
Tool Extension in an ALOE Editor 
(M.S. Dissertation) 

Takahisa Ishizuka 
Columbia University 

Department of Computer Science 
New York, NY 10027 

thesis committee: Profs. Gail E. Kaiser and Peter Allen 

September 1988 

CUCS-368-88 

Abstract 

This technical report consists of an M.S. thesis that presents the development of a technology for 
integrating language-based editors with existing tools, whereby the editor and tools operate as 
cooperating processes communicating via message passing. The thesis describes the validation 
of this technology with the design and implementation of A Manufacturing Programming En­
vironment (AMPE), which integrates an ALOE language-based editor for AMUX with the 
AMl)X interpreter. The dissertation includes the user manual for AMPE as an appendix. 

AMPE was funded by IBM Contract #703013, Research in Robotics and Manufacturing. 



TOOL EXTENSION IN AN ALOE EDITOR 

MS Thesis 

thesis committee: Profs. Gall Kaiser and Peter Allen 

Takahlsa Ishlzuka 

Columbia University 

22 September 1988 

Abstract 

Many approaches to tool integration can be seen as variations on two 

models, the -sequential- and ·concurrenr. ·Sequential· models are 

characterized by a high degree of modularity. In this model, tools 

eXeaJte in sequence and work on separate data structures. 

·Concurrent" models are characterized by the ability to interleave the 

execution of various tools. Here, tools work on a common data 

structure. This thesis describes AMPE (A Manufacturing Programming 

Environment) which consists of two tools integrated in a way that has 

advantages from both models. The execution of both toofs can be 

interleaved, but they use separate data structures and maintain a 

degree of modularity. AMPE consists of an ALOE structure editor, 

which has been extended to work with an interpreter for the 

programming language, AMUX. The two tools run as separate processes 

and communicate through message passing. 

Copyright Q 1988 T. Ishizuka, Columbia University in the City of New York 



1. lntrodw:tlon 
2. Background Work 

2.1. Gandalf 
2.1.1. ALOE Editors 

Table of Contents 

2.1.2. Components of Gandalf 
2.2. AMUX 

2.2.1. Debugging Facilities 
2.2.2. Environment Variables 

3. Design Issues 
3.1. Generating AMPE 

3.1.1. An Embedded Interpreter 
3.1.2. Interpreter as a Separate Process 

3.2. Evaluation of AMUX Code 
3.2.1. Evaluation of Trees 
3.2.2. Evaluation of Text 

3.3. Operating System Interface In AMPE 
3.3.1. ALOE 110 
3.3.2. Interpreter 110 

4. Design 
4.1. Communication Protocol 

4.1.1. ALOE Component as Client 
4.1.2. ALOE Component as server 

4.2. The ALOE Component 
4.2.1. Structure Editor 
4.2.2. Evaluation Routines 
4.2.3. Remote 110 Routines 

4.3. Interpreter Component 
4.3.1. Parsers 
4.3.2. Interpreter 110 

5. Example 
6. Relation to Other Models of Tool Integration 

6.1. "SequentlaJ" Mode" of Tool Integration 
6.2. "Concurrent" Models of Tool Integration 
6.3. Example. of Too~ Integration 

7. Conclusion 
7.1. Further Work on AMPE 

7.1.1. ALOE FUellO 
7.1.2. Interpreter File 110 

7.2. Generalization of AMPE Model 
I. AMPE User's Manual 
1.1. Introduction 
1.2. Editing 
1.3. Run-T1me Support 

1 
2 
2 
2 
3 
4 
4 
4 
5 
5 
5 
6 
7 
8 
9 

10 
11 
12 
12 
12 
13 
13 
15 
15 
15 
17 
19 
19 
21 
22 
24 
24 
25 
25 
25 
26 
26 
26 
26 
29 
29 
30 
34 



1 

1. Introduction 
ALOE (A Language Oriented Editor) editors (5, 7] prov;de useful interadive support in the development 

of programs. As structure editors, they manipulate program trees and thereby eliminate some of the more 
tedious aspects of programming, such as matching begin and end statements and placing semi-o:>lons 
correctly, while at the same time enfordng the syntactic correctness of programs. They also provide the 
means to do static semantic checking, which can be done automatically so that the programmer does not 
have to worry about it, and done incrementally so that the programmer does not notice it occurring except 
when there are errors. Dynamic semantic checking can be provided by internal routines, often in the form 

of daemons, that can be used to implement an interpreter and also debugging facilities. Such a 
programming environment eliminates the need for a parser and provides for other programming tools 
such as an interpreter and debugger in an integrated fashion. 

Although the integration makes the system convenient by providing easy access to a set of 
programming tools, there can be problems if the system does not already include those tools that a 
programmer prefers to use. For example, if a programmer has a favorite debugger outside of ALOE, he 
is not able to use it Also, in order to interpret code, an interpreter has to be written from scratch even 
when an interpreter already exists for the language. Therefore, an ALOE editor should not be thought of 
as a completely self-o:>ntained unit, but as one that can also potentially be integrated with a variety of 
existing tools. 

This thesis explores how outside services can be used in the context of a structure editor. In particular, 
the work for this thesis explores how the ALOE editor, AMPE (A Manufacturing Programming 

Environment), was designed and generated for the programming language AMUX [10]. Although it is 
possible to generate ALOE editors that execute interpreters internally through the use of implementor­

defined daemons, it was decided that the ALOE editor would communicate with the AMUX interpreter 
running as a separate process to do evaluation. The reason is to allow the editor to work with an 

interpreter that could be running on a separate machine under a possibly different operating system. This 
forces a Clean interface between the editor and interpreter, and at the same time saves us from having to 

reimplement the interpreter inside the ALOE editor. 

The two components of AMPE, the editor and interpreter, can be viewed as working in a dual 

client-server relationShip. That is, the components may work together in client-server relationships where 

each can be dient or server at various times. For example, two such relationships are: 
1. Interpreter as an Evaluation Server - The editor is the client and makes a request to the 

interpreter to evaluate some code. 

2. Editor as I/O Server - During the evaluation of code, the interpreter needs to read a file 
that is remote to itself and local to the editor. The editor then must pass the necessary data 
to the interpreter so that it can complete its evaluation. 

When thought of in this way, the design and implementation of AMPE can be thought of as defining: 
1. Protocols and Interfaces Between Clients and Servers - Protocols tor making requests 

and sending data must be established. In order to use these protocols, it may be necessary 
to transform data, either before sending or receiving it. 

2. Services to be Offered - The routines that provide the services that server routines offer to 
client routines. 

The following section provides some background to the work done on AM PE, explaining what ALOE 



2 

editors are and how they are generated by the Ganda/f system. Language features of AMUX that are 

relevant to debugging are also discussed. Section three discusses the issues encountered in designing 
AMPE. The major issue is how to have a structure edito~ communicate with the interpreter in some 
effective way. Section four describes the actual implementation of AMPE. Section five provides 
examples of how AMPE can be uSed. Section six discusses related work and compares AMPE with 
"sequential" and ·concurrent" models of tool integration. The last section states conclusions drawn from 
this work. 

2. Background Work 
Because of the separation of ALOE editor and AMUX interpreter in AMPE, all run-time support must be 

provided by the interpreter. In the case of AMUX, there are already good debugging features and 
facilities for creating new ones. The existing debugging features together with the AMUX interpreter 
already provide a way for doing dynamic semantic checking and provide run-time support. However, 
static semantic checking. and the enforcement of syntactic correctness is not supported, and an ALOE 
editor is well suited to remedy these deficiencies. Furthermore, the use of the existing interpreter saves 
the ALOE implementor from having to reproduce the functionality of the AMUX interpreter (which is rather 
large) in the ALOE and at the same time preserves a sense of familiarity for programmers who previously 
used the interpreter directly. Therefore, the functionality of the ALOE editor, as a front-end, and AMUX 
interpreter complement each other well. 

2. 1. Gandalf 
Gandalf is a system for generating interactive programming. environments. It consists of several 

components that allow the implementor of the environments to design and fine-tune the environments. 
Gandalf supports programming-in-the-Iarge and programrring-in-the-small. Programming-in-the-small is 

supported through ALOE editors. 

2.1.1. ALOE Editors 
The problem of constructing a pure syntax directed editor is already well understood and ALOEGEN 

provides a very straight forward method of doing this, given an abstract syntax and un parsing schemes. 
The utility of ALOE editors in providing syntactic and semantic checking has already been demonstrated 

by existing systems [5]. Static semantic checking is also provided for through the use of daemons, which 
are written in the action routine language, ARL [12J. ARL daemons can be declared to be associated with 
a particular grammar production and are activated when a node of the declared type is edited. When 

activated, the daemon does the semantic processing appropriate for that node. 

ALOE editors present the programmer with a uniform method of entering commands. Commands to 

edit the tree, such as those to create and delete nodes, and those for cursor movement are executed with 

emacs-style keystrokes. In addition to the edit commands, ALOE editors also provide for implementor· 
defined extended commands, which are executed with similar keystrokes, but are chiefly used for 

interpretation and debugging. 

The' following is an example of how the ALOE editor part of AMPE works for AMUX: 

An AMUX program consists of a list of statements and declarations, which will be constructed by filling 
in templates. Upon entering the editor, the programmer sees a template indicating a program component 



3 

that needs to be filled in. Program templates are called meta nodes and are represented as the name of 
the components prefIXed with -$-. The underlining at -$staLdecl- indicates the ament cursor position. 

