HomeHome

Large Earthquake Triggering, Clustering, and the Synchronization of Faults

Christopher H. Scholz

Title:
Large Earthquake Triggering, Clustering, and the Synchronization of Faults
Author(s):
Scholz, Christopher H.
Date:
Type:
Articles
Department(s):
Earth and Environmental Sciences
Lamont-Doherty Earth Observatory
Volume:
100
Persistent URL:
Book/Journal Title:
Bulletin of the Seismological Society of America
Publisher:
Seismological Society of America
Abstract:
Large earthquakes are sometimes observed to trigger other large earthquakes on nearby faults. The magnitudes of the calculated Coulomb stress transfers presumed to cause the triggering are 10⁻²–10⁻³ of the earthquake stress drops. The earthquake stress drops and the triggering delay times are similarly small with respect to the natural recurrence time of the earthquakes. This requires that both faults be simultaneously very close to the ends of their seismic cycles. Paleoseismological data show that for the same regions prior earthquakes have occurred in clusters of ruptures of several faults separated by long quiescent periods. Both observations suggest that synchronization is occurring between faults. Theory and observations indicate that synchronization can occur between nearby faults with positive stress coupling and intrinsic slip velocities within an entrainment threshold. In the south Iceland seismic zone, the central Nevada seismic belt, and the eastern California shear zone, several synchronous clusters that apparently act independently can be recognized. This behavior is the 3D equivalent of the phase locking that results in the seismic cycle of individual faults being dominated by large characteristic earthquakes, and for synchronization of fault segments along a given fault. Rupture patterns of repeated individual earthquakes or earthquake clusters are not identical in either the 2D or 3D cases. The state of this system, which exhibits strong indications of synchrony without exact repetition, may be called fuzzy synchrony.
Subject(s):
Earthquakes
Geology, Structural
Seismology--Research
Faults (Geology)
Environmental sciences
Geology
Plate tectonics
Publisher DOI:
https://doi.org/10.1785/0120090309
Item views
330
Metadata:
text | xml
Suggested Citation:
Christopher H. Scholz, , Large Earthquake Triggering, Clustering, and the Synchronization of Faults, Columbia University Academic Commons, .

Columbia University Libraries | Policies | FAQ