Academic Commons Search Results
https://academiccommons.columbia.edu/catalog?action=index&controller=catalog&f%5Bsubject_facet%5D%5B%5D=Condensed+matter+physics&format=rss&fq%5B%5D=has_model_ssim%3A%22info%3Afedora%2Fldpd%3AContentAggregator%22&q=&rows=500&sort=record_creation_date+desc
Academic Commons Search Resultsen-usElectronic Structure and Surface Physics of Two-dimensional Material Molybdenum Disulfide
https://academiccommons.columbia.edu/catalog/ac:206367
Jin, Wencanhttp://dx.doi.org/10.7916/D8BC4047Fri, 20 Jan 2017 18:10:15 +0000The interest in two-dimensional materials and materials physics has grown dramatically over the past decade. The family of two-dimensional materials, which includes graphene, transition metal dichalcogenides, phosphorene, hexagonal boron nitride, etc., can be fabricated into atomically thin films since the intralayer bonding arises from their strong covalent character, while the interlayer interaction is mediated by weak van der Waals forces. Among them, molybdenum disulfide (MoS₂) has attracted much interest for its potential applications in opto-electronic and valleytronics devices. Previously, much of the experimental studies have concentrated on optical and transport measurements while neglecting direct experimental determination of the electronic structure of MoS₂, which is crucial to the full understanding of its distinctive properties. In particular, like other atomically thin materials, the interactions with substrate impact the surface structure and morphology of MoS₂, and as a result, its structural and physical properties can be affected.
In this dissertation, the electronic structure and surface structure of MoS₂ are directly investigated using angle-resolved photoemission spectroscopy and cathode lens microscopy. Local-probe angle-resolved photoemission spectroscopy measurements of monolayer, bilayer, trilayer, and bulk MoS₂ directly demonstrate the indirect-to-direct bandgap transition due to quantum confinement as the MoS₂ thickness is decreased from multilayer to monolayer. The evolution of the interlayer coupling in this transition is also investigated using density functional theory calculations. Also, the thickness-dependent surface roughness is characterized using selected-area low energy electron diffraction (LEED) and the surface structural relaxation is investigated using LEED I-V measurements combined with dynamical LEED calculations. Finally, bandgap engineering is demonstrated via tuning of the interlayer interactions in van der Waals interfaces by twisting the relative orientation in bilayer-MoS₂ and graphene-MoS₂-heterostructure systems.Physics, Condensed matter physics, Electronic structure, Molybdenum disulfide, Surfaces (Physics), Low energy electron diffractionwj2194Applied Physics and Applied MathematicsDissertationsDelving Into Dissipative Quantum Dynamics: From Approximate to Numerically Exact Approaches
https://academiccommons.columbia.edu/catalog/ac:206281
Chen, Hsing-Tahttp://dx.doi.org/10.7916/D8M32WBNThu, 05 Jan 2017 12:09:35 +0000In this thesis, I explore dissipative quantum dynamics of several prototypical model systems via various approaches, ranging from approximate to numerically exact schemes. In particular, in the realm of the approximate I explore the accuracy of Padé–resummed master equations and the fewest switches surface hopping (FSSH) algorithm for the spin–boson model, and non-crossing approximations (NCA) for the Anderson–Holstein model. Next, I develop new and exact Monte Carlo approaches and test them on the spin–boson model. I propose well–defined criteria for assessing the accuracy of Padé-resummed quantum master equations, which correctly demarcate the regions of parameter space where the Padé approximation is reliable. I continue the investigation of spin–boson dynamics by benchmark comparisons of the semiclassical FSSH algorithm to exact dynamics over a wide range of parameters. Despite small deviations from golden-rule scaling in the Marcus regime, standard surface hopping algorithm is found to be accurate over a large portion of parameter space. The inclusion of decoherence corrections via the augmented FSSH algorithm improves the accuracy of dynamical behavior compared to exact simulations, but the effects are generally not dramatic for the cases I consider. Next, I introduce new methods for numerically exact real-time simulation based on real-time diagrammatic Quantum Monte Carlo (dQMC) and the inchworm algorithm. These methods optimally recycle Monte Carlo information from earlier times to greatly suppress the dynamical sign problem. In the context of the spin–boson model, I formulate the inchworm expansion in two distinct ways: the first with respect to an expansion in the system–bath coupling and the second as an expansion in the diabatic coupling. In addition, a cumulant version of the inchworm Monte Carlo method is motivated by the latter expansion, which allows for further suppression of the growth of the sign error. I provide a comprehensive comparison of the performance of the inchworm Monte Carlo algorithms to other exact methodologies as well as a discussion of the relative advantages and disadvantages of each. Finally, I investigate the dynamical interplay between the electron–electron interaction and the electron–phonon coupling within the Anderson–Holstein model via two complementary NCAs: the first is constructed around the weak-coupling limit and the second around the polaron limit. The influence of phonons on spectral and transport properties is explored in equilibrium, for non-equilibrium steady state and for transient dynamics after a quench. I find the two NCAs disagree in nontrivial ways, indicating that more reliable approaches to the problem are needed. The complementary frameworks used here pave the way for numerically exact methods based on inchworm dQMC algorithms capable of treating open systems simultaneously coupled to multiple fermionic and bosonic baths.Condensed matter physics, Quantum theory, Quantum chemistry, Phonons, Electron-phonon interactionshc2602Chemical Physics, ChemistryDissertationsArtificial Graphene in Nano-patterned GaAs Quantum Wells and Graphene Growth by Molecular Beam Epitaxy
https://academiccommons.columbia.edu/catalog/ac:202371
Wang, Shenghttp://dx.doi.org/10.7916/D8DF6RGWWed, 21 Sep 2016 12:09:53 +0000In this dissertation I present advances in the studies of artificial lattices with honeycomb topology, called artificial graphene (AG), in nano-patterned GaAs quantum wells (QWs). AG lattices with very small lattice constants as low as 40 nm are achieved for the first time in GaAs. The high quality AG lattices are created by optimized electron-beam (E-beam) lithography followed by inductively coupled plasma reactive-ion etching (ICP-RIE) process. E-beam lithography is used to define a honeycomb lattice etch mask on the surface of the GaAs QW sample and the optimized anisotropic ICP-RIE process is developed to transfer the pattern into the sample and create the AG lattices. Such high-resolution AG lattices with small lattice constants are essential to form AG miniband structures and create well-developed Dirac cones.
Characterization of electron states in the nanofabricated artificial lattices is by optical experiments. Optical emission (photoluminescence) yields a determination of the Fermi energy of the electrons. A significant reduction of the Fermi energy is due to the nano-patterning process. Resonant inelastic light scattering (RILS) spectra reveal novel transitions related to the electron band structures of the AG lattices. These transitions exhibit a remarkable agreement with the predicted joint density of states (JDOS) based on the band structure calculation for the honeycomb topology.
I calculate the electron band structures of AG lattices in nano-patterned GaAs QWs using a periodic muffin-tin potential model. The evaluations predict linear energy-momentum dispersion and Dirac cones, where the massless Dirac fermions (MDFs) appear, occur in the band structures. Requirements of the parameters of the AG potential to achieve isolated and well-developed Dirac cones are discussed. Density of states (DOS) and JDOS from AG band structures are calculated, which provide a basis to interpret quantitatively observed transitions of electrons involving AG bands.
RILS of intersubband transitions reveal intriguing satellite peaks that are not present in the as-grown QWs. These additional peaks are interpreted as combined intersubband transitions with simultaneous change of QW subband and AG band index. The calculated JDOS for the electron transitions within the AG lattice model provide a remarkably accurate description of the combined intersubband excitations.
Novel low-lying excitation peaks in RILS spectra, interpreted as direct transitions between AG bands without change in QW subband, provide a more direct insight on the AG band structures. We discovered that RILS transitions around the Dirac cones are resonantly enhanced by varying the incident photon energies. The spectral lineshape of these transitions provides insights into the formation of Dirac cones that are characteristic of the honeycomb symmetry of the AG lattices. The results confirm the formation of AG miniband structures and well-developed Dirac cones. The realization of AG lattices in a nanofabricated high mobility semiconductor offers the advantage of tunability through methods suitable for device scalability and integration.