$stat decl 

Windov:root Node:META Cl.ass:stat dacl 
> 

In AMPE. a staLdecl may be a statement or declaration. Therefore. a declaration command has been 
defined. This command corresponds to the declaration production in the description at AMUX. which was 
used to generate the editor. In order to execute the command, the cursor is moved to "$staCdecl-, and 
declaration is typed at the ->- prompt. at the bottom ot the display. The screen is then updated to show: 

$label $daclarator 

Windov:root Node:META Cl.ass : label 
> 

"$staCdecl- has been replaced with "$label $declarator" because a declaration in the language 
description of AMUX indicates that a declaration is a label followed by a declarator. 

After the templates for the declaration are filled. and the programmer attempts to leave this subtree. the 
implementor defined semantic checking daemon (if one exists) associated with the declaration subtree is 
activated automatically. The programmer is then notified of any static semantic errors, an example of 
which might be the reuse at an already declared variable name, since in AMUX, variables may never 

change type. Currently semantic checking routines are not implemented in AMPE.' 

2.1.2. Components of GandaJf 
The ALOE component was developed within the GandaJf environment generation system. which 

consists of the following five system components [9]: 
1. SMILE - which supports programming-in-the-large and programming-in-the-many by 

providing a multi-implementor, multl-module programming environment. 

2. ALOEGEN - which provides a syntax development environment. It assists the ALOE 
implementor in defining abstract and concrete syntax. ALOEGEN is itself an ALOE editor 
that supports programmng-in-the-sma/l. 

3. ARL - which provides a semantic description formalism. It is an imperative language that 
works on ALOE trees, and is used for semantic analysis and other operations requiring 
access to ALOE trees, and access to the various data fields of these trees. 

4. DBGEN - which provides the means of putting the different parts of the editor together and 
also provides the means of fine tuning editor functions that are unrelated to any ALOE 
program trees. 

5. the ALOE kernel - which provides primitives for ALOE tree manipulation and terminal va 
routines. 

, Semantic checking routines have not been implemented because !hey are not related to the issue of tool integratioo. 



4 

As SMILE can be used just as a C programming environment. it is possible to develop C code that 

works with ARl routines. It is aJso possible to link the editor code with C Ubraries. 

2.2. AMUX 
AMUX is an expression-oriented language and an experimental version of the robotics programming 

language, AML. While AMUX's origins are in robotics, AMUX is intended to be a general purpose 
programming language. 

Run-time support and debugging facilities are provided by the AMUX interpreter. AMUX already 

provides an interactive debugging environment. AMUX also comes with a set of standard debugging 

commands [1 OJ which can be augmented with new, user-defined commands. 

2.2.1. Debugging Facilities 

Existing AMUX debugging facilities are used. AMUX already provides debugging commands that 
allow the programmer to: 

1. Stop execution - there are commands for setting breakpoints. 

2. Display and Asslgn - once execution is stopped. any variable that is active or defined may 
be displayed or have its value changed. 

3. Trace Program execution - the execution of various statements may be traced during 
execution. 

4. Altertng the Programming Environment - the interpreter's environment can be altered 
without restarting the program. 

5. Create Debugging Scripts - debugging saipts can be stored in a separate file that can be 
loaded when a partiOJlar application needs to be debugged. 

These built-in debugging commands are implemented using a built-in primitive command that raises 

exceptions. This primitive command is available to the programmer to use in implementing his own 

customized debugging commands. 

2.2.2. Environment Variables 

A programmer may want to examine how different pieces of AMUX code behave in a particular 

environment. say in some block with local variable declarations. We have to be able to h~ndle such 

cases in order for the system to be useful in practical applications, where it may not be possible to restart 

a program due to its size or its dependence on certain sensory data (as in robotics applications), which 

are difficult to replay. We will also need to be able to control and modify the context of execution when 

debugging. This is already possible using AMUX debugging routines, AMUX environment variables. 

AMUX provides an environment data type and functions to manipulate environment variables. Among 

the functions that manipulate these block execution environments are functions that return the current or 

previous environments, and a function that returns the names of the variables known in a specified 

environment. There is also a built-in intern command that allows an identifier to be evaluated within a 

given environment. These variables and functions extend the power of the preceding debugging 

commands. 



5 

3. Design Issues 
In aJl1'DnU1g the AlOE component ot this environment with the AMUX intefpre~ we need to address 

three issues. These are: 
1. Generating AMPE - We need to decide how to generate an editor that can use the existing 

code for the AMUX interpreter. 

2. Evaluation of AMUX Code - We need to define the functions that allow an ALOE tree to 
be evaluated by the interpreter. At the same time, we also want to be able to load existing 
AMUX programs that already exist in text form. 

3. Operating System Interface - This includes problems relating to 10 that occur when linking 
the editor and interpreter. This is not so much an issue for the ALOE component, because 
most of the needed commands are generated with the editor, but file I/O required by the 
interpreter must be provided for. Clearly the editor needs to replace standard I/O in the 
interpreter. Since the interpreter may run on another machine, file 110 may need to be 
channeled through the editor. 

These three issues will determine how the editor and interpreter will communicate and will help define 

the services that each will offer the other in AMPE. 

3.1. Generating AMPE 
When generating AMPE, a fundamental problem that has to be resolved is that the two components, 

the ALOE editor and AMUX interpreter, use different data structures. Therefore a way of integrating the 

two components must be found. There are two ways of doing this: 

1. Embed the Interpreter - Generate the editor using the interpreter's code inside the ALOE 
editor and call the appropriate interpreter routines directly. 

2. Keep the Interpreter Separate - Generate the editor separately from the interpreter and 
run the interpreter as a separate process and communicate with it through message 
passing. 

In both cases we need to translate AlOE program trees into parse trees that can be used by the 

interpreter. The method used for this translation would be the same in both cases. Evaluation occurs in 

. AMPE in the same way similar to the way the original AMUX interpreter would have evaluated. This is 

because regardless of how we integrate the editor and interpreter, in the end, the interpreter evaluates 

the same parse tree. 

3.1.1. An Embedded Interpreter 

We could have embedded the interpreter in ALOE. In order to allow ALOE to link to the interpreter's 

code, it is possible to have turned the interpreter into a C archive. One obvious problem with this 

approach in the general case is the possibility that there would be identifier conflicts between the editor 

and interpreter, particularly for functions that have a very basic functionality, such as hash and length. 
The Gandalfsystem and AMUX interpreter had only two such identifier conflicts, which were the functions 

just mentioned. In this particular case, these conflicts would not have been a problem to fix due to the 

way the interpreter was written. 



AMPE with Embedded Interpreter 

ALOJ: 
editor 

6 

AML/X I 
intxprtrl 

1 

Machine #1 

Once the editor and interpreter have been linked together, we could have rewritten the interpreter's 
parse function to call ARL routines which in turn call the appropriate interpreter routines that do the parse. 

This achieves the goal of not having to rewrite the interpreter from scratch, but tends to decrease the 
modularity of having separate editor and interpreter components. 

3.1.2. Interpreter as a Separate Process 

The editor can be linked to the interpreter via sockets, as is the case in AMPE. The simplest way to 
connect the editor and interpreter would be to use the ALOE unparse schemes to transform the program 

tree into text form. The text can then be written to a socket. The interpreter, which already expects code 

in text form, then reads from the socket and evaluates. The problem with this approach is that it is 

inefficient to unparse a tree in ALOE just to have it reparsed by the interpreter. Some mechanism for 

converting an ALOE tree into a tree usable by the AMUX interpreter is needed. A more efficient way to 
do it would be the following. When evaluation of an ALOE tree has been requested, the editor makes a 

preorder traversal of its program tree and sends messages to the interpreter. The interpreter meanwhile 

uses the information received from the editor to build its own parse tree for evaluation. 

AMPE Running In two Processes 

I I 
1 1 

1---------1 1---------1 
1 ALOE 1 1 AWL/X 1 

editor 1<===-->1 intxprtrl 
1 1 1 1 
1---------1 1---------1 

1 1 
1 1 

Machine '1 Machine '2 
There are advantages in this approach over the previous one. First, this approach provides greater 

utility. The interpreter can run as a separate machine under a different operating system, provided 

sockets are supported. 

There are also advantages in ease of implementation and maintenance. The problem of conflicting 



7 

identifiers encountered in the embedded approach is avoided. Also having the interpreter run in a 

separate process forces a deaner interface between the editor and interpreter whidl makes it easier to 
modify the interpreter without regenerating the editor part. This clean interface has another advantage. 

In the embedded approach, all phases of interpretation must be explicitly provided for. For example, if we 
want to evaluate the parse tree, we must explicitly call the evaluation routine. If we want to display the 

interpreter's prorrpt, we must call the appropriate routine explicitly. In a sense, we would be 

reimplementing the interpreter in the editor, although at a higher level of abstractlon. With the interpreter 

running in a separate process, all these things are done automatically for us, with the changes required to 

the interpreter's source code being localized. 

3.2. Evaluation of AMIJX Code 
Having decided that the editor and interpreter will run in separate processes, we need to decide how 

the editor can use the interpreter. Since the editor is the interface to the interpreter, the interpreter will 

initially be waiting as a server. When the user of AMPE wishes to evaluate some code, an evaluation 

request is sent to the interpreter. 

AMPE must be able to evaluate two kinds of AMUX code: 

1. Tree Code - The interpreter will have to be able to evaluate code that has been developed 
in AMPE and therefore exists in the form of an ALOE tree data structure. ALOE will need to 
send information about program trees to the interpreter. 

2. Text Code - The interpreter will have to be able to evaluate code that has been developed 
outside of AMPE in a text editor and therefore exists as a file of characters. Existing AMUX 
program libraries will probably already exist as text files. ALOE will need to send text files 
to the interpreter. 

