HomeHome

Connecting microstructural attributes and permeability from 3-D tomographic images of in situ compaction bands using multi-scale computation

WaiChing Sun; Jose E. Andrade; John W. Rudnicki; Peter Eichhubl

Title:
Connecting microstructural attributes and permeability from 3-D tomographic images of in situ compaction bands using multi-scale computation
Author(s):
Sun, WaiChing
Andrade, Jose E.
Rudnicki, John W.
Eichhubl, Peter
Date:
Type:
Articles
Department(s):
Civil Engineering and Engineering Mechanics
Volume:
38
Persistent URL:
Abstract:
Tomographic images taken inside and outside a compaction band in a field specimen of Aztec sandstone are analyzed by using numerical methods such as graph theory, level sets, and hybrid lattice Boltzmann/finite element techniques. The results reveal approximately an order of magnitude permeability reduction within the compaction band. This is less than the several orders of magnitude reduction measured from hydraulic experiments on compaction bands formed in laboratory experiments and about one order of magnitude less than inferences from two-dimensional images of Aztec sandstone. Geometrical analysis concludes that the elimination of connected pore space and increased tortuosities due to the porosity decrease are the major factors contributing to the permeability reduction. In addition, the multiscale flow simulations also indicate that permeability is fairly isotropic inside and outside the compaction band.
Subject(s):
Geology
Geological engineering
Publisher DOI:
http://dx.doi.org/10.1029/2011GL047683
Item views
325
Metadata:
text | xml
Suggested Citation:
WaiChing Sun, Jose E. Andrade, John W. Rudnicki, Peter Eichhubl, , Connecting microstructural attributes and permeability from 3-D tomographic images of in situ compaction bands using multi-scale computation, Columbia University Academic Commons, .

Columbia University Libraries | Policies | FAQ