The last part of this thesis describes the growth of nanocrystalline single layer and bilayer graphene on sapphire substrates by molecular beam epitaxy (MBE) with a solid carbon source. Raman spectroscopy reveals that fabrication of single layer, bilayer or multilayer graphene crucially depends on MBE growth conditions. Etch pits revealed by atomic force microscopy indicate a removal mechanism of carbon by reduction of sapphire. Tuning the interplay between carbon deposition and its removal, by varying the incident carbon flux and substrate temperature, should enable the growth of high quality graphene layers on large area sapphire substrates.Physics, Condensed matter physics, Optics, Graphene, Quantum wells, Honeycomb structures, Energy bands, Crystal lattices, Nanostructured materials, Nanostructured materials--Optical propertiessw2677Applied Physics and Applied MathematicsDissertationsQuantum phase transitions and local magnetism in Mott insulators: A local probe investigation using muons, neutrons, and photons
https://academiccommons.columbia.edu/catalog/ac:197987
Frandsen, Benjamin Allenhttp://dx.doi.org/10.7916/D8X06711Tue, 26 Apr 2016 15:34:42 +0000Mott insulators are materials in which strong correlations among the electrons induce an unconventional insulating state. Rich interplay between the structural, magnetic, and electronic degrees of freedom resulting from the electron correlation can lead to unusual complexity of Mott materials on the atomic scale, such as microscopically heterogeneous phases or local structural correlations that deviate significantly from the average structure. Such behavior must be studied by suitable experimental techniques, i.e. "local probes", that are sensitive to this local behavior rather than just the bulk, average properties. In this thesis, I will present results from our studies of multiple families of Mott insulators using two such local probes: muon spin relaxation (muSR), a probe of local magnetism; and pair distribution function (PDF) analysis of x-ray and neutron total scattering, a probe of local atomic structure. In addition, I will present the development of magnetic pair distribution function analysis, a novel method for studying local magnetic correlations that is highly complementary to the muSR and atomic PDF techniques.
We used muSR to study the phase transition from Mott insulator to metal in two archetypal Mott insulating systems: RENiO₃ (RE = rare earth element) and V₂O₃. In both of these systems, the Mott insulating state can be suppressed by tuning a nonthermal parameter, resulting in a "quantum" phase transition at zero temperature from the Mott insulating state to a metallic state. In RENiO₃, this occurs through variation of the rare-earth element in the chemical composition; in V₂O₃, through the application of hydrostatic pressure. Our results show that the metallic and Mott insulating states unexpectedly coexist in phase-separated regions across a large portion of parameter space near the Mott quantum phase transition and that the magnitude of the ordered antiferromagnetic moment remains constant across the phase diagram until it is abruptly destroyed at the quantum phase transition. Taken together, these findings point unambiguously to a first-order quantum phase transition in these systems. We also conducted x-ray and neutron PDF experiments, which suggest that the distinct atomic structures associated with the insulating and metallic phases similarly coexist near the quantum phase transition. These results have significant implications for our understanding of the Mott metal-insulator quantum phase transition in real materials.
The second part of this thesis centers on the derivation and development of the magnetic pair distribution function (mPDF) technique and its application to the antiferromagnetic Mott insulator MnO. The atomic PDF method involves Fourier transforming the x-ray or neutron total scattering intensity from reciprocal space into real space to directly reveal the local atomic correlations in a material, which may deviate significantly from the average crystallographic structure of that material. Likewise, the mPDF method involves Fourier transforming the magnetic neutron total scattering intensity to probe the local correlations of magnetic moments in the material, which may exist on short length scales even when the material has no long-range magnetic order. After deriving the fundamental mPDF equations and providing a proof-of-principle by recovering the known magnetic structure of antiferromagnetic MnO, we used this technique to investigate the short-range magnetic correlations that persist well into the paramagnetic phase of MnO. By combining the mPDF measurements with ab initio calculations of the spin-spin correlation function in paramagnetic MnO, we were able to quantitatively account for the observed mPDF. We also used the mPDF data to evaluate competing ab initio theories, thereby resolving some longstanding questions about the magnetic exchange interactions in MnO.Condensed matter physics, Rare earths, Magnetism, Phase transformations (Statistical physics), Quantum statisticsbaf2128PhysicsDissertationsUltrafast Exciton Dynamics at Molecular Surfaces
https://academiccommons.columbia.edu/catalog/ac:194127
Monahan, Nicholas R.http://dx.doi.org/10.7916/D84T6J7KThu, 04 Feb 2016 18:18:26 +0000Further improvements to device performance are necessary to make solar energy conversion a compelling alternative to fossil fuels. Singlet exciton fission and charge separation are two processes that can heavily influence the power conversion efficiency of a solar cell. During exciton fission one singlet excitation converts into two triplet excitons, potentially doubling the photocurrent generated by higher energy photons. There is significant discord over the singlet fission mechanism and of particular interest is whether the process involves a multiexciton intermediate state. I used time-resolved two-photon photoemission to investigate singlet fission in hexacene thin films, a model system with strong electronic coupling. My results indicate that a multiexciton state forms within 40 fs of photoexcitation and loses singlet character on a 280 fs timescale, creating two triplet excitons. This is concordant with the transient absorption spectra of hexacene single crystals and definitively proves that exciton fission in hexacene proceeds through a multiexciton state. This state is likely common to all strongly-coupled systems and my results suggest that a reassessment of the generally-accepted singlet fission mechanism is required. Charge separation is the process of splitting neutral excitons into carriers that occurs at donor-acceptor heterojunctions in organic solar cells. Although this process is essential for device functionality, there are few compelling explanations for why it is highly efficient in certain organic photovoltaic systems. To investigate the charge separation process, I used the model system of charge transfer excitons at hexacene surfaces and time-resolved two-photon photoemission. Charge transfer excitons with sufficient energy spontaneously delocalize, growing from about 14 nm to over 50 nm within 200 fs. Entropy drives this delocalization, as the density of states within the Coulomb potential increases significantly with energy. This charge separation mechanism should occur at all donor-acceptor interfaces. My results show that entropy facilitates charge separation and indicate that the density of acceptor states should be a design consideration when constructing organic solar cells.Physical chemistry, Condensed matter physics, Exciton theory, Excited state chemistry, Solar cells--Technological innovations, Solar cells--Design and construction, Picosecond pulsesnrm2136Chemical Physics, ChemistryDissertationsVisualizing Ordered Electronic States in Epitaxial Graphene
https://academiccommons.columbia.edu/catalog/ac:203501
Gutierrez, Christopherhttp://dx.doi.org/10.7916/D8GM86RZThu, 08 Oct 2015 18:11:36 +0000Since its physical isolation via the "scotch tape method," graphene (a monolayer of graphite) has attracted much attention from both the solid-state and high-energy scientific communities because its elementary excitations mimic relativistic chiral fermions. This has allowed graphene to act as a testbed for exploring exotic forms of symmetry breaking and for verifying certain longstanding theoretical predictions dating back to the very first formulation of relativistic quantum mechanics. In this dissertation I describe scanning tunneling microscopy and spectroscopy experiments that visualize ordered electronic states in graphene that originate from its unique chiral structure.
Two detailed investigations of chemical vapor deposition graphene grown on copper are presented. In the first, a heretofore unrealized phase of graphene with broken chiral symmetry called the Kekulé distortion is directly visualized. In this phase, the graphene bond symmetry breaks and manifests as a (√3×√3)R30° charge density wave. I show that its origin lies in the interactions between individual vacancies ("ghost adatoms") in the crystalline copper substrate that are mediated electronically by the graphene. These interactions induce the formation of a hidden order in the positions of the ghost adatoms that coincides with Kekulé bond order in the graphene itself. I then show that the transition temperature for this ordering is 300K, suggesting that Kekulé ordering occurs via enhanced vacancy diffusion at high temperature.