AMPE must dearty be able to do both kinds of evaluation. It must be able to evaluate ALOE trees, 

since code developed in AMPE must be testable in AMPE. It must be able to evaluate AMUX code in 

text form since a programmer should be allowed to make use of and add to existing AMUX libraries. 

Needed Tree and Text Evaluation Routines 

I 1 1 
1 Tree Info 1 1 Tree 1 
1 Sandar 1 ,...,....". ... > 1 Parser 1 
1 1 1 1 
1---------1 1---------1 
1 1 1 1 
1 Text Info 1 1 Text 1 
1 Sandar 1 >1 Parser 1 
1 1 1 1 

Editor Interpreter 

The evaluation command can be used to allow the programmer to enter an arbitrary AMUX expression 

to be sent to the interpreter. This allows the programmer to take full advantage of existing and future 

AMUX programming tools that are run by the interpreter. 



8 

3.2.1. Evaluation of Trees 
When evaluating trees. an issue that must be addressed is how to have the AMUX interpreter evaluate 

the program tree used by the ALOE editor. The basic problem is that the editor and interpreter use 
different data structures. Therefore some translation of data structures will be necessary. This translation 
is accomplished by having the editor traverse its program tree while sending messages to the interpreter. 
The interpreter uses the information from the editor to construct its own parse tree. 

In order to allow a programmer to experiment with different alternative subtrees, we will also have to 
evaluate subtrees. This is not a problem because AMUX, like LISP, is an expression-oriented language. 
The extended command. evaluate, mentioned earlier, will execute the AMUX code represented by a 
subtree of the main program tree, as well as the main program tree itself. 

There are two kinds of evaluation commands that should be offered to the programmer: 
1. Evaluation Command - The first type is for the evaluation of ALOE program trees, using 

an extended command. This command causes the expressions indicated by the user's 
cursor to be evaluated by the interpreter. It allows an arbitrary AMUX tree to be entered 
and evaluated, providing unrestricted access to the interpreter. 

2. AMLIX Language Commands - The second type involves implementations of a few of the 
standard AMUX commands as ALOE extended commands. In this case, we do not have 
an actual program tree to evaluate. We evaluate an AMUX command without traversing an 
actual existing tree. Instead, the editor simply send messages to the interpreter as if it were 
traversing a tree. The interpreter does not know the difference. This approach is more 
convenient that having the programmer create a subtree using the ALOE editor commands, 
evaluate it, then when it is no longer needed, delete it. Since we know that AMUX 
commands are application_expressions (similar to functions in other languages), we can 
just pretend to traverse an application_expression tree and thereby execute the AMUX 
language command. 

Some of the AMUX language commands that we would like to be able to execute through ALOE 
extended commands would be: 

1 . debugging commands - AMUX debugging routines. 

2. load - this command loads a given file into the interpreter. 

AMUX provides a small set of standard debugging commands, which we will rely on to provide 

debugging support. It would be diffICUlt to implement debugging commands that are not run by the 
interpreter, since it runs on a separate process and will not share a common data representation with the 

rest of the system. Each of these may be implemented as an extended command so that it does not 
have to be typed each time the programmer wants it executed. But in addition to these commands, 

AMUX also provides for user-defined debugging commands, so we could allow for the possibility that 
users will want to use their own debugging functions. One approach to doing this would be to supply 
AMPE with a set of predefined system variables. Extended commands will be implemented that execute 

each one. User-defined routines could be executed by these extended commands by assigning them to 
these system variables. The effect is to implement what are essentially function keys in the editor. 

When poSSible, arguments to AMUX commands should be passed automatically. An example of this 

would be when setting breakpoints. Suppose the programmer wants to set a breakpoint at the current 
cursor poSition. The interpreter needs a line number in order to set the breakpoint. Such line numbers 
can be automatically provided through routines that automatically traverse the program tree. This is one 



9 

of the advantages of working with program trees rather than text But when the original AMUX parser 

parses text. it gathers information about the text. such as information about line numbers. Trns kind of 
information must be accounted for when information about program trees is sent from the editor to 

interpreter. 

Some commands sudl as load raise special problems. Load requires AMUX text files to De loaded to 

the interpreter. This raises some issues about how interpreter 110 should be handled. One of the 

problems is that the interpreter can be running on a machine different from where the editor is running 

and where the needed file resides. This problem is discussed in section 3.3. 

3.2.2. Evaluation of Text 

In this section we discuss the issues of using text code in AMPE. ALOE editors work on abstract 

syntax trees but there. is a need for AMPE to be able to load and generate AMUX in text form. 
Generating a text file of a program tree is already possible using the unparsing schemes in the ALOE 

editor. The unparse command that does this is generated automatically by the editor generator. 

Therefore, it is a relatively simple matter to be able to add to existing subroutine libraries. 

However, there will be problems when using AMPE with text files. This can happen we want to load 

text files into: 

1. Editor· The editor works only on abstract syntax trees. It is unable to convert text files into 
the necessary data structures. 

2. Interpreter· The interpreter needs to be able to read text that is remote to itself and local to 
the editor. It must also be able to parse and evaluate text code, as when executing the 
AMUX load command. 

The problem of being able to execute the AMUX load command shows the need to be able to process 

AMUX code in text form. Given an evaluation mechanism (it already exists in the original AMUX parser), 

we can send lines of text from the editor to interpreter for evaluation. 

Currently, ALOE editors read only code generated by the ALOE editor, restricting its general use. The 

problem is that ALOE editors manipulate tree structures and do not parse the plain text. Therefore, the 

ALOE editor could not be used on code in existing subroutine libraries which were generated by text 

editors. The problem would be in implementing the following desirable command: 

1. edit . this command transforms a text file into a program tree that is then loaded into the 
editor for editing. 

When modifying code that exists already in textual form, it must first be transformed into a tree 

structure acceptable to the ALOE editor. Since the ALOE editor stores only information about the 

abstract syntax of AMUX, it is unable to parse AMUX text. Even if parsing were possible, there is the 

problem of how to handle comments in the original text. Comments would have to be stored and 

unparsed again after editing. It seems that distortion of program text during conversions between tree 

and text form is inevitable. 

When executing the AMUX load command, the interpreter will need to read, parse and evaluate AMUX 

text if the file to be loaded is a text file. If the file is remote to the interpreter, the editor may have to send 

it. Therefore, there will be a problem in executing the following AMUX language command: 

1. load· this command loads an AMUX file into the interpreter. 



10 

If an ALOE tree file needs to be loaded, a tree file will have to be read into the editor then loaded by 

way of the tree evahJation routineS. The interpreter will need to be able to distinguish between the two 
cases. If we were able to convert text into ALOE program trees, then this would not be necessary. 

3.3. Operating System Interface In AMPE 
In defining the operating system interface in AMPE, we consider the interfaces of the ALOE editor and 

AMUX interpreter separately and determine how they need to be changed when the two are linked 

together. The needed changes to the operating system interfaces during integration are primarily due to 

input/output problems that arise. Therefore we focus on I/O problems. The problems of file va in AMPE 

involve redirecting some of the interpreter's va to the editor. The following diagram describes the various 
ways I/O could be done in AMPE: 

I/O In AMPE 

I 
1 

1---------1 
<---> 1 ALOE 1 <---> 

I editor I 
<---------------------> 

1---------1 

Machine 11 

1 

1 

I 
1 
1---------1 
1 AlfL/X 1 
1 int~rtrl 
I I 
1---------1 
1 
1 

<---> 

Machine 12 

The editor can exchange information with the machine it is running on and with the interpreter. The 

interpreter can exchange information with the machine it is running on, with the editor, and. through the 

editor, with the machine the editor is running on. 

All ALOE editors are generated with certain basic I/O routines such as those that load, save or unparse 

a file. The AMUX interpreter also has built-in routines for va. Interpreter va assumes its files are local. 

In AMPE. as mentioned earlier, this may not be the case. Therefore. the interpreter should have some 

way of determining whether a file is local or remote. Since this seems to be an issue for the designer of 

the interpreter, it is not dealt with here. In this thesis we assume that all interpreter va is directed to the 

editor. We have already discussed how program information reaches the interpreter. This information 

can be about an AlOE program tree or it can be simply AMUX text. The latter case is already an 

example of remote file I/O by the interpreter. In this section we will discuss in more detail how remote I/O 

is done. 

The interpreter's I/O will need to be redirected as follows: 



Remote Interpreter VO 

I I 
IStandard I I 
I I/O 1<=>1 

11 

I I I I/O 
1---------1 I Request 

3.3.1. ALOE 110 

I I I 
IFile I/O I I 
I Sender 1<=====>1 
I I I 

Editor 

There are three kinds of editor 110 in AMPE: 

Interpreter 

1. 110 that is common to all AlOE editors - The VO routines that load ALOE programs in tree 
form into the editor, store or unparse programs, etc. are provided by the ALOE kernel. 

2. Communication with the interpreter - The ALOE editor must be able to send evaluation 
requests to the interpreter and replace standard 110 in the interpreter. Because the editor is 
screen-oriented, standard input will be through a command line, and standard output will be 
through a pop-up window. 

3. 110 that is done by the editor on behalf of the interpreter - Since the interpreter may run on a 
machine different than the one where the editor runs and where the programmer is working, 
some interpreter VO must be directed through the editor. 

Since the 1/0 routines for a pure ALOE editor are already accounted for in the ALOE generator, we are 

not concerned with these routines. The remaining two kinds of editor VO requires that editor I/O be 
augmented to include the following: 

1. VO Server - This server is defined by the 110 routines that it will permit the interpreter to 
execute remotely. In order to process VO requests from the interpreter, we will need 
routines that execute the necessary system calls for the interpreter. 

