The arithmetic and geometry of genus four curves
 Title:
 The arithmetic and geometry of genus four curves
 Author(s):
 Xue, Hang
 Thesis Advisor(s):
 Zhang, Shouwu
 Date:
 2014
 Type:
 Theses
 Degree:
 Ph.D., Columbia University
 Department(s):
 Mathematics
 Persistent URL:
 https://doi.org/10.7916/D87P8WHM
 Abstract:
 We construct a point in the Jacobian of a nonhyperelliptic genus four curve which is defined over a quadratic extension of the base field. We attempt to answer two questions:
1. Is this point torsion?
2. If not, does it generate the MordellWeil group of the Jacobian?
We show that this point generates the MordellWeil group of the Jacobian of the universal genus four curve. We construct some families of genus four curves over the function field of $\bP^1$ over a finite field and prove that half of the Jacobians in this family are generated by this point via the other half are not. We then turn to the case where the base field is a number field or a function field. We compute the NeronTate height of this point in terms of the selfintersection of the relative dualizing sheaf of (the stable model of) the curve and some local invariants depending on the completion of
the curve at the places where this curve has bad or smooth hyperelliptic reduction. In the case where the reduction satisfies some certain conditions, we compute these local invariants explicitly.
 Subject(s):
 Mathematics
 Item views
 549
 Metadata:

text  xml
 Suggested Citation:
 Hang Xue, 2014, The arithmetic and geometry of genus four curves, Columbia University Academic Commons, https://doi.org/10.7916/D87P8WHM.