In the second, Klein tunneling of electrons is visualized for the first time. Here, quasi-circular regions of the copper substrate underneath graphene act as potential barriers that can scatter and transmit electrons. At certain energies, the relativistic chiral fermions in graphene that Klein scatter from these barriers are shown to fulfill resonance conditions such that the transmitted electrons become trapped and form standing waves. These resonant modes are visualized with detailed spectroscopic images with atomic resolution that agree well with theoretical calculations. The trapping time is shown to depend critically on the angular momenta quantum number of the resonant state and the radius of the trapping potential, with smaller radii displaying the weakest trapping.Condensed matter physics, Physics, Nanoscience, Graphene, Scanning tunneling microscopy, Nanostructured materials, Condensed mattercg2479PhysicsDissertationsNovel torques on magnetization measured through ferromagnetic resonance
https://academiccommons.columbia.edu/catalog/ac:189664
Li, Yihttp://dx.doi.org/10.7916/D8FN15NKWed, 30 Sep 2015 18:07:01 +0000New torques acting on magnetization in metallic ferromagnets, accompanied by new terms to the Landau-Lifshitz-Gilbert (LLG) equation which governs GHz magnetization dynamics, are important for both the fundamental understanding of magnetism and applications in magnetoelectronic devices. In this thesis, we have carried out experimental investigations of several proposed novel torques acting on magnetization dynamics using broadband ferromagnetic resonance (FMR) between 2-26 GHz. The FMR technique is well-suited for materials studies, as it investigates unpatterned (sheet-level) films with relatively high throughput, enabling comparison of the response of several room-temperature, device-relevant ferromagnetic alloys (e.g. Ni₇₉Fe₂₁, or ‘Py’, Co, and CoFeB.)
The common aspect of the torques which we have investigated by FMR is their origin in nonequilibrium spin populations, related to spin transfer torque. In Chapter 3 we have identified intrinsic “inertial” torques on magnetization, significant only at very high frequencies (up to 300 GHz), where the electron population cannot quite keep pace with the precession of magnetization. In Chapters 4 and 5 we have studied torques from “pumped” pure spin current due to the texture of precessing magnetization (intralayer spin pumping) and the precession of noncollinear magnetizations in trilayer structures (spin pumping). These three studies extend understanding of magnetism and magnetization dynamics at room temperature, and in limits of high speed and small dimension relevant for emerging applications.Materials science, Condensed matter physicsyl2600Materials Science and Engineering, Applied Physics and Applied MathematicsDissertationsInteractions and Disorder in Novel Condensed Matter Systems
https://academiccommons.columbia.edu/catalog/ac:189622
Lemonik, Yonah Shalomhttp://dx.doi.org/10.7916/D8T152Z3Tue, 22 Sep 2015 21:22:38 +0000Despite almost a century of exploration, we continue to discover new systems where quantum mechanics, strong interactions and disorder combine in novel ways. These systems test the capabilities of our strongest theoretical tools. In this thesis I discuss work on three of these systems: bilayer graphene, disordered conductors and cold atom systems. In bilayer graphene I show that the large number of degenerate bands leads to a plethora of possible spontaneous symmetry breaking ground state. In disordered conductors I discuss how quantum interference can lead to arbitrarily long lived responses, so called memory eects. I also consider whether a novel spontaneous symmetry breaking state can be created in cold atomic gasses using nonequilibrium perturbations.Condensed matter physicsysl2101PhysicsDissertationsLocal structure and lattice dynamics study of low dimensional materials using atomic pair distribution function and high energy resolution inelastic x-ray scattering
https://academiccommons.columbia.edu/catalog/ac:189523
Shi, Chenyanghttp://dx.doi.org/10.7916/D8C53K5KTue, 15 Sep 2015 18:15:44 +0000Structure and dynamics lie at the heart of the materials science. A detailed knowledge of both subjects would be foundational in understanding the materials' properties and predicting their potential applications. However, the task becomes increasingly difficult as the particle size is reduced to the nanometer scale. For nanostructured materials their laboratory x-ray scattering patterns are overlapped and broadened, making structure determination impossible. Atomic pair distribution function technique based on either synchrotron x-ray or neutron scattering data is known as the tool of choice for probing local structures. However, to solve the \structure problem" in low-dimensional materials with PDF is still challenging. For example for 2D materials of interest in this thesis the crystallographic modeling approach often yields unphysical thermal factors along stacking direction where new chemical intuitions about their actual structures and new modeling methodology/program are needed. Beyond this, lattice dynamical investigations on nanosized particles are extremely dicult. Laboratory tools such as Raman and infra-red only probe phonons at Brillouin zone center. Although in literature there are a great number of theoretical studies of their vibrational properties based on either empirical force elds or density functional theory, various approximations made in theories make the theoretical predictions less reliable. Also, there lacks the direct experiment result to validate the theory against.
In this thesis, we studied the structure and dynamics of a wide variety of technologically relevant low-dimensional materials through synchrotron based x-ray PDF and high energy resolution inelastic x-ray scattering (HERIX) techniques. By collecting PDF data and employing advanced modeling program such as DiPy-CMI, we successfully determined the atomic structures of (i) emerging Ti3C2, Nb4C3 MXenes (transition metal carbides and/or nitrides) that are promising for energy storage applications, and of (ii) zirconium phenylphosphonate ion exchange materials that are proposed to separate lanthanide ions from actinide ions in nuclear waste. Both material systems have two-dimensional layered nanocrystalline structure where we observed that the stacking of layers are not in good registry, also known as "turbostratic" disorder. Consequently the signals from a single layer of atoms dominate the experimental PDF{thus building up a single slab model and simulating PDF using Debye function analysis was sucient to capture the main structural features in the measured PDF data. The information on correlation length of layers along the stacking direction, however, is contained in low-Q diraction peaks in either laboratory x-ray or synchrotron x-ray scattering patterns.
On the lattice dynamics side, we first investigated the trend of atomic bonding strength in size dependent platinum nanoparticles based on temperature dependent PDF data and measured Debye temperatures. An anomalous bond softening was observed at a particle size less than 2 nm. Since Debye model gives a simple quadratic phonon density of states (PDOS) curve, which is a simplified version of real lattice dynamics, we are motivated to measure full PDOS curves on three CdSe nanoclusters by using non-resonant inelastic x-ray scattering technique. We observed an overall blue-shift of PDOS curves with decreased sizes. Our current exemplary studies will open the door to a large number of future structural and lattice dynamical studies on a much broader range of low-dimensional material systems.Materials science, Condensed matter physics, Physical chemistrycs3000Materials Science and Engineering, Applied Physics and Applied MathematicsDissertationsVisualizing nematicity in the pnictides with scanning tunneling spectroscopy
https://academiccommons.columbia.edu/catalog/ac:200668
Rosenthal, Ethan Philiphttp://dx.doi.org/10.7916/D8N29W34Tue, 02 Jun 2015 19:06:03 +0000The origin of the nematic phase in the iron-based superconductors is still unknown, and an understanding of its microscopic mechanism could have important implications on the unconventional superconductivity in these materials. This thesis describes a series of experiments using scanning tunneling microscopy (STM) and spectroscopy (STS) to visualize the nematic electronic structure in NaFe1-xCoxAs as a function of energy, temperature, strain, and doping.
We first start with background material on the iron-based superconductors and the iron pnictides in particular. We then extensively explore the physical details of NaFe1-xCoxAs which is the main material of study in this thesis. Additional attention is paid to the electronic structure due to its relation to quasiparticle interference (QPI) measurements made with STS.
The theoretical underpinnings of STM and STS are then derived as well as further details of QPI. Many of the experiments described in this thesis were performed on a custom-built, low temperature STM which the author helped build. We describe the design of this system and report on benchmarking tests that were used to characterize the system's performance.
Both pristine, undoped NaFeAs and LiFeAs were measured by STM, and we compare and contrast these two materials which come from the same structural family. The electronic local density of states (LDOS) of NaFeAs was measured at various temperatures in all three phases of the material (tetragonal paramagnetic, orthorhombic paramagnetic, and orthorhombic spin density wave (SDW)). The electronic structure in the SDW phase is highly anisotropic. QPI signals in this phase are found to be well-explained by comparison to a joint density of states (JDOS) model using the reconstructed bandstructure fit to angle-resolved photoemission spectroscopy data. The electronic anisotropy is found to persist into the nominally tetragonal phase. This persistence arises from built-in crystallographic strain coupling to high amplitude, unidirectional, antiferroic fluctuations. These fluctuations renormalize the bare Green's function which gives rise to anisotropic scattering.