Communication with the interpreter occurs when the editor needs to have something evaluated and 
when it receives the results of the evaluation from the interpreter. Communication also occurs when the 

editor is doing 1/0 for the interpreter. The communication be.tween the editor and interpreter will also be 

discussed in more detail later from the point of view of the interpreter. 

The routines that allow the editor to communicate with the interpreter for evaluation purposes, should 

also include routines that allow the editor to do 1/0 for the interpreter. The last section discussed how to 

send program tree information. The sending of AMUX text and other data will be covered here. 110 that 

is requested by the interpreter can be of two types: 
1. Standard va - Since AlOE is screen oriented, standard input will be through a command 

window. All output from the interpreter is directed back to the interpreter and is displayed in 
a pop-up window. The text is displayed just as it would be if someone were running the 
interpreter without the ALOE interface. The routines in the editor that handle standard 110 
are written in ARL. 

2. File VO - The editor needs routines that will manage file 1/0 for the interpreter. 



12 

Changes to the operating system interface will occur when the editor does I/O on behalf of the 

interpreter. It is not clear how much the operating system interlace needs to be changed. The interpreter 

will need to be able to do VO on the editor's machine, but it is not clear how complete the interpreter's 

interface with the editor's machine needs to be. 

3.3.2. Interpreter VO 
The interpreter needs to get information about the programmer's code from the editor in order to 

evaluate it The interpreter also needs to send the output of the interpreter to the editor so that the 

programmer can see it The interpreter needs to be able to do file va. Since the interpreter may run on a 

machine different than the one the editor is running on, I/O may have to be directed through the editor. 

Interpreter I/O can be of three kinds: 

1. ALOE Program Infonnatlon - The interpreter needs a new parser in order to interpret 
information about ALOE program trees. The interpreter also needs to retain the Original 
parser in order to be able to parse existing AMUX code in text form. This is necessary 
when executing the AMUX load command. 

2. Remote I/O - This kind of VO involves communication with the ALOE component When 
input is needed from the user, the interpreter needs some way of indicating that input from 
the user is required, and getting that input. When output goes back to the user, it must be 
displayed in an output window. The interpreter needs to be able to indicate that a particular 
file needs to be opened or closed, or that a particular file needs to be written to or read 
from. The data being written or read by the interpreter will also have to be passed between 
the interpreter and editor. 

3. Local VO - This kind of I/O involves interaction between the interpreter and the operating 
system on which it is running. 

As mentioned eanier, various communications protocols will need to be established between the editor 

and interpreter so that interpreter VO will be possible. In AMPE we assume that all 110 files are remote, or 

local to the editor and programmer. Differentiating between local and remote files seems to be an issue 

for the interpreter and is not addressed in this thesis. 

Interpreter VO will have to be augmented to indude the following: 
1. Parsers - The interpreter will need to recognize and process evaluation requests. 

2. Remote VO Routines - The interpreter will also need routines that execute all other VO 
requests. 

4. Design 
AMPE consists of two main parts: the ALOE editor part and the AMUX interpreter part, each of which 

runs as a separate process. They use a communication protocol. 

4.1. Communication Protocol 
In AMPE the editor and interpreter are related in a client-server relationship. Either can be a dient or 

server. When the editor needs something to be evaluated it is the dient and the interpreter is the server. 

When the interpreter needs I/O, it is the client and the editor is the server. 



AMPE While Editing 

I 
I 

1---------1 
I ALOE I 
I aclitor I 
I I 
1---------1 

Machl.ne '1 
4.1.1. ALOE Component as Client 

I 
I 

I 
I 

13 

1---------1 
I AHL/X I 
I intrprtrl 
I I 
1---------1 
I 
1 

Machine '2 

The editor can make the following request to the interpreter: 

1. evaluate - Evaluate an ALOE program subtree. 

Therefore, the interpreter first must indicate that the request is being made so that the interpreter can 

apply the correct parser to the interpreter input. 

The editor is chiefly used as an interface to the interpreter. While the programmer is programming, the 

interpreter waits as a server for the editor to send an evaluation request. 

Editor Makes an Evaluation Request 

I 
I 

1---------1 
I ALOE 1 
1 editor 1 
1 1 
1---------1 

Machine '1 
4.1.2. ALOE Component as Server 

1 

1 

I 
I 
1---------1 

----> 1 AML/X I 
1 intrprtrl 
I 1 
1---------1 
1 
1 

Machl.ne '2 

Once the interpreter is evaluating AMUX code, whether it is in tree or text form, it may become 

necessary to do 110. While the interpreter is evaluating, the editor is waiting for interpreter output. At this 

point, the editor can become a server for an interpreter 110 request: 
1. Input - After the interpreter has indicated an input request, it then specifies the source. If 

standard input is specified, the user is prompted and the the input obtained. If a request is 
made for a file to be opened or for a file to be read, then the appropriate action is taken. 

2. Output - Output requests are handled in much the same way as the input requests. 

After al\ interpreter VO is finished, the editor is informed and the interpreter goes back to waiting for an 



I 
I 

1---------1 
I ALOE I 
I editor I 
I I 
1---------1 

MacMne #1 

I 
I 

I 
I 

14 

1---------1 
<===- I AML/x I 

I intrprtrl 
====> I I 

1---------1 
I 
I 

Machine '2 
After sending an evaluation request, the editor waits as a server tor any possible requests from the 

interpreter. The interpreter finishes evaluation and signals that it is finished. 
Interpreter Signals End of Evaluation 

I 
I 

1---------1 
I ALOE I 
I editor I 
I 1<-
1---------1 

MacMne '1 

I 
I 

I 
I 
1---------1 
I AXL/X I 
I intrprtrl 
I I 
1---------1 
I 
I 

MacMn. '2 
The editor now displays the result of the evaluation in a pop-up wineow:- We are now back in the 

original editing state. 
Original State 

I 
I 

1---------1 
I ALOE I 
I editor I 
I I 
1---------1 

MacMne U 

I 
I 

I 
I 
1---------1 
I AXL/X I 
I intrprtrl 
I I 
1---------1 
I 
I 

MacMne 12 



15 

4.2. The ALOE Component 

This section will disCI ISS the design and implementation of the AlOE mmponent. The work on the 
ALOE component can be divided into three parts: 

1. Structure Editor - This part includes all the generic ALOE editor commands. 

2. Evaluation Routines - The routines responsible for sending messages about the AMUX 
code to the interpreter. This part also includes other tree traversal routines that return 
information about the ALOE program trees. 

3. Remote va Routines - These routines are responsible for replacing the standard 1/0 of the 
interpreter and handling file va for the interpreter. 

4.2.1. Structure Editor 

In order to generate an ALOE editor, we need to provide a language description of AMUX. ALOEGEN 
is used to develop the syntax of AMUX which is used by the ALOE component of AMPE. An abstract 

syntax is given which is used to generate the attributed syntax tree used by ALOE editors. Concrete 

syntax is given in the form of unparsing schemes, which dictate how the program tree is displayed to the 

programmer and what it looks like when printed as a text file. Most of the work done here is standard for 

any ALOE editor. 

4.2.2. Evaluation Routines 

The main evaluation routine is the evaluate extended command which causes the evaluation of ALOE 

trees by the interpreter. ARL routines have been used for traversal of the program tree, accessing 

different fields of the tree. and for display management C functions have been used for implementing the 

interprocess communication. OaGEN is used for specifying what routines are called to execute what 
extended command. It is also used to specify initialization routines to be executed when an editing 

session is being started. and clean-up routines to be executed when the editing session is being ended: 

These routines are used to initialize a socket connection between the editor and interpreter, and used to 

disconnect the editor and interpreter. This causes the interpreter to terminate itself. 

When evaluating trees. we will need routines for basic tree traversal problems. Therefore we have 

several tree traversal routines. For example, when setting breakpoints during debugging. it would be 

useful to have a command that traverses the program tree and returns line numbers. The AMUX 

interpreter expects text and determines line numbers when parsing so that it can return line numbers in 

error messages for example. When evaluating with trees. we must supply these line and character 

numbers ourselves. 

The following tree traversal routines will be needed for a variety of reasons: 

1. Intonode - this routine locates the node of a program corresponding to a given line number. 
Error messages returned from the interpreter may contain references to line numbers. 
Such references to line numbers require that the user of the AMPE, who will be editing a 
tree structure. to be able to locate a given line number. 

2. nodetoln - this routine returns the line number given a node of a program tree. In order to 
use existing AMUX debugging routines, it is necessary to determine line numbers as when 
setting break points. Given a node in a tree structure, it is not always immediately obvious 
what the corresponding line number is. 

3. findameta . this routine determines if a meta node exists within a tree for which evaluation 
has been requested. This is to prevent attempted evaluation of an incomplete program tree 
that still has meta nodes in it. 



16 

While the first two routines are provided as extended commands for direct use by the programmer, they 

are aJso called form higher !evej functions. As mentioned earlier. nodBkJIn can be automatically called 
when an eX!ended command is setting a breakpoint. Nodetoln is also called from the evaluation routine. 

The AMUX interpreter requires linenumber information when parsing so that when errors occur it can 
return line numbers. Nodetoln is used in sending this information to the interpreter when the program 

information is sent Lntonode can also be called automatically when the interpreter returns an error 
message so that the programmer's cursor is automatically moved to the corred line number. Rndameta 

is also called by the evaluation routine. 

In implementing Intonode and nodetoln several generic routines are used for counting line numbers. 

