 P11 7 %12 P21 €12 T 311 *12

b + a b

22 P2y Cpg = @57 by, t 2

Sy = 321 P13 22

at a cost of eight multiplications.

Until the late sixties no one seems to have been asked
whether two matrices could be multiplied in fewer than eight scalar
multiplications. Then Strassen showed that 7 scalar multiplications

are sufficient by introducing the following algorithm:

Py = (ag) *+ 335)(Byy + byyly Py = (351 + a5y) byys

Py = a13(byp = byyly Py = 3y,(=by) + byyls

Pg = (ay; + 315)byy, Pg = (may) * 351)(byy + byyl,
Py = (@15 = @) (byy * Byl

€11 T Py * Pg T Pg T Py €12 = P3 T Pgy

€21 = P * Py Py T Py * Py~ Py * Py

Consider next the multiplication of N x N matrices. The
classical algorithm uses N3 arithmetic operations. (In this

article we disregard multiplicative constants in giving

algorithm cost.) By repeated partitioning of N by N matrices
into 2 by 2 submatrices, two matrices can be multiplied in

NlOgZ7 N N2.81 arithmetic operations.

After a decade during which there was practically no
progress on decreasing the number of arithmetic operations
used in matrix multiplication, Schdnhage and Pan (1979) showed
N2'52 arithmetic operations are sufficient. This rumber, 2.52,

is the current state of our knowledge and researchers expect

the exponent will be further decreased.

We must emphasize that the above results are of theoretical
rather than practical value. The value of N has to be enormous
before the new algorithm would be faster than the classical one.
On the other hand, there are some problems for which new
algorithms have had profound influence. A good example is
provided by the finite Fourier transform on N points. The fast
Fourier transform uses only N log N arithmetic operations
compared to N2 for the classical algorithms. Since N log N
is much smaller than N2 for even moderate values of N and since
the finite Fourier transform is often needed for a large number
of points, the introduction of the fast Fourier transform has

revolutionized computation in a number of scientific fields.

Using the matrix multiplication example we can now

introduce some basic terminology.

The minimal number of arithmetic operations is called the

computational complexity (or problem complexity) of the matrix

multiplication problem. We often write complexity for brevity.

The complexity of matrix multiplication is unknown. An

2.52

upper bound is N A lower bound is N2. Since this lower

bound is linear in the number of inputs and outpust we say it is a

trivial lower bound, ©No non-trivial lower bound is known.

Algorithm complexity is the cost of a particular algorithm.

This should be contrasted with problem complexity which is the
minimal cost over all possible algorithms. People who do not work

in complexity theory sometimes confuse these two terms.

Fast algorithm is a qualitative term meaning faster than a

classical algorithm or faster than previously known algorithms.

An optimal algorithm is one whose complexity equals the problem

complexity.

Table 1 summarizes the present state of our knowledge

concerning matrix multiplication.

SUMMARY OF MATRIX MULTIPLICATION

upper bound N2'52
lower bound N2
complexity unknown
optimal algorithm unknown

TABLE 1

COMPUTATIONAL COMPLEXITY IN GENERAL. To study computational

complexity requires a model of computation stating which

"operations" or "steps" are permissible and how much they cost.

Using the model we can then ask the same questions as in the matrix

multiplication example. For instance we seek:

problem complexity
upper bounds

lower bounds

fast algorithms

optimal algorithms

Typically, an upper bound. is the cost of the fastest known
algorithm for solving the problem. A lower bound can only be
established through a theorem that states there does not exist an
zlgorithm whose cost is less than the lower bound. Not
surprisingly, lower bounds are far harder to establish than
upper bounds.

Numerous models of computation have been studied. 1In our

matrix multiplication example we counted arithmetic operations.

In the study of combinatorial problems we typically count comparisons.

Very significant results have been obtained for space and time
complexity in a Turing Machine model. Another important model
is a random access machine (RAM). Other models are appropriate

for studying parallel, asynchronous, or VLSI computation.

Often we assign a "gize" N to a problem. 1f the number

of operations or steps required to solve a problem is an

exponential function of N we say the problem has exponential

time complexity. If the problem requires a number of operations

which is a polynomial function of N we say the problem has

polynomial time complexity.

TYPICAL APPLICATIONS OF COMPUTATIONAL COMPLEXITY. The

complexity of numerous problems has been studied. To illustrate

the variety of problems we exhibit a dozen drawn from various areas.

1.

10.

11.

12.

Compute the finite Fourier transform at N points.

Determine if an N digit integer is prime; if not, determine
the factors.

Solve an elliptic partial differential equation to

within an error e.

Compute the Kendall rank correlation at N points.

Generate a function with error less than ¢ from values

of a function at N points.

Multiply two polynomials of degree N.

Prove all theorems which can be stated in at most N symbols
in a certain axiom system.

Solve the traveling salesman problem on N cities.

Solve to within € a large sparse linear system of order N
whose matrix is positive, definite, and has condition
number bounded by M.

Find the closest neighbor of P points in K dimensions.
Compute the first N terms of the Qth composite of a

power series.

Compute the first N digits of n (for, say, N = 20, 000,000).

REDUCIBILITY AMONG PROBLEMS. There are many problems for
which the best algorithm known costs exovonential time. Such
problems occur in operations research, computer design, data
manipulation, graph theory and mathematical logic. Do there
exist faster algorithms which solve these problems in polynomial
time? We don't know. What we do know is that there is a large
Class of problems which are equivalent in that if one of them can

be solved in polynomial time, they all can.

For technical reasons this class of problems is said to

be NP-complete (g.v.). Because no one has succeeded in devising

a polynomial time algorithm for any of these problems, many
recearchers believe that NP-complete problems are exponentially
hard. There is no proof of this and settling this question is one

of the most important open problems in computational complexity.