We then describe the construction of a novel device created for variable-strain STS. Antiphase domains in NaFeAs are visualized and found to change in size as a function of unidirectional strain. These domains are tracked as a function of temperature and found to disappear at exactly the nematic transition temperature proving that this is the temperature at which long-range order is lost. By measuring Co-doped samples, we find that the domains disappear before optimal doping in an underdoped sample with superconducting transition temperature of 18 K. However, the electronic structure remains anisotropic implying that nematic fluctuations persist. These fluctuations are found even in overdoped samples and disappear with superconductivity at heavy doping.Physics, Condensed matter physics, Spectrum analysis, Iron-based superconductors, Scanning tunneling microscopyer2461PhysicsDissertationsProbing the response of 2D crystals by optical spectroscopy
https://academiccommons.columbia.edu/catalog/ac:178240
Li, Yileihttp://dx.doi.org/10.7916/D8319TGXWed, 08 Oct 2014 18:16:58 +0000Atomically thin two-dimensional crystals form a distinct and growing class of new materials. The electromagnetic response of a two-dimensional crystal provides direct access to its electronic properties. This thesis presents a series of experimental studies of the electromagnetic response of model two-dimensional crystals as probed by optical spectroscopy. Our aim is to obtain understanding of their intrinsic linear and nonlinear response and the many-body interactions in these materials, as well as to explore the potential to use the two-dimensional materials for sensing applications.
In the two studies of graphene, we either removed contaminations from the environment to reveal the intrinsic response or intentionally applied adsorbates to investigate how the electrons interact with the extrinsic molecules. In the first study, we obtained ultra-clean graphene using hexagonal boron nitride as the substrate, which allowed us to probe using Raman spectroscopy the intrinsic electron-phonon and electron-electron interactions free from substrate induced sample inhomogeneity. In a second study, we demonstrate a strong near-field electromagnetic interaction of graphene plasmons with the vibrations of adsorbed molecules. Our results reveal the potential of graphene for molecular sensing.
In our investigations of the monolayer transition metal dichalcogenides, we performed measurements of the linear and the second-order nonlinear dielectric response. From the linear dielectric response, we demonstrate strong light-matter interactions even for a single layer of these materials. Several trends in the excitonic properties of this group of materials were obtained from the measured dielectric function. In the nonlinear optical study, we observed a large enhancement of the second-harmonic signal from monolayers as compared to the bulk sample, a consequence of the breaking of the inversion symmetry present in the bulk. In addition to the results for monolayers, we describe the behavior of few-layer materials, where the symmetry properties change layer by layer. For monolayers (and samples of odd layer thickness with broken inversion symmetry), the strong and anisotropic second-harmonic response provides a simple optical probe of crystallographic orientation.
In the magneto-optic study of transition metal dichalcogenide monolayers, we demonstrate the induction of valley splitting and polarization by the application of an external magnetic field. The interaction of the valleys with the magnetic field reflects their non-zero magnetic moments, which are compared to theoretical models. We further clarify the electronic configuration of the charged excitons and important many-body corrections to the trion binding energy through the control of valley polarization achieved by the external magnetic field.Condensed matter physics, Opticsyl2673Physics, Electrical EngineeringDissertationsTheoretical study of charge density waves in transition metal materials
https://academiccommons.columbia.edu/catalog/ac:178222
Okamoto, Junichihttp://dx.doi.org/10.7916/D8N0155MWed, 08 Oct 2014 18:15:24 +0000In this thesis we theoretically study new aspects of charge density waves in transition metal materials recently revealed by scanning tunneling microscopy measurements. The two important problems that we have investigated are the effects of orbital degeneracy on the formation of the charge-density waves in cobalt nanowires, and the effects of dilute but strongly pinning impurities on the charge-density wave in niobium diselenide.
We first present an overview on charge-density waves, and then introduce a general theoretical model describing charge-density waves. We also explain several known results about disorder effects on charge-density waves. We briefly touch on the principle of scanning tunneling microscopy and its advantages compared to other experimental tools.
Second, we discuss the physics of one-dimensional cobalt nanowires along with experimental results. We propose a theoretical model that is relevant to cobalt nanowires, and then analyze the model by two theoretical tools: mean-field theory and bosonization. Our results show that the multi-orbitals allow a spin-triplet interaction among electrons leading to different phase diagrams from the ones considered previously for similar models. Numerical results obtained by first-principles calculations are also briefly explained.
Third, we consider the effects of dilute strong impurities on the charge-density wave in niobium diselenide, a transition metal dichalcogenide. We first explain the material and properties of its charge-density wave phase. Then, detailed analysis of a scanning tunneling microscopy measurement is presented. Next, we analytically and numerically study a phenomenological model relevant to the experiment. We show that the dilute strong impurities have little effects at large length scales compared to the average inter-impurity distance, leading to a topologically ordered phase with a (quasi-)long-range autocorrelation; this result is quite different from conventional pictures predicting short-range order with the proliferation of topological defects.Condensed matter physicsjo2267PhysicsDissertationsThe Effect of Electrode Coupling on Single Molecule Device Characteristics: An X-Ray Spectroscopy and Scanning Probe Microscopy Study
https://academiccommons.columbia.edu/catalog/ac:178216
Batra, Arunabhhttp://dx.doi.org/10.7916/D8MC8XMPTue, 07 Oct 2014 18:11:29 +0000This thesis studies electronic properties of molecular devices in the limiting cases of strong and weak electrode-molecule coupling. In these two limits, we use the complementary techniques of X-Ray spectroscopy and Scanning Tunneling Microscopy (STM) to understand the mechanisms for electrode-molecule bond formation, the energy level realignment due to metal-molecule bonds, the effect of coupling strength on single-molecule conductance in low-bias measurements, and the effect of coupling on transport under high-bias. We also introduce molecular designs with inherent asymmetries, and develop an analytical method to determine the effect of these features on high-bias conductance. This understanding of the role of electrode-molecule coupling in high-bias regimes enables us to develop a series of functional electronic devices whose properties can be predictably tuned through chemical design.
First, we explore the weak electrode-molecule coupling regime by studing the interaction of two types of paracyclophane derivates that are coupled `through-space' to underlying gold substrates. The two paracyclophane derivatives differ in the strength of their intramolecular through-space coupling. X-Ray photoemission spectroscopy (XPS) and Near-Edge X-ray Absorbance Fine Structure (NEXAFS) spectroscopy allows us to determine the orientation of both molecules; Resonant Photoemission Spectroscopy (RPES) then allows us to measure charge transfer time from molecule to metal for both molecules. This study provides a quantititative measure of charge transfer time as a function of through-space coupling strength. Next we use this understanding in STM based single-molecule current-voltage measurements of a series of molecules that couple through-space to one electrode, and through-bond to the other. We find that in the high-bias regime, these molecules respond differently depending on the direction of the applied field. This asymmetric response to electric field direction results in diode-like behavior. We vary the length of these asymmetrically coupled molecules, and find that we can increase the rectifying characteristics of these molecules by increasing length.
Next, we explore the strong-coupling regime with an X-Ray spectroscopy study of the formation of covalent gold-carbon bonds using benzyltrimethyltin molecules on gold surfaces in ultra high vacuum conditions. Through X-ray Photoemission Spectroscopy (XPS) and X-ray absorption measurements, we find that the molecule fragments at the Sn-Benzyl bond when exposed to gold and the resulting benzyl species only forms covalent Au-C bonds on less coordinated Au surfaces like Au(110). We also find spectroscopic evidence for a gap state localized on the Au-C bond that results from the covalent nature of the bond. Finally, we use Density Functional Theory based Nudged Elastic Band methods to find reaction pathways and energy barriers for this reaction.
We use our knowledge of the electronic structure of these bonds to create single-molecule junctions containing Au-C bonds in STM-based break junction experiments. In analogy with our approach for the weakly coupled `through-space' systems, we study the high-bias current-voltage characteristics of molecules with one strong Au-C bond, and one weaker donor-acceptor bond. These experiments reveal that the `gap state' created due to the covalent nature of the Au-C bond remains essentially pinned to the Fermi level of its corresponding electrode, and that most of the electric potential drop in the junction occurs on the donor-acceptor bond; as a result, these molecules behave like rectifiers. We use this principle to create a series of three molecular rectifiers, and show that the unique properties of the Au-C bond allow us to easily tune the rectification ratio by modifying a single electronic parameter.