Special routines need to be written for language constructs with unique unparse schemes. such as 

Conditionals and Class definitions. 

In the ALOE generator, the ARllanguage makes it easy to access the fields of ALOE tree nodes and 
to manipulate these trees in general. The AMlIX interpreter has its own tree building and tree 

manipulation routines. Since ARl routines work on ALOE syntax trees and the interpreter has its own 

routines to work on its own data structures. we need to have ARl routines cause the proper creation and 

management of the interpreter's data structures by causing the proper interpreter routines to be called in 

the proper order. Using these routines we implement the evaluate command. 

For example. consider the AMUX expression: 

2 + 3: 

The AMUX interpreter parses this as: 
Addition Operator + 
Integer 3 
Integer 2 

AMUX uses a YACC generated parser so the tree is represented as a stack. The original AMUX 

interpreter recursively parses the two children of the "+" node. pushes the result of each recursive parse 

on the stack then pushes the "+" operator. The ALOE tree representing the same expression would look 

like this: 

-----------+----------~ I I 
I 
2 

I 
3 

The language description of AMUX used to generate the ALOE editor uses a flattened grammer so 

that ALOE uses tighter trees that are easier for programmers to write. For example, a "2" can be directly 

specified as an operand of the addition operator. The programmer does not have to specify the operator 

as first an expression, then integer, then the number .2". 

When evaluating the ALOE tree. a tree traversal causes the first operand to be parsed. It is 

determined to be the integer "2" so the appropriate routine from the original parser is called to push a "2" 

on the parse stack. If the interpreter were imbedded. the routine that pushes integers would be called 

directly. With the interpreter in another process, a message indicating that an integer should be pushed is 

sent followed by the integer to be pushed. Likewise, ·3· is pushed on the stack and finally the "+" 



17 

operator is pushed. The result is a parse stack, identical to the.one above, that can be evaluated by the 
evaluaDon routine at the AUUX interpreter. 

Language commands such as resume can be easily implemented within the general evaluation 
scheme. AMUX language commands are always application_expressions, which are represented as the 
ALOE tree: 

App~ication &%pression 
I 
I 

~----------------I----------------~ 

Identifier Fo~ Parameter List 

The identifier part of the application_expression can be supplied implicitly by associating an AMUX 
command with a particular extended command. 

The formaLParamete,_list part can be specified by prompting the programmer for inpul Since we are 
not constructing program trees, the input is in text form and so there are restrictions on what the 
programmer can pass as parameters. While AMUX allows an arbitrary expression to be passed as a 
formal.J)a.ralT1eter, we do not allow arbitrary expressions to be entered. The reason is that we would have 
to convert the AMUX text into an ALOE tree. This problem will not be addressed in this thesis. Therefore 
input will be limited to a partiQJlar type of literal depending on the particular AMUX language command. 

For example, the extended command that executes the AMUX load command will prompt for a charader 
string representing a file name. 

When possible, these arguments should be passed automatically. An example of this would be when 
setting breakpoints. Suppose the programmer wants to set a breakpoint at the current cursor position. 
The interpreter needs a line number in order to set the breakpoint. Such line numbers can be 
automatically provided through routines that automatically traverse the program tree. 

4.2.3. Remota 110 Routines 

Routines in the editor that do 110 for the interpreter can be of two types: 
1. Standard 110 Routines • These routines display information to the editor, and get 

information from the user. These routines are written in ARL, which is used most of the 
time when implementing a normal ALOE editor. ARL contains many functions for displaying 
information and reading it from the user. 

2. FHe VO Routines· These routines interad with the operating system on which the editor is 
running. Since these routines do 110 for the interpreter, these routines are written in C. 

The standard VO routines are restricted to routines that display text to the user of AMPE and read text 
input from the user. Text output is displayed in a pop-up window and input is prompted for and taken 
from a command line. The file I/O routines allow the interpreter to work remotely on files. Therefore, the 
implementation of the file VO routines are more involved. In this section we will first discuss the data 

structures used for managing the file I/O data and then the actual routines themselves. 

Each file is identified by a file identification number. In AMPE, we simply use the file descriptor. File 
pointers are stored, along with their corresponding file identification number, in a hash table. The hash 



18 

table itself is an array of pointers and looks like this: 
File PoInter Hash Table 

Hash Table Table Entries 

---------------------------------*----------> I ~ile ID Number I File Pointer I 
I ---------------------------------

---------------------------------*----------> 
I ---------------------------------

*----------> NULL 
I 

The remote operations on flies that are currently allowed are: 

Remote va Routines 

1 . open - opens a file. 

2. read - reads from a file. 

3. write - writes to a file. 

4. close - doses a file. 

5. flush - causes input buffers to be emptied and output buffers to be written. 

When the interpreter wants to execute one of these remote routines, it sends a remote va request. 

The format of a remote va request is: 

Format for Remote va Request 

I Request Type I ~ile ID Number I Request Parameters I 

Open requests omit the file 10 number. 

The remote use of a file by the interpreter will occur as follows. When the editor receives an open 

request, the editor executes the fopen routine in the C language. The (open routine is executed with the 
parameters given by the interpreter. If a file is successfully opened, the file pointer and corresponding file 

identification number is stored in the hash table at the index determined by hashing on the file 

identification number. This file 10 can be any integer determined by the editor. Here. we have chosen 



19 

simply to use the file descriptor of the opened file. When a read request is received, the editor hashes on 

the given file 10 number and executes tread on that file with the parameters supplied by the interpreter. 

The results of the tread command are then sent back to the interpreter. The write command is executed 

in a similar manner. The close command causes the fclose command to be executed and the 
appropriate entry in the hash table to be removed. The seek command executes fseek. 

In a similar way, it is also possible to add routines that do seeks on a file by executing fseek or check if 

end-of-file has been reached by executing feot, and so on. It would also be possible to allow other 
system calls to be executed remotely, but it is not clear which other ones would be useful. 

4.3. Interpreter Component 
The interpreter component is responsible for code evaluation in AMPE. The evaluation routines, which 

naturally constitute the vast majority of the code in the interpreter has been left in itS original form. 
However, the interpreter had to be modified in three areas: 

1. A second parser was written to read tree information from the editor. 

2. File VO was directed to and from a socket. 

3. The main read-print-eva/loop communicates with the editor in order to stay synchronized. 

The main read-eval-print loop now runs as follows: 

1. Read - Determine from the editor which parser to run on the coming input. 

2. Eval - Run the appropriate parser and evaluate. During evaluation, do the needed 110. 

3. Signal End - Signal the editor that the evaluation is complete and a new request can be 
sent. 

4.3.1. Parsers 

The interpreter will read two kinds of input: 

1 . Tree Infonnatlon - The interpreter needs to be able to receive information about ALOE 
program trees so that it can do the appropriate evaluation. A "tree parser" was written for 
this purpose. 

2. Text - The interpreter needs to read text data while doing evaluations. It also needs to read 
and parse AMUX text when evaluating code in text form. 

This section is concerned with the tree information input and the tree parser needed to interpret ALOE 

tree information. The AMUX interpreter already comes with a text parser. All other text I/O will be 

discussed in the following section. 

The results of parsing with the tree parser and original text parser are the same. In either case the 

same tree building routines, etc. are called in the same order. In fact, the tree parser was derived by 

observing the flow of control in the text parser. 

The AMUX interpreter uses a YACC generated parser. This text parser runs as a state machine in 

which one state is chiefly responsible for the actual construction of the parse tree. In this state is a large 

C language switch statement (similar to a case statement in Pascal). The parse tree is formed as control 

repeatedly enters various cases in this switch statement. The following Simplified example, written in 

pseudo-code, illustrates how this works. 



Block Text 

Bl.ock Beqin 
Declaration 
Declaration 
Statement 
Statement 
Statement 

Block Znd 

20 

Text Block Parsing Code 

case i: 
case j: 

initialize block 
close block 

parse declaration 
parse statement 

The above text would cause control in the interpreter to go to case ;where a block would be initialized, 

then case m twice where each dedaration would be accounted for, and then n three times, where each of 

the three statements would be parsed. Finally, control would go to case j and the block is closed. 

When receiving program tree information, the tree parser causes the same sequence of routines to be 
called. The tree parser, however. is structured differently. The tree parser is a set of mutually recursive 

routines each of which handle a particular language construct. In the above example. there would be a 

routine that specifically handles blocks. The editor WOUld. send tree information about a block in the 

following format. 

Tree Block Information 

---------------j-----------------------------
I .Block I Declaration List I Statement List I 

The tree parser routine to handle blocks looks like this: 

Tree Block Parser 

Function Parse Block 
Begin 

initialize block 
loop 

parse declaration 
end loop 
loop 

parse statement 
and loop 
close block 

The routines that parse statements might themselves call the routine, parse_block. 



21 

4.3.2. Interpreter VO 

In AMPE we have redirected the interpreter's va from the operating system to the editor. In order to do 
this, we needed to replace some standard I/O calls in the interpreter's code with calls to routines that 
manage 1/0 with the editor. The replaced routines are the C language routines: 

Replaced C Language Routines 
1. fopen - opens a file. 

2. fread - reads from a file. 

3. fwrtte - writes to a file. 

4. fclose - closes a file. 

5. fflush - empties input buffers and writes output buffers. 

