HomeHome

Effects of Floor Level and Building Type on Residential Levels of Outdoor and Indoor Polycyclic Aromatic Hydrocarbons, Black Carbon, and Particulate Matter in New York City

Kyung Hwa Jung; Kerlly Bernabé; Kathleen Moors; Beizhan Yan; Steven N. Chillrud; Robin M. Whyatt; David Camann; Patrick L. Kinney; Frederica P. Perera; Rachel L. Miller

Title:
Effects of Floor Level and Building Type on Residential Levels of Outdoor and Indoor Polycyclic Aromatic Hydrocarbons, Black Carbon, and Particulate Matter in New York City
Author(s):
Jung, Kyung Hwa
Bernabé, Kerlly
Moors, Kathleen
Yan, Beizhan
Chillrud, Steven N.
Whyatt, Robin M.
Camann, David
Kinney, Patrick L.
Perera, Frederica P.
Miller, Rachel L.
Date:
Type:
Articles
Department(s):
Medicine
Lamont-Doherty Earth Observatory
Environmental Health Sciences
Volume:
2
Persistent URL:
Book/Journal Title:
Atmosphere
Publisher:
MDPI
Publisher Location:
Basel, Switzerland
Abstract:
Consideration of the relationship between residential floor level and concentration of traffic-related airborne pollutants may predict individual residential exposure among inner city dwellers more accurately. Our objective was to characterize the vertical gradient of residential levels of polycyclic aromatic hydrocarbons (PAH; dichotomized into Σ8PAHsemivolatile (MW 178–206), and Σ8PAHnonvolatile (MW 228–278), black carbon (BC), PM2.5 (particulate matter) by floor level (FL), season and building type. We hypothesize that PAH, BC and PM2.5 concentrations may decrease with higher FL and the vertical gradients of these compounds would be affected by heating season and building type. PAH, BC and PM2.5 were measured over a two-week period outdoor and indoor of the residences of a cohort of 5–6 year old children (n = 339) living in New York City’s Northern Manhattan and the Bronx. Airborne-pollutant levels were analyzed by three categorized FL groups (0–2nd, 3rd–5th, and 6th–32nd FL) and two building types (low-rise versus high-rise apartment building). Indoor Σ8PAHnonvolatile and BC levels declined with increasing FL. During the nonheating season, the median outdoor Σ8PAHnonvolatile, but not Σ8PAHsemivolatile, level at 6th–2nd FL was 1.5–2 times lower than levels measured at lower FL. Similarly, outdoor and indoor BC concentrations at 6th–32nd FL were significantly lower than those at lower FL only during the nonheating season (p less than 0.05). In addition, living in a low-rise building was associated significantly with higher levels of Σ8PAHnonvolatile and BC. These results suggest that young inner city children may be exposed to varying levels of air pollutants depending on their FL, season, and building type.
Subject(s):
Environmental health
Public health
Medicine
Publisher DOI:
https://doi.org/10.3390/atmos2020096
Item views
515
Metadata:
text | xml
Suggested Citation:
Kyung Hwa Jung, Kerlly Bernabé, Kathleen Moors, Beizhan Yan, Steven N. Chillrud, Robin M. Whyatt, David Camann, Patrick L. Kinney, Frederica P. Perera, Rachel L. Miller, , Effects of Floor Level and Building Type on Residential Levels of Outdoor and Indoor Polycyclic Aromatic Hydrocarbons, Black Carbon, and Particulate Matter in New York City, Columbia University Academic Commons, .

Columbia University Libraries | Policies | FAQ