We then explore the process of molecular self-assembly to create organic electronic structures on metal surfaces. Specifically, we study the formation of graphene nanoribbons using a brominated precursor deposited on Au(111) surface in ultra high vacuum. We find that the halogen atoms cleave from the precursors at surprisingly low temperatures of <100C, and find that the resulting radicals bind to Au, forming Au-C and Au-Br bonds. We show that the Br desorbs at relatively low temperatures of <250C, and that polymerization of the precursor molecules to form nanoribbons proceeds only after the debrominization of the surface. Finally, with Angle-Resolved Photoemission and Density Functional Theory calculations, we quantify the interaction strength of the resulting nanoribbons with the underlying gold substrate.
Taken together, the results presented in this thesis offer a mechanistic understanding of the formation of electrode-molecule bonds, and also an insight into the high-bias behavior of molecular junctions as a function of electrode-molecule coupling. In addition, our work in developing tunable, functional electronic devices serves as a framework for future technological advances towards molecule-based computation.Nanoscience, Condensed matter physics, Molecular physicsab3279Applied Physics and Applied MathematicsDissertationsScanning Tunneling Microscopy Studies of Charge Density Waves in NbSe₂ and muSR studies of Nickel doping in BaFe₂As₂
https://academiccommons.columbia.edu/catalog/ac:189307
Arguello, Carlos Josehttp://dx.doi.org/10.7916/D8V69H48Tue, 30 Sep 2014 14:43:42 +0000Scanning Tunneling Microscopy is a very powerful technique to study electronic properties of condensed matter systems at the nanoscale. Part I of this thesis describes my work on Charge Density Waves (CDW) in NbSe₂. NbSe₂ is a layered dichalcogenide that has a CDW phase below 33K.
We describe our study of the phase transition from the normal phase to the CDW phase at atomic scales. This is more relevant in light of recent discoveries of charge order in cuprates. Brand new research has shed some light about the relationship between the pseudogap phase, charge order and superconductivity in cuprates. The behavior of the CDW phase in NbSe₂ described in chapter 3 is strongly reminiscent of this physics of cuprates. NbSe₂ is an excellent test bed for the study of the effect of impurities in correlated phases.
In chapter 4 we revisit the cause of CDW formation in NbSe₂. By including a very dilute concentration of impurities, we obtain information of the electronic bands of the material in the CDW phase. Based on this information, we are able to discuss the relationship between nesting, electron-phonon coupling and CDW in NbSe₂. We demonstrate that by combining quasiparticle interference data with additional knowledge of the quasiparticle band structure from angle resolved photoemission measurements, one can extract the wavevector and energy dependence of the important electronic scattering processes.
Part II focuses on Muon Spin Rotation and its application to the study of high-Tc superconductors. We describe our muSR studies on Nickel doped BaFe₂As₂. By analyzing several doping concentrations, we explore the phase diagram in the antiferromagnetic and in the superconducting phases. This discussion also includes a detailed discussion of a doping concentration which falls in-between the AF and the SC phase.Condensed matter physicscja2119PhysicsDissertationsInteraction Effects on Electric and Thermoelectric Transport in Graphene
https://academiccommons.columbia.edu/catalog/ac:202203
Ghahari Kermani, Fereshtehttp://dx.doi.org/10.7916/D8DJ5D5CTue, 23 Sep 2014 15:35:38 +0000Electron-electron (e-e) interactions in 2-dimensional electron gases (2DEGs) can lead to many-body correlated states such as the the fractional quantum Hall effect (FQHE), where the Hall conductance quantization appears at fractional filling factors. The experimental discovery of an anomalous integer quantum Hall effect in graphene has faciliated the study of the interacting electrons which behave like massless chiral fermions. However, the observation of correlated electron physics in graphene is mostly hindered by strong electron scattering caused by charge impurities. We fabricate devices, in which, electrically contacted and electrostatically gated graphene samples are either suspended over a SiO₂ substrate or deposited on a hexagonal boron nitride layer, so that a drastic suppression of disorder is achieved. The mobility of our graphene samples exceeds 100,000 cm²/Vs. This very high mobility allows us to observe previously inaccessible quantum limited transport phenomena.
In this thesis, we first present the transport measurements of ultraclean, suspended two-terminal graphene (chapter 3), where we observe the Fractional quantum Hall effect (FQHE) corresponding to filling fraction ν=1/3 FQHE state, hereby supporting the existence of interaction induced correlated electron states. In addition, we show that at low carrier densities graphene becomes an insulator with a magnetic-field-tunable energy gap. These newly discovered quantum states offer the opportunity to study correlated Dirac fermions in graphene in the presence of large magnetic fields.
Since the quantitative characterization of the observed FQHE states such as the FQHE energy gap is not straight-forward in a two-terminal measurement, we have employed the four-probe measuremt in chapter 4. We report on the multi-terminal measurement of integer quantum Hall effect(IQHE) and fractional quantum Hall effect (FQHE) states in ultraclean suspended graphene samples in low density regime. Filling factors corresponding to fully developed IQHE states, including the ν±1 broken-symmetry states and the ν=1/3 FQHE state are observed. The energy gap of the 1/3 FQHE, measured by its temperature-dependent activation, is found to be much larger than the corresponding state found in the 2DEGs of high-quality GaAs heterostructures, indicating that stronger e-e interactions are present in graphene relative to 2DEGs.
In chapter 5, we investigate the e-e correlations in graphene deposited on hexagonal boron nitride using the thermopower measurements. Our results show that at high temperatures the measured thermopower deviates from the generally accepted Mott's formula and that this deviation increases for samples with higher mobility. We quantify this deviation using the Boltzmann transport theory. We consider different scattering mechanisms in the system, including the electron-electron scattering.
In the last chapter, we present the magnetothermopower measurements of high quality graphene on hexagonal boron nitride, where we observe the quantized thermopower at intermediate fields. We also see deviations from the Mott's formula for samples with low disorder, where the interaction effects come into play . In addition, the symmetry broken quantum Hall states due to strong electron-electron interactions appear at higher fields, whose effect are clearly observed in the measured in mangeto-thermopower. We discuss the predicted peak values of the thermopower corresponding to these states by thermodynamic arguments and compare it with our experimental results.
We also present the sample fabrication methods in chapter 2. Here, we first explain the fabrication of the two-terminal and multi-terminal suspended graphene and the current annealing technique used to clean these samples. Then, we illustrate the fabrication of graphene on hexagonal boron nitride as well as encapsulated graphene samples with edge contacts.
In addition, the thermopower measurement technique is presented in Appendix A, in which, we explain the temperature calibration, DC and AC measurement techniques.Condensed matter physics, Quantum physics, Graphene, Quantum Hall effect, Quantum electrodynamicsfg2184PhysicsDissertationsMicroscopic theories of excitons and their dynamics
https://academiccommons.columbia.edu/catalog/ac:177103
Berkelbach, Timothy Charleshttp://dx.doi.org/10.7916/D8BP010FFri, 01 Aug 2014 18:19:23 +0000This thesis describes the development and application of microscopically-defined theories of excitons in a wide range of semiconducting materials. In Part I, I consider the topic of singlet exciton fission, an organic photophysical process which generates two spin-triplet excitons from one photoexcited spin-singlet exciton. I construct a theoretical framework that couples a realistic treatment of the static electronic structure with finite-temperature quantum relaxation techniques. This framework is applied separately, but consistently, to the problems of singlet fission in pentacene dimers, crystalline pentacene, and crystalline hexacene. Through this program, I am able to rationalize observed behaviors and make non-trivial predictions, some of which have been confirmed by experiment.
In Part II, I present theoretical developments on the properties of neutral excitons and charged excitons (trions) in atomically thin transition metal dichalcogenides. This work includes an examination of material trends in exciton binding energies via an effective mass approach. I also present an experimental and theoretical collaboration, which links the unconventional disposition of excitons in the Rydberg series to the peculiar screening properties of atomically thin materials. The light-matter coupling in these materials is examined within low-energy models and is shown to give rise to bright and dark exciton states, which can be qualitatively labeled in analogy with the hydrogen series.