10

ANALYTIC COMPUTATIONAL COMPLEXITY. For the matrix
multiplication problem we are interested in the minimal number
of arithmetic operations to multiply two matrices exactly.
This is a typical problem of "algebraic complexity". However,
many problems can be only approximately solved. Examples are
optimal estimation, solution of nonlinear equation, optimization,
and the solution of partial differential equations. Indeed,
most problems occurring in mathematics, science, engineering,
risk assessment, decision theory, and economics can be only
approximately solved. Furthermore, to lower the cost we may
choose to approximately solve problems which could be exactly
solved. Important examples are provided by the approximate
solution of NP-complete problems and the iterative solution of

large sparse linear problems. Analytic Computational Complexity

is the study of optimal algorithms for problems which are solved
approximately.

Above we illustrated some of the important ideas of
computational complexity with the example of matrix multiplication.
Here we will use integration as a simple prototypical example

and use it to define basic terminology. Consider the

computation of fé f(x)dx given the informaticn CE(xy) s E(X5)henn,
f(xn)]. This information is partial because there are many
integrands which are indistinguishable using this information.

If the information has errors (due, for example, to measurement)

the information is approximate. It is clear that partial or

approximate information causes uncertainty in the integral.

This uncertainty is intrinsic and caused by the limited information.

11

The optimal information is the choice of sample points which

minimizes this intrinsic uncertainty.

An algorithm is any procedure for approximating the
integral using the information. Any algorithm must have error
at least as large as the intrinsic uncertainty. An optimal
algorithm is one whose error achieves the intrinsic uncertainty.

The computational complexity of the integration problem is the

minimal cost of computing the integral to whithin €.

The information is nonadaptive if the sample voints X, are

independently chosen. It is adaptive if we choose X4 only after
we know f(xl), f(xz), ey f(xi_l). Nonadaptive information is
desirable on a distributed computer system since the information
can then be computed independently on various processors.

We list some of the questions studied in analytic complexity.
Althouth these questions are listed here in the context of
integration, the same gquestions can be asked and have been
answered in great generality. For integration, some of the

answers depend on the nature of the integrand.

1. wWhat is the minimal number of function samples for
which the integral can be computed to within €.

2. 1Is adaptive information "better" than nonadaptive
information? (Surprisinagly, the answer is no for
integration and many other problemé).

3. What is the optimal information?

4. wWhat is the optimal algorithm?

5. What is the computational complexity of integration?

12

AXIOMATIC COMPLEXITY THEORY. We discuss an abstract
complexity model based on two axioms. Let TA(X) denote the cost
of algorithm A applied to the input of integer x. Assume that
TA(x) satisfies the following two axioms:
s TA(x) is finite if and only if algorithm A applied to
input x eventually halts and gives an output. (In
other words, an algorithm halts if and only if it halts
after a finite number of steps.)
2. There is an algorithm which, given as inputs any integers
x and y and any algorithm A, will determine whether or not

TA(X) = vy.

These straightforward axioms are enough to imply, for example,
that there are computable functions which cannot be computed
rapidly by any algorithm, and that more functions can be computed
if more time is allowed. They also imply a much less obvious
fact, known as the "Speed-up Theorem": There is a computable
function f with the property that given any algorithm A which
computes f, there is another algorithm B which computes f "much
faster" than A. "Much faster" is interpreted by choosing any
rapidly growing computable function such as 2w: then, according to
tﬁe speed-up theorem, there is a function f such that if A is any
algorithm for £, there is always another algorithm B for £ such
that 27 (¥) < TA(x) for all large integers x. Thus, algorithm B
requires at most the logarithm of the time required by A.

Of course, since B is itself an algorithm for f, there must

be another algorithm C for f which requires only the logarithm

13

of the time for B, and so on. Clearly, there is no single most
efficient way to compute such an f.
Also, notice that f must be hopelessly difficult to compute
even though it has faster and faster pregrams. Each program
for f must require more than 2X, and more than 22X, and so on,
steps for all large inputs x; otherwise, the program could only be
"sped-up" by an exponential a fixed number of times before
"hitting bottom," after which it could not be sved up further.
These conclusions may seem to violate intuition, but they
follow from the two simple axioms given above. The speed-up
theorem is proved using diagonal arguments similar to those

used to establish the existence of undecidable problems.

14

CONCLUSIONS. Computational complexity deals with the
fundamental issues of determining the intrinsic difficulty of
mathematically posed problems. Through the study of complexity
it has been established that certain problems are intrinsically
hard. On the other hand, for some problem areas new algorithms
have been introduced which are far superior to any previously
known. Problems occurring in a rich diversity of disciplines

are being and will be subjected to complexity analysis.

15

REFERENCES

1968, 1969, 1973. Knuth, D. The Art of Computer Programming,
Vol. I, II, III. Reading, Mass.: Addison-Wesley Publishing Co.

1974. Aho, A.V., J.E. Hopcroft, and J.D. Ullman. The Design
and Analysis of Computer Algorithms. Reading, Mass.: Addison-
Wesley Publishing Co.

1975. Borodin, A. and I. Munro. The Computational Complexity of
Algebraic and Numeric Problems. New York, N.Y.: American Elsevier.

1979. Garey, M.R. and D.S. Johnson. Computers and Intractability.
San Francisco, Calif.: W.H. Freeman.

1980. Arden, B. (editor). Chapter on Thcory of Computation in
What Can be Automated? The Computer Science and Engineering
Research Study (COSERS). Cambridge, Mass.: MIT Press.

1980. Traub, J.F. and H. WoZniakowski. A General Theory of
Optimal Algorithms. New York, N.Y.: Academic Press.

