Academic Commons Search Results
https://academiccommons.columbia.edu/catalog?action=index&controller=catalog&f%5Blanguage%5D%5B%5D=English&f%5Bsubject_facet%5D%5B%5D=Quantum+physics&format=rss&fq%5B%5D=has_model_ssim%3A%22info%3Afedora%2Fldpd%3AContentAggregator%22&q=&rows=500&sort=record_creation_date+desc
Academic Commons Search Resultsen-usUsing polarized Raman spectroscopy and the pseudospectral method to characterize molecular structure and function
https://academiccommons.columbia.edu/catalog/ac:207484
Weisman, Andrew Leehttp://dx.doi.org/10.7916/D8N58S40Tue, 28 Feb 2017 18:10:38 +0000Electronic structure calculation is an essential approach for determining the structure and function of molecules and is therefore of critical interest to physics, chemistry, and materials science. Of the various algorithms for calculating electronic structure, the pseudospectral method is among the fastest. However, the trade-off for its speed is more up-front programming and testing, and as a result, applications using the pseudospectral method currently lag behind those using other methods.
In Part I of this dissertation, we first advance the pseudospectral method by optimizing it for an important application, polarized Raman spectroscopy, which is a well-established tool used to characterize molecular properties. This is an application of particular importance because often the easiest and most economical way to obtain the polarized Raman spectrum of a material is to simulate it; thus, utilization of the pseudospectral method for this purpose will accelerate progress in the determination of molecular properties. We demonstrate that our implementation of Raman spectroscopy using the pseudospectral method results in spectra that are just as accurate as those calculated using the traditional analytic method, and in the process, we derive the most comprehensive formulation to date of polarized Raman intensity formulas, applicable to both crystalline and isotropic systems.
Next, we apply our implementation to determine the orientations of crystalline oligothiophenes --- a class of materials important in the field of organic electronics --- achieving excellent agreement with experiment and demonstrating the general utility of polarized Raman spectroscopy for the determination of crystal orientation. In addition, we derive from first-principles a method for using polarized Raman spectra to establish unambiguously whether a uniform region of a material is crystalline or isotropic. Finally, we introduce free, open-source software that allows a user to determine any of a number of polarized Raman properties of a sample given common output from electronic structure calculations.
In Part II, we apply the pseudospectral method to other areas of scientific importance requiring a deeper understanding of molecular structure and function. First, we use it to accurately determine the frequencies of vibrational tags on biomolecules that can be detected in real-time using stimulated Raman spectroscopy. Next, we evaluate the performance of the pseudospectral method for calculating excited-state energies and energy gradients of large molecules --- another new application of the pseudospectral method --- showing that the calculations run much more quickly than those using the analytic method.
Finally, we use the pseudospectral method to simulate the bottleneck process of a solar cell used for water splitting, a promising technology for converting the sun's energy into hydrogen fuel. We apply the speed of the pseudospectral method by modeling the relevant part of the system as a large, explicitly passivated titanium dioxide nanoparticle and simulating it realistically using hybrid density functional theory with an implicit solvent model, yielding insight into the physical nature of the rate-limiting step of water splitting. These results further validate the particularly fast and accurate simulation methodologies used, opening the door to efficient and realistic cluster-based, fully quantum-mechanical simulations of the bottleneck process of a promising technology for clean solar energy conversion.
Taken together, we show how both polarized Raman spectroscopy and the pseudospectral method are effective tools for analyzing the structure and function of important molecular systems.Physical chemistry, Quantum physics, Alternative energy, Electronic structure, Molecular structure, Molecular structure--Analysis, Raman spectroscopy, Oligothiophenesalw2165Applied Physics and Applied Mathematics, ChemistryDissertationsStochastic differential equations for quantum dynamics of spin-boson networks
https://academiccommons.columbia.edu/catalog/ac:205271
Mandt, Stephan; Sadri, Darius; Houck, Andrew A.; Türeci, Hakan E.http://dx.doi.org/10.7916/D8SF2WNPFri, 02 Dec 2016 22:53:23 +0000A popular approach in quantum optics is to map a master equation to a stochastic differential equation, where quantum effects manifest themselves through noise terms. We generalize this approach based on the positive-P representation to systems involving spin, in particular networks or lattices of interacting spins and bosons. We test our approach on a driven dimer of spins and photons, compare it to the master equation, and predict a novel dynamic phase transition in this system. Our numerical approach has scaling advantages over existing methods, but typically requires regularization in terms of drive and dissipation.Quantum physics, Computer science, Stochastic differential equations, Quantum theory, Phase space (Statistical physics), Quantum opticssm3976Computer ScienceArticlesVolume-wise destruction of the antiferromagnetic Mott insulating state through quantum tuning
https://academiccommons.columbia.edu/catalog/ac:202953