In Part III, I explore theories of relaxation dynamics in condensed phase environments, with a focus on methodology development. This work is aimed towards biological processes, including resonant energy transfer in chromophore complexes and electron transfer in donor-bridge-acceptor systems. Specifically, I present a collaborative development of a numerically efficient but highly accurate hybrid approach to reduced dynamics, which exploits a partitioning of environmental degrees of freedom into those that evolve "fast" and "slow," as compared to the internal system dynamics. This method is tested and applied to the spin-boson model, a two-site Frenkel exciton model, and the seven-site Fenna-Matthews-Olson complex. I conclude with a collaborative analysis of a recently developed polaron-transformed quantum master equation, which is shown to accurately interpolate between the well-known Redfield and Forster theories, even in challenging donor-bridge-acceptor arrangements.Physical chemistry, Condensed matter physics, Chemistrytcb2112Chemical Physics, ChemistryDissertationsEffect of Surface Curvature and Chemistry on Protein Stability, Adsorption and Aggregation
https://academiccommons.columbia.edu/catalog/ac:177097
Radhakrishna, Mithunhttp://dx.doi.org/10.7916/D8VM49GHThu, 31 Jul 2014 12:20:46 +0000Enzyme immobilization has been of great industrial importance because of its use in various applications like bio-fuel cells, bio-sensors, drug delivery and bio-catalytic films. Although research on enzyme immobilization dates back to the 1970's, it has been only in the past decade that scientists have started to address the problems involved systematically. Most of the previous works on enzyme immobilization have been retrospective in nature i.e enzymes were immobilized on widely used substrates without a compatibility study between the enzyme and the substrate. Consequently, most of the enzymes lost their activity upon immobilization onto these substrates due to many governing factors like protein-surface and inter-protein interactions. These interactions also play a major role biologically in cell signaling, cell adhesion and inter-protein interactions specifically is believed to be the major cause for neurodegenerative diseases like Alzheimer's and Parkinson's disease. Therefore understanding the role of these forces on proteins is the need of the hour. In my current research, I have mainly focused on two factors a) Surface Curvature b) Surface Chemistry as both of these play a pivotal role in influencing the activity of the enzymes upon immobilization. I study the effect of these factors computationally using a stochastic method known as Monte Carlo simulations.
My research work carried out in the frame work of a Hydrophobic-Polar (HP) lattice model for the protein shows that immobilizing enzymes inside moderately hydrophilic or hydrophobic pores results in an enhancement of the enzymatic activity compared to that in the bulk. Our results also indicate that there is an optimal value of surface curvature and hydrophobicity/hydrophilicity where this enhancement of enzymatic activity is highest. Further, our results also show that immobilization of enzymes inside hydrophobic pores of optimal sizes are most effective in mitigating protein-aggregation. These results provide us a rationale to understand the role of chaperonins in protein folding and disaggregation. Our results indicate that strong protein-surface interactions and confinement inducement stability inside pores makes it best suitable for enzyme immobilization.Chemical engineering, Condensed matter physicsmr2972Chemical EngineeringDissertationsOptical and Electrical Properties of Single-walled Carbon Nanotubes with Known Chiralities
https://academiccommons.columbia.edu/catalog/ac:175522
Zhang, Zhengyihttp://dx.doi.org/10.7916/D8F769PFMon, 07 Jul 2014 11:34:58 +0000Carbon nanotube (CNT) is a hollow structure consisted by one-atom-thick sheet of carbon atoms, which can be considered as a rolled-up graphene sheet. The diameter and rolling angle (chirality) uniquely determines its electronic structure. Over two decades of study, due to the difficulty of synthesizing clean individual CNTs and the limitation of accurate chirality characterization, there are still unveiled questions towards the intrinsic properties of this 1-D material at single molecular level. In this thesis, I will discuss the approaches of fabricating chirality assigned CNT device and the experimental results of its optical and electrical properties.
In the first part, I describe using 'fast heating' chemical vapor deposition (CVD) method to achieve the high quality suspended CNT growth. Combining Rayleigh and Raman spectroscopy, I demonstrate the accurate assignment of chirality for each suspended individual CNT.
With the ability of chirality identification, a series of optical and electrical experiments were conducted on the selected CNTs of interest. In the following part, I first discuss the probe of many-body effect in a semiconducting CNT by observing the elastic scattering (Rayleigh spectra) with electrostatic gating. We found the dominant short-range interaction is reduced to 85% of its intrinsic strength for doping level of ρ=0.4e/nm, demonstrating the possible control of sub-band exciton resonance frequency without rely on Pauli-blocking effect in CNTs.
In order to study the substrate effect in electrical transport of CNTs, I improved the transfer technique to accurately place individual CNT on a specific substrate. With this technique, I've achieved transferring individual CNT on 20µmx20µm thin layer of hexagonal-boron nitride (h-BN) substrate with a ± 5µm error.
The low field electrical transport studies were conducted on both metallic and semiconducting CNTs with known chiralities on h-BN.
Temperature dependent measurement shows the resistivity becomes super-linear around 250K, consistent with the prediction that the surface polar phonon of h-BN couples with electrons in CNT at higher phonon energy than SiO₂. Moreover, the FET devices of CNT on h-BN with graphite local back gate show hysteresis free feature in vacuum, and the subthreshold swing of 118mV/dec is comparable to high κ dielectric HfO₂ based device.Materials science, Condensed matter physics, NanotechnologyMechanical EngineeringDissertationsA Correlated 1-D Monatomic Condensed Matter System: Experiment and Theory
https://academiccommons.columbia.edu/catalog/ac:168505
Zaki, Nader Wasfyhttp://dx.doi.org/10.7916/D89S1P0DMon, 06 Jan 2014 16:48:42 +0000A one-dimensional quantum mechanical system is experimentally synthesized and investigated for physical phenomena that it may inherit due to quantum confinement and electron correlations. The experimentally realized system is a self-assembled array of monatomic cobalt wires that are grown under ultra-high vacuum conditions on a vicinal copper (111) substrate using a recipe developed specifically for this work. This work experimentally demonstrates that this 1-D system undergoes a charge density wave instability, which is a first for such a 1-D phenomenon on a metallic substrate. It is determined experimentally that this 1-D system undergoes an electronic phase transition at a temperature of about 85K, in which the higher temperature electronic phase is itinerant rather than localized. Using ab initio density functional theory, the cause of the measured charge density wave instability is assigned to erromagnetic interactions along the chain. Specifically, it is deduced that the instability is driven by spin -minority pin-exchange interactions predominately in the cobalt dxz/dyz orbitals. Beyond, shedding light on electron correlations in a physically realized quantum mechanical 1-D system, this work demonstrates that this particular system is a new test-case example for advanced theoretical techniques in predicting the correct structural ground phase.Condensed matter physicsnz2137Electrical EngineeringDissertationsChemical Vapor Deposition Grown Pristine and Chemically Doped Monolayer Graphene
https://academiccommons.columbia.edu/catalog/ac:177571
Zhao, Liuyanhttp://hdl.handle.net/10022/AC:P:21666Wed, 18 Sep 2013 16:22:55 +0000Chemical vapor deposition growth has been a popular technique to produce large-area, high-quality monolayer graphene on Cu substrates ever since its first demonstration in 2009. Pristine graphene grown in such a way owns the natures of zero charge carriers and zero band gap. As an analogy to semi-conductor studies, substitutional doping with foreign atoms is a powerful way to tailor the electronic properties of this host materials. Within such a context, this thesis focuses on growing and characterizing both pristine and chemically-doped CVD grown monolayer graphene films at microscopic scales. We first synthesized pristine graphene on Cu single crystals in ultra-high-vacuum and subsequently characterized their properties by scanning tunneling microscopy/spectroscopy (STM/S), to learn the effects of Cu substrate crystallinity on the quality of graphene growth and understand the interactions between graphene films and Cu substrates. In the subsequent chapters, we chemically doped graphene with nitrogen (N) and boron (B) atoms, and characterized their topographic and electronic structures via STM/S. We found that both N and B dopants substitionally dope graphene films, and contribute electron and hole carriers, respectively, into graphene at a rate of approximately 0.5 carrier/dopant. Apart from this, we have made comparisons between N- and B-doped graphene films in aspects of topographic features, dopant distribution and electronic perturbations. In the last part of this thesis, we used Raman spectroscopy mapping to investigate the N dopant distribution within and across structural grains. Future experiments are also brief discussed at the end of the thesis.Condensed matter physics, Physicslz2227PhysicsDissertationsThe Effective Field Theory Approach to Fluid Dynamics