As with the corresponding routines in the editor component, hash tables are needed here. These hash 
tables are used to store I/O buffers between the editor and interpreter. One hash table is used to buffer 
interpreter input. The other is used to buffer output 

I/O Buffer Hash Table 

'table Entries 

*----------> I rile ro Number I rio Buffer 

I ---------------------------------

*----------> 
I ---------------------------------

*----------> NULL 
I 

The new open routine sends a request to the editor to open a file. It then receives the result of the 
open request. If the request is successful then an input and/or output buffer is allocated for that file, 
depending on the read-write permission for that file. The result of a successful open request is the file 

identification number which will identify the opened file as long as it remains open. The interpreter 
maintains a dummy file pointer and stores the file id number where the file descriptor would have been 
stored. had the original call to fopen been made. The read-write permission in this dummy file pointer is 

also set so that the interpreter would not have to make a request to the editor for this information when it 
can easily be stored locally. Another reason for storing this information is that in the interpreter's code, 
there is a macro defined that checks this read-write permission. The use of the dummy pointer in general 
allows us to redirect VO without rewriting the data structures that manage I/O for AMUX. It also allows us 



22 

to keep some information about our files local, while at the same time allowing 1/0 to be done remotely. 

If a read request is made with a particular file ID number, then the file 10 number is hashed and the 
appropriate input buffer is checked. If possible, contents from the buffer are returned, otherwise a read 
request is sent to the editor and the buffer is filled. Write works similarly. A request is made with a file 10 
number. This number determines the output buffer into which data is written. Data is sent to the 
interpreter whenever the Ou1put buffer fills up. Close forces the contents of a file's output buffer to be 
sent to the editor and written out. It also removes allot that file's 1/0 buffers form the hash tables. Flush 
forces output buffers to be written, and empties input buffers. 

5. Example 
This section gives a small sample session with AMPE to show how it can be used. As illustrated in 

section 2, an AMUX program is created by filling in program templates. To further illustrate how AMPE 
works, we continue the example started in section 2. 

Templates for Generic Declaration 

$label $declarator 

Window:root Node:META Class : labe~ 
> 

Here we have the templates for the components of a generic program declaration. The underlining of 

$label indicates that that is the current cursor position. In order to create a subroutine declaration we 
move the cursor to $declarator and execute the command that fills in the templates for a subroutine. We 

can also move the cursor back to $label and enter a name for our subroutine. 

Subroutine Declaration Template 

incr: STATI:C SOBR (toz:ma~ as) 
$deelaration; 
$statement: 

END; 

Window:root Node:META 
> 

Class: tormal arq 

By continuing to fill in templates we create a subroutine declaration. 



23 

Subroutine Declaration 

ine%~ SUfiC SUBR (n) 
return (n + 1); 

END; 

Window:root Node:IDENTIFIER Class:expression 
> 

This subroutine takes as input an integer and returns the sum of that integer plus one. In order to 

evaluate this subroutine declaration, we cover the entire declaration with the cursor and execute the 
evaluate extended command. To execute this subroutine, we need to make a call to this subroutine. 

This is done by creating an application expression and evaluating it. This is the same as making a 

function call. 

Evaluation of Subroutine call 
inCr: S~TIC SOBR (n) 

r.turn (n + 1); 
END; 

incr(x): 

Window:root Noda:APPLlCATION EXPR Class:stat decl 
> 

The result of the evaluation is displayed in a pop-up window. In this case, the result is an error 

message indicating an arithmetic error due to the unbound variable x. The message indicates the line 

number at which the error occurred. The character number in the message actually refers to a leaf 
number, since AMPE edits tree structures not real text. 

Error Message 

AML: 

* * * lCCCXPTIOH lCCCP NO'rNUH: 
Number (Ilft , LONG _ IN"r, REAL, or LONG _ RlI:AL) expected.. * * * 
Operator: + 
Operands: < UNBOUND, 1 > 
rile: 
Line: 2 
Char: 2 
Data: UNBOUND 

Window: Interpreter Output Region: Evaluation 

At this point, we have a break in execution which allows us to examine the values of various variables. 

We could also execute the AMUX debugging commands to set explicit break points. The Intonode 
routine (section 4.2.2) moves the cursor to the appropriate line in the displayed program. 



Cursor at Source of Error 

iner: snne SOBR. (n) 
return (~+ 1); 

END; 

incr(z); 

24 

Window:root Noda:IDENTIFIER Class:axpression 
> 

We can resume execution using the AMUX resume command. After substituting a 6 for x in the call to 
iner, we get the following pop-up window. 

Final Evaluation 

AML: 
7 

Window: Interpreter Output 

6. Relation to Other Models of Tool Integration 

Region: Bv.~uation 

David Garlan [4] characterizes approaches to tool integration as variations on two models, the 

-sequential- and ·concurrent". AMPE has features in common with both models of tool integration. As in 

the sequential model, each IDol works on its own separate data structures. As in the roncurrent model, 

the tools run at the same time. 

1-------1-------1 
Sequential AMPE Concurrent 

6.1. "Sequential" Models of Tool Integration 
In the ·sequential- model, tools communicate sequentially through well defined interfaces. An example 

of this kind of system would be the Unix operating system, which provides programmers with a set of 

programming tools. These tools can be linked USing Unix pipes, which provide a way of channeling the 

output of one tool into another. Among the advantages of this approach is the modularity of the 

components. Each tool maintains data representations appropriate for itself. And the implementor of 

each tool can work without concern for the implementation details of the other tools. Conversely, the 

implementor need not worry about outside influences on his code. This modularity can make it easy to 

modify existing tools or add new tools to the system. One of the disadvantages is that the data 

representations used by one tool may be inappropriate for another. Therefore, some transformation must 

take place. This may be diffICUlt or expensive to do. 
Sequential Tool Integration 

1 Tool '1 1---> 1 Tool 12 1---> ... ---> I Tool In 1 



25 

. 
6.2. "Concurrent" Models of Tool Integration 

In the ·concurrenr ITOCIei. tDO!s have shared access to a common database of programming objects. 
As is the case with ALOE editors, the data representation is typically an attributed abstract syntax tree. 

The advantages of this approach include the ability to integrate tools. For example, in an ALOE editor, 

editing commands can trigger semantic checking automatically when appropriate. Another advantage is 
that data does not need to be replicated for different tools as in the ·sequential" model. The disadvantage 

is the lack of modularity in this model. It is difficult to work on separate tools without affecting other tools 
and it is difficult to add new ones. 

Concurrent Tool Integration 

I Tool '1 I 

----> 

6.3. Examples of Tools Integration 

I Tool #2 I 

v 

Common Data 
St:ucture 

I Tool 'n I 

<----

The limitations of both models have lead to research into other intennediate fOnTlS. An integration 

mechanism called Odin [2] has been used to integrate families of existing Fortran and C programming 

tools. Garlan [4] has proposed a model of tool integration that provides tighter integration. but is not as 
applicable to diverse collections of existing tools. Snodgrass [11] takes a similar approach. Marvel [1] 

represents a knowledged-based approach to tool integration. Marvel. like Odin, works with existing 

programming tools. The RPOE~6] allows fragments of tools stored in a library to be recombined. 

A system that is similar to AMPE in structure is David Gartan's DemoGen system [3]. The ability to run 

an ALOE editor and another program in separate processes, communicating with each other, has been 

demonstrated by this system, which generates demonstration programs for software systems. Such a 

demonstration program has run interactively with the GandaJf environment generation system [5]. of 

which the AlOE editor generator (ALOEGEN) is a component. 

7. Conclusion 
Integrating an ALOE editor to the AMUX interpreter demonstrates the restrictions of the ·concurrenr 

model of tool integration, and snows how an ALOE editor can be extended in a limited way to take 

advantage of runtime support running on another process. Further research that can be done on AMPE 

can be divided in two parts: 
1. Further Work on AMPE Itself - There is more work to be done on just having the ALOE 

editor and AMUX interpreter working together. 

2. Generalization of the AMPE Model - AMPE consists of two parts: an editor and an 
interpreter. It is not dear how other tools can be added. 



26 

7.1. Further Work on AMPE 
Most at the future work to be done on AMPE involves the use of text files. 

1. ALOE VO with Text Flies - We would like to be able to load program text into ALOE for 
editing. 

2. Interpreter VO with Text Flies - The interpreter needs to be able to differentiate local and 
remote I/O files. 

7.1.1. ALOE File VO 

About the problem of reading text into AMPE. the solution consistent with the other work here would be 
to make use of the AMUX interpreter to do the parsing first and then have the tree transformed into one 
usable by the ALOE editor. Therefore. the edit command would have to be defined that retrieves a given 
file. and calls the interpreter's parser to generate an initial tree. which could then be transformed and 
loaded into the ALOE editor. 

There will be problems in reading program text files into the ALOE editor and unparsing them later. 
One problem is that the way a programmer writes his code probably will not match the unparsing scheme 
of the editor. Therefore. if a program is loaded into the ALOE editor and unloaded. using the editor's 

unparsing scheme. the appearance of the program can be completely changed. There is an additional 
problem of how to handle comments in parsing the text program. Usually they do not become part of the 
parse tree, But dearly the comments will become useless if they do not. In order to handle comments 
the AMUX parser itself would have to be modified. Since comments can appear anywhere in the 
program. it is not dear how they can be stored. And when unparsing occurs. we would like the comments 
to be returned to their intended locations. 

One approach to this problem would be to include comments as part of the syntax of AMUX. While 
this approach could be an acceptable solution for a programmer working on a program tree. it would put 
severe restrictions on the writer of text files. and would require that existing text programs be 
recommented. 

If this problem is solved. then we will no longer need a text parser, since we will no longer need to send 
AMUX text to the interpreter. We can first transform program text into an ALOE tree and then do a tree 

evaluation on it. This would simplify the interface between the editor and interpreter. 

7.1.2. Interpreter File UO 
It is probable that an AMUX program may need to use some files that are local to. itself and some that 

are local to the editor. In that case the interpreter must be able to differentiate requests for local or 
remote VO. This kind of differentiation seems to be a language issue and so has not been addressed 
here. We have assumed that when the AMUX interpreter makes an I/O request. that the desired file is 

local to the editor and programmer. 

7.2. Generalization of AMPE Model 
AMPE functions as two programs. an editor and interpreter, running on different processes. In order to 

generalize this model. we will need to be able to add new programming tools. That means that we will 

need a more general way of generating interfaces between the tools. 



Generalized AMPE 

27 

I Too~ '1 1<-------------
----------- I 

I 
v 

I Editor I <-------------------> I Interpreter I 

---------> I Tool 12 I <------------

There is another problem that will arise when adding new tools. The editor and interpreter in AMPE run 
as coroutines. Although they run in separate processes they do not run concurrently. When adding more 

tools we may want to have some tools running concurrently either for efficiency reasons or just because 
of the natures of the tools themselves. In this case the interfaces between the tools will become more 

sophisticated. One approach to creating generalized interfaces between programrtling tools would be to 
try to use a "Marvel-like1S] envelope. Marvel uses envelopes to describe a tool to the system so that it 
can use it without altering it. An envelope is basically a sheH-script that can redirect input and catch 

output. 



28 

References 

1. N. S. Barghoutl and G. E. Kaiser, wlmplementation of a Knowledge-Based Programming 
Environment", Twenty-first Annual Hawaii International Conference on System Sciences, 
vol. II, January 1988, pp. 54-63. 

2. G. Clemm and L. Osterweil, wA Mechanism for Environment Integrationw, Technical Report 
CU-CS-323-86, Department of Computer Science, University of Colorado, Boulder, 
Colorado, April 1986. 

3. D. B. Gartan, wDemoGen: A Development System for Demonstration Programs", 
Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA, Mard11982. 

4. D. B. Garlan, "Views for Tools in Integrated Environments,W in: A. Conradi, T. M. Didriksen 
and D. H. Wanvik Eds., Advanced Programming Environments, Lecture Notes in Computer 
Science 244 (Springer-Verlag, Berlin 1986) pp. 314-343. 

5. A. N. Haberman and D. Notkin, wGandalf: Software Development Environments", IEEE 
Transactions on Software Engineering, vol. SE-12 No. 12, December 1986, pp. 1117 -
1127. 

6. William Harrison, wRPDE3: A Framework for Integrating Tool Fragments", IEEE Software, 
Nov. 1987, pp. 46-56. 

7. G. E. Kaiser and C. W. Krueger, WUsing The New Gandalf System (A Tutoriatr, Technical 
Report CMU-CS-86-146, Department of Computer Science, Carnegie-Mellon University, 
Pittsburgh, PA, August 1986. 

8. Gail E. Kaiser, Naser S. Barghouti, Peter Feiler, and Robert Schwanke "Database Support 
for Knowledge-Based Engineering Environments,W IEEE Expert, Summer 1988, pp. 18-32. 

9. Charles W. Krueger, A. N. Habermann, "The GANDALF Editor Generator Reference 
Manuals" in "The GANDALF System Reference Manuals: TechnicaJ Report, Computer 
Science Department, Carnegie-Mellon University, 1986. 

10. L. A. Nackman, M. A. Lavin, A. H. Taylor, and W. C. Dietrich Jr., "AMUX User's Manual,w 
IBM Research Report RA 175, IBM Thomas J. Watson Research Center, Yorktown Heights, 
NY, (1986) 

11. A. Snodgrass and K. Shannon, "Supporting Flexible and EffICient Tool Integration", in: 
A. Conradi, T. M. Didriksen and D. H. Wanvik Eds., Advanced Programming Environments, 
Lecture Notes in Computer Science 244 (Springer-Verlag, Berlin 1986) pp. 290-313. 

12. B. J. Staudt and V. Ambriola, "The ALOE Action Routine Language Manual," in '"The 
GANDALF System Reference Manuals," Technical Report, Computer Science Department, 
Carnegie-Mellon University, 1986. 



29 

Appendix 

I. AMPE User's Manual 

1.1. Introduction 
AMPE (A Manufacturing Programming Environment) is a programming environment for the robotics 

programming language, AMUX. AMPE runs in two processes. One process runs a structure editor. In 

the other process runs the AMUX interpreter. With the editor, AMPE supports the development of 

syntactically correct code. With the interpreter, AMPE provides run-time support for the programmer. 
The user of AMPE can view the editor as just an interface to the interpreter. 

Model of AMPE 

EDITOR <=--=> 

Programs are developed in a structure editor by filling in program templates. The user of AMPE 

therefore edits program trees. not text. USing the structure editor, AMPE manipulates program trees and 
eliminates some of the more tedious aspects of programming. such as matching begin and end 
statements and placing semi-coions correctly. It is impossible. using this kind of editor, to create program 

trees that are syntactically incorrect. To illustrate how a structure editor works. we show how a small 

arithmetic expression is created. The interpreter expects to evaluate statements or declarations. The 

template for a statement or declaration is represented by SstaCdecl. The components of templates that 

get filled in are called meta nodes. Meta node names are indicated by $. Therefore the first template that 

the programmer will see is: 

Template for Statement or Declaration 

$stat_decl; 

The required semicolon is automatically placed. A statement can be a simple arithmetic expression so 

we can insert the template tor the addition operator. 

Template for Arithmetic Expression 

$ezpression + $expression: 

This template, in turn. requires two operands to be specified. These operands must be AMUX 

expressions. Expressions can be integers so that we can insert integers into these templates. 

Completed Artthmetlc expression 

4 + 7; 

AMPE also allows program trees to be evaluated by an interpreter during an editing session. The 

interpreter itself provides debugging facilities. Evaluation of the above arithmetic expression returns the 

interpreter prompt and the result of evaluation. 



Result of Evaluation 

AML: 
11 

30 

In the next section, we will describe how to generate and edit AMLJX programs. After that we will 
describe some oj the run-time support offered by the AMLJX interpreter. 

1.2. Editing 
The structure editor component of AMPE has been generated by the Gandalf programming 

environment generation system [1]. Such editors are known as ALOE (A Language Oriented Editor) 
editors. All ALOE editors have at least two kinds of commands. 

1. Edltfng - Editing commands include commands such as those that delete, review and move 
previously created program information. 

2. ConstructIve - Constructive commands create program information. 

The ALOE commands are executed with EMACS-style keystrokes and should seem familiar to user's 
of that text editor. The rest of this section describes the basic ALOE editing commands. The purpose of 
this section is to explain only the most basic commands to the novice user. These descriptions are 
largely excerpts from the ALOE User's Manual [2], which the user of AMPE is referred to for more 
detailed and complete explanations of the ALOE commands. 

Before running AMPE, it is necessary to have an .aloeprofile file in your UNIX home directory. This file 
should contain: 

all: 
novice yes 

This simply identifies you to be a novice user to the ALOE editor. 

Entering and Exiting AMPE 
Files edited by an ALOE are stored as UNIX data files in "tree formar. The extensions for tree files are 

".tr". For example, an ALOE program called TEST is stored in the file TEST.tr. In order to run AMPE, the 
interpreter component must first be running. The user of AMPE may run the interpreter in a background 

process. This is done by typing: 

amlx , 

to the UNIX shell. The basic method of invoking the ALOE component is by typing Hampe <program 

name>" to the UNIX command line. If the <program name> file does not exist then ALOE creates a new 

file. In order to edit the program, TEST.tr, you would type: 

ampe TEST.tr 

to the UNIX shell. 

Two windows appear on the screen. The bottom line of a window, called the status line, is highlighted 

and contains the window name and information about the status of the window. In this case the top 
window is the program (or root window) and contains the template for an AMLJX program. The bottom 



31 

window is the help window and contains the list of valid operators for the highlighted node in the program 

window. The bottom two lines on the screen are the command and message lines. All keyboard input 
that you type appears on these lines. All messag~s to you from the ALOE component are also displayed 
here. 

There are two ways to exit from AMPE. If you enter contra/oX control-F ("X"F) AMPE writes out the 

current tree into the <program name>.tr file, while entering a "C exits without writing out the file and all 

changes made during the editing session are ignored. If you have made changes during an editing 

session and you type a "C to abort the session, AMPE asks for confirmation: 

n.. proqram has been changed. Zzit anyway? [no]: 

The "no· in brackets indicates the default value. Typing a Carriage Retum «CR» selects the default 

value and in this case AMPE would not exit. Entering a yes <CR> terminates the session. Exiting from 

AMPE in either of these ways causes the interpreter also to exit. 

Cursor Motion 
The AMPE cursor corresponds to a single node in the program tree, called the current node. AMPE 

displays the current node by highlighting all of the text associated with it and its subtree. There are two 
basic commands for cursor motion: 

Motion through the tree 
These commands are all explicit tree motion commands. 

1. Move the cursor OUT to the father of the current node (ESC-P). 

2. Move the cursor IN to the left-most son of the current node (ESC-N). 

3. Move the cursor PREVIOUS to the left sibling of the current node (ESC-B): 

4. Move the cursor NEXT to the right sibling of the current node (ESC-F). 

5. Move the cursor HOME to the root of the tree or root of the current window (ESC-?). 

Motion through the text 
These commands are implicit tree motion commands. Although the cursor always points to a node in 

the tree, these commands move the cursor relative to the displayed text. 