https://academiccommons.columbia.edu/catalog/ac:161458
Endlich, Solomonhttp://hdl.handle.net/10022/AC:P:20419Thu, 23 May 2013 11:24:11 +0000In this thesis we initiate a systematic study of fluid dynamics using the effective field theory (EFT) program. We consider the canonical quantization of an ordinary fluid in an attempt to discover if there is some kind of quantum mechanical inconsistency with ordinary fluids at zero temperature. The system exhibits a number of peculiarities associated with the vortex degrees of freedom. We also study the dynamics of a nearly incompressible fluid via (classical) effective field theory. In the kinematical regime corresponding to near incompressibility (small fluid velocities and accelerations), compressional modes are, by definition, difficult to excite, and can be dealt with perturbatively. We systematically outline the corresponding perturbative expansion, which can be thought of as an expansion in the ratio of fluid velocity and speed of sound. This perturbation theory allows us to compute many interesting quantities associated with sound-flow interactions. Additionally, we also improve on the so-called vortex filament model, by providing a local field theory describing the dynamics of vortex-line systems and their interaction with sound, to all orders in perturbation theory. Next, we develop a cosmological model where primordial inflation is driven by a 'solid'. The low energy EFT describing such a system is just a less symmetric version of the action of a fluid---it lacks the volume preserving diffeomorphism. The symmetry breaking pattern of this system differs drastically from that of standard inflationary models: time translations are unbroken. This prevents our model from fitting into the standard effective field theory description of adiabatic perturbations, with crucial consequences for the dynamics of cosmological perturbations. And finally, we introduce dissipative effects in the effective field theory of hydrodynamics. We do this in a model-independent fashion by coupling the long-distance degrees of freedom explicitly kept in the effective field theory to a generic sector that "lives in the fluid'', which corresponds physically to the microscopic constituents of the fluid. At linear order in perturbations, the symmetries, the derivative expansion, and the assumption that this microscopic sector is thermalized, allow us to characterize the leading dissipative effects at low frequencies via three parameters only, which correspond to bulk viscosity, shear viscosity, and---in the presence of a conserved charge---heat conduction. Using our methods we re-derive the Kubo relations for these transport coefficients.Theoretical physics, Physics, Condensed matter physicssge2104PhysicsDissertationsCluster Dynamical Mean-Field Theory: Applications to High-Tc Cuprates and to Quantum Chemistry
https://academiccommons.columbia.edu/catalog/ac:147701
Lin, Nanhttp://hdl.handle.net/10022/AC:P:13443Thu, 07 Jun 2012 15:19:08 +0000In this thesis we use the recently developed dynamical mean-field approximation to study problems in strongly correlated electron systems, including high-Tc cuprate superconductors as well as a few quantum chemical reference systems. We start with an introduction to the background of the interacting electron systems, followed by a brief description on the current understanding of the physics of high-Tc cuprate superconductors. The approximate models that enter the theoretical framework will be discussed afterwards. Some quantum chemical methods for many-body quantum systems are included for review. Next we present the numerical methods employed in our study. The formalism of the dynamical mean-field approximation will be introduced including the single-site and cluster versions, followed by the Exact Diagonalization impurity solver for the solution of the quantum impurity model. Maximum Entropy analytic continuation method is also discussed, which is useful to obtain the physically relevant response functions. Then we apply dynamical mean-field approximation to high-Tc cuprate superconductors. The two-particle response functions, such as Raman scattering intensity and optical conductivity, are computed for the two dimensional Hubbard model. The calculations include the vertex corrections which are essential to obtain physically reasonable results in interacting electron systems. We also study the physics of the pseudogap in cuprates. The suppression of density of states near Fermi surface is present in our calculations, which is in qualitative agreement with the experimental data. Finally we discuss the application of dynamical mean-field theory to quantum chemistry. We extend the formalism of dynamical mean-field approximation to finite systems, and compare its performance in hydrogen clusters with different spatial configurations to other leading quantum chemical approaches. Dynamical mean-field theory involves mapping onto a quantum impurity model. We further examine the quantum impurity model representation of the transition metal dioxide molecules. The conceptual and technical difficulties will be discussed.Condensed matter physicsnl2219Physics, ChemistryDissertationsQuantum transport in graphene heterostructures
https://academiccommons.columbia.edu/catalog/ac:143085
Young, Andrea Franchinihttp://hdl.handle.net/10022/AC:P:12169Tue, 10 Jan 2012 15:00:12 +0000The two dimensional charge carriers in mono- and bilayer graphene are described by massless and massive chiral Dirac Hamiltonians, respectively. This thesis describes low temperature transport experiments designed to probe the consequences of this basic fact. The first part concerns the effect of the lattice pseudospin, an analog of a relativistic electron spin, on the scattering properties of mono- and bilayer graphene. We fabricate graphene devices with an extremely narrow local gates, and study ballistic carrier transport through the resulting barrier. By analyzing the interference of quasiparticles confined to the region beneath the gate, we are able to determine that charge carriers normally incident to the barrier are transmitted perfectly, a solid state analog of the Klein tunneling of relativistic quantum mechanics. The second part of the work describes the development of hexagonal boron nitride (hBN), an insulating isomorph of graphite, as a substrate and gate dielectric for graphene electronics. We use the enhanced mobility of electrons in h-BN supported graphene to investigate the effect of electronic interactions. We find interactions drive spontaneous breaking of the emergent SU(4) symmetry of the graphene Landau levels, leading to a variety of quantum Hall isospin ferromagnetic (QHIFM) states, which we study using tilted field magnetotransport. At yet higher fields, we observe fractional quantum Hall states which show signatures of the unique symmetries and anisotropies of the graphene QHIFM. The final part of the thesis details a proposal and preliminary experiments to probe isospin ordering in bilayer graphene using capacitance measurements.Condensed matter physicsafy2003PhysicsDissertationsSpectroscopy of Two Dimensional Electron Systems Comprising Exotic Quasiparticles
https://academiccommons.columbia.edu/catalog/ac:143043
Rhone, Trevor David Nathanielhttp://hdl.handle.net/10022/AC:P:12155Tue, 10 Jan 2012 12:01:23 +0000In this dissertation I present inelastic and elastic light scattering studies of collective states emerging from interactions in electron systems confined to two dimensions. These studies span the first, second and third Landau levels. I report for the first time, high energy excitations of composite fermions in the quantum fluid at v = 1/3. The high energies discovered represent excitations across multiple composite fermion energy levels, demonstrating the topological robustness of the fractional quantum Hall state at v = 1/3. This study sets the ground work for similar measurements of states in the second Landau level, such as those at v = 5/2. I present the first light scattering studies of low energy excitations of quantum fluids in the second Landau level. The study of low energy excitations of the quantum fluid at 3 ≥ v ≥ 5/2 reveals a rapid loss of spin polarization for v ≤ 3, as monitored by the intensity of the spin wave excitation at the Zeeman energy. The emergence of a continuum of low-lying excitations for v ≤ 3 reveals competing quantum phases in the second Landau level with intriguing roles of spin degrees of freedom and phase inhomogeneity. The first light scattering studies of the electron systems in the third Landau level are reported here. Measurements of low energy excitations and their spin degrees of freedom reveal contrasting behavior of states in the second and third Landau levels. I discuss these measurements in the context of the charge density wave phases, that are believed, by some, to dominate the third Landau level, and suggest ways of verifying this belief using light scattering. Distinct behavior in the dispersion of the spin wave at v = 3 is measured for the first time. The study may highlight differences in the first and second Landau levels that are manifested through the electron wavefunctions. In addition to intra-Landau level measurements, inter-Landau level studies are also reported. The results of which reveal roles of spin degrees of freedom and many body interactions in odd denominator integer quantum Hall states.Condensed matter physics, Optics, Quantum physicstnr2103Physics, Applied Physics and Applied MathematicsDissertationsFingerprinting analysis of non-crystalline pharmaceutical compounds using high energy X-rays and the total scattering pair distribution function