1. Move the cursor to the next line ("N). 

2. Move the cursor to the previous line ("P). 

3. Move the cursor forward ("F). 

4. Move the cursor backward ("B). 

5. Move the cursor to the beginning of the line ("A). 

6. Move the cursor to the the end of the line ("E). 

When the cursor is moved onto a meta node the help window displays the list of legal operators for that 

node. The operators are the commands that are used to fill in meta nodes. 



32 

Scrolling 
Text in the current window can be saoIled (the current window has the cursor highlighted in it). "V 

scrolls the text forward one window full, and ESC-V scrolls back one window full. "Z scrolls one line 
forward and ESC-Z one line back. 

Construction of ALOE Trees 
This section contains an editing session with AMPE. At this point, we assume that AMPE has just 

been entered and editing will begin on a new file. 

As in the example in the introduction, the first meta node to be filled in is the $staCdecl meta node. 
The underlining of $staCdecl indicates the- current cursor position. 

$stat deel: 

In the help window you see all of the valid operators that can be applied at this point to fill in this meta 
node. Since there are more possible operators than fit into the help window, a message a.wears on the 
bottom of the saeen to assist you in scrolling through the help window. Construct a while_col/ecl 

template by typing while_col/BCton the editor command line and typing <CR>. Another way of doing is to 
type enough of the command to uniquely identify it and then pressing the escape key «ese» to complete 
the command. A while col/set construction is a version of the while loop that returns an aggregate of the 
results of evaluating the body of the while loop. The cursor is moved to the first offspring of the 
while_collBCttempiate, which is the expression that determines whether the loop is entered. Since AMUX 
programs are simply lists of statements and declarations, a new staCded meta node is create 

automatiCally. 
WHIL& $expression 

DO COLL&C'r $ezP:r8ssion: 

To enter a less than expression type It <CR>. The less than operator takes two operands which are in 
tum expressions. The first operand will be a expr.JJPIus expression which returns a value and then 

increments itself. Some of the operators listed in the help window have values inside of parenthesis. 

These values are called synonyms. Either the entire operator name or its synonym can be entered. 

Therefore, we can either type expr.JJPIus or its synonym, expr++. 
WHIL& $expression++ LT $ezpression 

DO COLL&C'r $ezpression: 

To enter a simple variable i, first enter identifier. AMPE then prompts with value: to which we respond 

with i. The cursor now moves to the next meta node. 
WBIL& i++ LT $ezpression 

DO COLLECT $ezprassion: 

We can insert another variable, n, here just as we entered i before. But many of the terminal nodes in 

the editor have lexical routines associated with them. If you enter an n now, the editor checks all of the 



33 

lexical routines to see if it is a valid entry for them. Here the lexical routine for identifiers accepts n. 
WRJ:LB i++ LT n 

DO COUOZC'f $ezp:re.aion; 

We enter a multiplication expression by typing multiply or its synonym, -. The integer, 3, can be 

entered directly because the lexical routine for integers wi" recognize it. An identifier can be entered as 
before to give us: 

WRJ:LB i++ LT n 
DO COLLBC'f 3 * i; 

$stat dacl; 

When evaluated and when i is initialized to 0, this loop wi" return the first n integral multiples of 3. 

Modification of existing ALOE Trees 
This section continues with the example from the previous section. Suppose we want the first n 

multiples of 5 not 3. We can move the cursor to highlight only the 3 node. Now delete the 3 node by 

typing AD. The 3 node has been replaced with a meta node. A 5 may be entered just as the 3 was 

earlier. 

Another way to do this is with the replace command, AXAR. If the cursor is on the 3, the replace 

command prompts with Replaca by: 3, the delete key removes the 3 and allows us to enter 5. 
WBILK i++ LT n 

DO COLL&C'f 5 * i; 

$stat dae.l; 

Another useful set of commands are kin (AK) and yank (AY). AK deletes the current highlighted subtree 

and save a copy of it in the kin buffer. Ay then inserts the subtree from the kill buffer at the current meta 

node. These commands are useful for moving copies of program sections from one location to another. 

Note that the meta node where the Ay is executed must be of the proper type to accept the root of the kill 

buffer. For example, if a declaration is deleted with AK, a subsequent Ay at an integer node does not 

work. 

Searching 
The editor has a string searching mechanism. The command AS prompts for a string to search for. 

The search begins at the current highlighted node on the display and continues until the first occurrence 

of the string is found or until the end of the program is reached. AR provides a reverse search from the 

current node to the top of the program. Searching with this structure editor is different from searching 

with an editor such as emacs. For instance, using the above example, searching for the string "WHILE" 

results in the entire subtree being highlighted. It is impossible to move the cursor to highlight just the five 

letters "WHILE" since it is just part of the syntactic sugar for the node. 

Window Operations 
The editor provides a number of commands for window manipulation. The current window contains the 

highlighted cursor. The divide-window command, AX2. splits the current window into two windows. Only 

one of the two has the highlighted cursor in it. and this is the new current window. The cursor in the 



34 

current window can now be moved to a distant place in the tree while the other window remains in the 

originallocatior,- The·~(AXN) and ~(AXP) comrnanca m:we the curA)t'1t cursor 
between the two windows allowing alternate editing in distant places. "X1 makes the current window the 

only window on the screen. "XD deletes a named window (remember that each window has its name in 

the status line). 

1.3. Run-Time Support 

Evaluation 
There are currently three editor commands that can be used to provide run-time support to the 

programmer. 

1. evaluate - This command causes the subtree highlighted by the current cursor to be 
evaluated by the interpreter. 

2. Intonode - This command takes as input a line number and moves the current cursor to the 
appropriate line. 

3. nodetoln - This command returns the line number that corresponds to the position of the 
cursor. 

The evaluate command is currently the editor's only way of sending program information to the 
interpreter. Subtrees that can be evaluated are declarations, statements or any kind of expression. 
Since AMUX is an expression-oriented language like LISP, this command is useful for examining many 

program fragments. Since the language itself provides for run-time support with debugging primitives, 

this evaluation routine is sufflcient to provide unrestricted access to the run-time support offered by the 

interpreter. 

The other two commands are intended to be used when debugging. Error messages from the 

interpreter will often include a reference to the line number at which the error was detected. The 

command, Intonode, facilitates locating the source of errors. When setting breakpoints, the AMUX 

debugging routines may require a linenumber as input Nodetoln provides such line numbers. 

In order to execute these commands, type ESC-X <command name> <CR>. When typing the 

command name it is only necessary to type enough of the name to uniquely identify it to the system. 

Typing the <space> bar will then complete the command name. 

To illustrate how evaluation Is done. consider the example from the last section. 
WBILZ i++ L~ n 

DO COLLBC'f 5 * i; 

$stat deel: 

Move the cursor to highlight only the 5. Since an integer can be an expression in AMUX. we can 

evaluate it. Now type ESC-X and get the ":" prompt. Typing "ev" uniquely identifies the evaluate 

command to the system. Typing the <space> bar completes the command: ": evaluate". If you typed 

only "e" instead of "eY" the system would have displayed, in the help window, the names of other 

commands that could be executed and begin with We". Typing <CR> now causes evaluation to occur. 

The result of the evaluation and the AMUX interpreter prompt are displayed in the evaluation pop up 

window. 



AML: 
5 

35 

If we move the user to highlight 5 • i and try to evaluate it, we will get an error message. 
WBXLZ i++ Li' n 

DO COLLZC': 5 * i; 

The error message is displayed in the evaluation pop-up window. This message indicates the 
linenumber at which the error was detected. The character number indicates the number of the leaf in the 
line where the error was detected. 

*** lCCCBPi'XON lCCCP_NOTNOM: 
Number (:rN'f, LONG_XN'r, RDL, or LONG_RDL) ~ted. *** 
Operator: * 
Operands: < 5, UNBOUND > 
rile: 
Line: 2 
Character: 2 
Data: 0NB0tJHD 

When executing Intonode, AMPE retums a prompt for input, -move cursor to line number: -. If we enter 

2, the cursor is moved to the first leaf node in line number 2. executing nodetoln at this point would also 
return 2. You can experiment with moving the cursor to other line numbers as well. 

Debugging 
The AMUX interpreter provides interactive debugging facilities. AMUX provides debugging commands 

that allow the programmer to: 
1. Stop execution - there are commands for setting breakpoints. 

2. Display and Assign - once execution is stopped, any variable that is active or defined may 
be displayed or have its value changed. 

3. Trace Program execution - the execution of various statements may be traced during 
execution. 

4. Altering the Programming Environment - the interpreter's environment can be altered 
without restarting the program. 

5. Create Debugging Scrlpg - debugging scripts can be stored in a separate file that can be 
loaded when a particular appfication needs to be debugged. 

The reader is referred to the AMUX User's Manual [3] manual for a more in depth discussion of 

debugging techniques in AMUX. 

In order to use the AMUX debugging commands it is necessary to first load the definitions of the 

debugging routines. Because of current restrictions on the evaluation of AMUX language constructs, this 
cannot be done. 



36 

References 

1. A. N. Habermann and D. Notkin, ~Gandalf: Software Development Environments", IEEE 
Transactions on Software Engineering, vol. SE-12 No. 12, December 1986, pp. 1117-1127. 

2. Charles W. Krueger, A. N. Habermann. "The GANDAlF Editor Generator Reference 
Manuals" in "The GANDAlF System Reference Manuals," Technical Report, Computer 
Science Department, Carnegie-Mellon University, 1986. 

3. l. R. Nackman, M. A. lavin, R. H. Taylor, W. C. Dietrich Jr., "AMUX User's Manual," IBM 
Research Report RA 175, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, 
(1986). 