https://academiccommons.columbia.edu/catalog/ac:136566
Davis, Timur D.http://hdl.handle.net/10022/AC:P:10800Tue, 02 Aug 2011 15:00:25 +0000In the development of new medicinal products, poor oral bioavailability, due to the low solubilities of many active pharmaceutical ingredients (APIs), is increasingly a barrier for treatments to be administered using tablet or capsule formulations and one of the main challenges facing the pharmaceutical industry. Non-crystalline phases such as the amorphous and nanostructured states can confer increased solubility to a drug, and therefore, have recently garnered a lot of interest from pharmaceutical researchers. However, little is known about local ordering in non-crystalline pharmaceuticals due to the lack of reliable experimental probes, hindering the clinical application of these compounds. The powerful tools of crystallography begin to lose their potency for structures on the nanoscale; conventional X-ray powder diffraction (XRPD) patterns become broad and featureless in these cases and are not useful for differentiating between different local molecular packing arrangements. In this thesis, we introduce the use of high energy X-rays coupled with total scattering pair distribution function (TSPDF) and fingerprinting analysis to investigate the local structures of non-crystalline pharmaceutical compounds. The high energy X-rays allow us to experimentally collect diffuse scattering intensities, which contain information about a sample's local ordering, in addition to the Bragg scattering available in conventional XRPD experiments, while the TSPDF allows us to view the intra- and inter-molecular correlations in real space. The goal of this study was to address some fundamental problems involving fingerprinting non-crystalline APIs using TSPDF in order to lay the groundwork for the proper use of the technique by the pharmaceutical community. We achieved this by developing the methodology as well as the exploring the scientific implications. On the methodology side, we introduced PDFGetX3, a new software program for calculating TSPDFs that simplifies the procedure and reduces user interaction. We also set a baseline for the minimum X-ray energy that is needed for fingerprinting analysis, which had implications on the type of X-ray diffractometers that can be used. On the science side, we investigated the local structures of nanocrystalline and amorphous materials as well mixtures containing crystalline and amorphous phases. First, we identified a non-crystalline sample of the mood-stabilizing drug carbamazepine as a nanocrystalline version of one of its polymorphs. Next, we found that amorphous forms created by spray drying and cryomilling a proprietary compound have the same local structure. Finally, we quantified the phase fractions of polymorphic and amorphous components in a sample of the antibiotic sulfamerazine that was recrystallizing from a cryomilling-induced amorphous state.Materials science, Condensed matter physics, Pharmaceutical sciencestd2218Applied Physics and Applied MathematicsDissertationsInvestigations of the Band Structure and Morphology of Nanostructured Surfaces
https://academiccommons.columbia.edu/catalog/ac:135348
Knox, Kevin R.http://hdl.handle.net/10022/AC:P:10649Wed, 06 Jul 2011 15:45:10 +0000Two-dimensional electronic systems have long attracted interest in the physics and material science communities due to the exotic physics that arises from low-dimensional confinement. Studying the electronic behavior of 2D systems can provide insight into a variety of phenomena that are important to condensed-matter physics, including epitaxial growth, two-dimensional electron scattering and many-body physics. Correlation effects are strongly influenced by dimensionality, which determines the many-body excitations available to a system. In this dissertation, I examine the electronic structure of two very dierent types of two-dimensional systems: valence band electrons in single layer graphene and electronic states created at the vacuum interface of single crystal copper surfaces.The characteristics of both electronic systems depend intimately on the morphology of the surfaces they inhabit. Thus, in addition to discussing the respective band structures of these systems, a significant portion of this dissertation will be devoted to measurements of the surface morphology of these systems. Free-standing exfoliated monolayer graphene is an ultra-thin flexible membrane and, as such, is known to exhibit large out-of-plane deformation due to substrate and adsorbate interaction as well as thermal vibrations and, possibly, intrinsic buckling. Such crystal deformation is known to limit mobility and increase local chemical reactivity. Additionally, deformations present a measurement challenge to researchers wishing to determine the band structure by angle-resolved photoemission since they limit electron coherence in such measurements. In this dissertation, I present low energy electron microscopy and microprobe diffraction measurements, which are used to image and characterize corrugation in SiO2-supported and suspended exfoliated graphene at nanometer length scales. Diffraction line-shape analysis reveals quantitative differences in surface roughness on length scales below 20 nm which depend on film thickness and interaction with the substrate. Corrugation decreases with increasing film thickness, reflecting the increased stiffness of multilayer films. Specifically, single-layer graphene shows a markedly larger short range roughness than multilayer graphene. Due to the absence of interactions with the substrate, suspended graphene displays a smoother morphology and texture than supported graphene. A specific feature of suspended single-layer films is the dependence of corrugation on both adsorbate load and temperature, which is manifested by variations in the diffraction lineshape. The effects of both intrinsic and extrinsic corrugation factors will be discussed. Through a carefully coordinated study I show how these surface morphology measurements can be combined with angle resolved photoemission measurements to understand the role of surface corrugation in the ARPES measurement process. The measurements described here rely on the development of an analytical formulation for relating the crystal corrugation to the photoemission linewidth. I present ARPES measurements that show that, despite signicant deviation from planarity of the crystal, the electronic structure of exfoliated suspended graphene is nearly that of ideal, undoped graphene; the Dirac point is measured to be within 25 meV of EF . Further, I show that suspended graphene behaves as a marginal Fermi-liquid, with a quasiparticle lifetime which scales as (E - EF)-1; comparison with other graphene and graphite data is discussed. Image and surface states formed at the vacuum interface of a single crystal provide another example of a two dimensional electronic system. As with graphene, the surface quality and morphology strongly inuence the physics in this 2D electronic system. However, in contrast to graphene, which must be treated as a flexible membrane with continuous height variation, roughness in clean single crystal surfaces arises from lattice dislocations, which introduce discrete height variations. Such height variations can be exploited to generate a self assembled nano-structured surface. In particular, by making a vicinal cut on a single crystal surface, a nanoscale step array can be formed. A model system for such nanoscale self assembly is Cu(111). Cu(775) is formed by making an 8.5° viscinal cut of Cu(111) along the [11 -2] axis. The electronic states formed on the surface of this system, with a nanoscale step array of 14 Å terraces, shows markedly different behavior those formed on Cu(111). In this dissertation, I show that the tunability of a femtosecond optical parametric oscillator, combined with its high-repetition rate and short pulse length, provides a powerful tool for resonant band mapping of the sp surface and image states on flat and vicinal Cu(111)- Cu (775) surfaces, over the photon energy range from 3.9 to 5 eV. Since the time scale for excitation of the metal image state from the Cu surface state is comparable with the electron-electron equilibration time scale, sharp features are measured due to resonant excitation in the photoelectron energy distribution curves. In addition, I explore the range of photon energies and optical intensities which may be used for this approach and show that, despite the relatively high pump intensity, the 250 kHz repetition rate of this laser ameliorates the space-charge broadening and electron-energy shifting even for photon energies close to the vacuum edge. The strong excitation conditions generated by a femtosecond laser pulse applied to a Cu surface also allow the excitation and observation of a recently measured bulk state. In this dissertation I show that angle-resolved, tunable, two-photon photoemission (2PPE) can be used to map a bulk unoccupied band, viz. the Cu sp band 0 to 1 eV below the vacuum level, in the vicinity of the L point. This short-lived bulk band can be accessed using our setup due to the strong optical pump rate. I describe how photoemission from this state can be distinguished from photoemission from 2D states which is also present in the data. In particular, the variation of the initial-state energy with photon energy has a measured slope of ~ 1.64 in contrast with values of 1 or 2 observed for 2PPE from two-dimensional (2D) states. This unique variation illustrates the significant role of the perpendicular momentum of initial and final states in interpreting 2PPE data.Condensed matter physicskrk19PhysicsDissertations