Frandsen, Benjamin A.; Liu, Lian; Cheung, Sky Chance; Khasanov, Rustem; Guguchia, Zurab; Morenzoni, Elvezio; Munsie, Timothy J. S.; Hallas, Alannah M.; Cai, Yipeng; Wilson, Murray N.; Luke, Graeme M.; Chen, Bijuan; Li, Wenmin; Ding, Cui; Jin, Changqing; Guo, Shengli; Ning, Fanlong; Ito, Takashi U.; Higemoto, Wataru; Billinge, Simon J. L.; Sakamoto, Shoya; Fujimori, Atsushi; Murakami, Taito; Kageyama, Hiroshi; Alonso, Jose Antonio; Kotliar, Gabriel; Imada, Masatoshi; Uemura, Yasutomo J.http://dx.doi.org/10.7916/D8VM4CKPFri, 21 Oct 2016 15:28:49 +0000RENiO3 (RE=rare-earth element) and V2O3 are archetypal Mott insulator systems. When tuned by chemical substitution (RENiO3) or pressure (V2O3), they exhibit a quantum phase transition (QPT) between an antiferromagnetic Mott insulating state and a paramagnetic metallic state. Because novel physics often appears near a Mott QPT, the details of this transition, such as whether it is first or second order, are important. Here, we demonstrate through muon spin relaxation/rotation (μSR) experiments that the QPT in RENiO3 and V2O3 is first order: the magnetically ordered volume fraction decreases to zero at the QPT, resulting in a broad region of intrinsic phase separation, while the ordered magnetic moment retains its full value until it is suddenly destroyed at the QPT. These findings bring to light a surprising universality of the pressure-driven Mott transition, revealing the importance of phase separation and calling for further investigation into the nature of quantum fluctuations underlying the transition.Quantum physics, Rare earth metals--Magnetic properties, Muon spin rotation, Energy levels (Quantum mechanics)scc2134, zg2268, sb2896, yu2Physics, Applied Physics and Applied MathematicsArticlesPerturbative and Nonperturbative Aspects of Jet Quenching in Near-Critical Quark-Gluon Plasmas
https://academiccommons.columbia.edu/catalog/ac:193924
Xu, Jiechenhttp://dx.doi.org/10.7916/D84Q7TSDWed, 27 Jan 2016 23:19:25 +0000In this thesis, we construct two QCD based energy loss models to perform quantitative analysis of jet quenching observables in ultra-relativistic nucleus-nucleus collisions at RHIC and the LHC.
We first build up a perturbative QCD based CUJET2.0 jet flavor tomography model that couples the dynamical running coupling DGLV opacity series to bulk data constrained relativistic viscous hydrodynamic backgrounds. It solves the strong heavy quark energy loss puzzle at RHIC and explains the surprising transparency of the quark-gluon plasma (QGP) at the LHC. The observed azimuthal anisotropy of hard leading hadrons requires a path dependent jet-medium coupling in CUJET2.0 that implies physics of nonperturbative origin.
To explore the nonperturbative chromo-electric and chromo-magnetic structure of the strongly-coupled QGP through jet probes, we build up a new CUJET3.0 framework that includes in CUJET2.0 both Polyakov loop suppressed semi-QGP chromo-electric charges and emergent chromo-magnetic monopoles in the critical transition regime. CUJET3.0 quantitatively describes the anisotropic hadron suppression at RHIC and the LHC. More significantly, it provides a robust connection between the long wavelength "perfect fluidity'' of the QGP and the short distance jet transport in the QGP. This framework paves the way for ``measuring'' both perturbative and nonperturbative properties of the QGP, and more importantly for probing color confinement through jet quenching.Physics, Nuclear physics, Particle physics, Quantum physics, Quark-gluon plasma, Scattering (Physics), Nuclear reactions, Nuclear physics, Color confinement (Nuclear physics), Quantum chromodynamicsjx2179PhysicsDissertationsInteraction Effects on Electric and Thermoelectric Transport in Graphene
https://academiccommons.columbia.edu/catalog/ac:202203
Ghahari Kermani, Fereshtehttp://dx.doi.org/10.7916/D8DJ5D5CTue, 23 Sep 2014 15:35:38 +0000Electron-electron (e-e) interactions in 2-dimensional electron gases (2DEGs) can lead to many-body correlated states such as the the fractional quantum Hall effect (FQHE), where the Hall conductance quantization appears at fractional filling factors. The experimental discovery of an anomalous integer quantum Hall effect in graphene has faciliated the study of the interacting electrons which behave like massless chiral fermions. However, the observation of correlated electron physics in graphene is mostly hindered by strong electron scattering caused by charge impurities. We fabricate devices, in which, electrically contacted and electrostatically gated graphene samples are either suspended over a SiO₂ substrate or deposited on a hexagonal boron nitride layer, so that a drastic suppression of disorder is achieved. The mobility of our graphene samples exceeds 100,000 cm²/Vs. This very high mobility allows us to observe previously inaccessible quantum limited transport phenomena.
In this thesis, we first present the transport measurements of ultraclean, suspended two-terminal graphene (chapter 3), where we observe the Fractional quantum Hall effect (FQHE) corresponding to filling fraction ν=1/3 FQHE state, hereby supporting the existence of interaction induced correlated electron states. In addition, we show that at low carrier densities graphene becomes an insulator with a magnetic-field-tunable energy gap. These newly discovered quantum states offer the opportunity to study correlated Dirac fermions in graphene in the presence of large magnetic fields.
Since the quantitative characterization of the observed FQHE states such as the FQHE energy gap is not straight-forward in a two-terminal measurement, we have employed the four-probe measuremt in chapter 4. We report on the multi-terminal measurement of integer quantum Hall effect(IQHE) and fractional quantum Hall effect (FQHE) states in ultraclean suspended graphene samples in low density regime. Filling factors corresponding to fully developed IQHE states, including the ν±1 broken-symmetry states and the ν=1/3 FQHE state are observed. The energy gap of the 1/3 FQHE, measured by its temperature-dependent activation, is found to be much larger than the corresponding state found in the 2DEGs of high-quality GaAs heterostructures, indicating that stronger e-e interactions are present in graphene relative to 2DEGs.
In chapter 5, we investigate the e-e correlations in graphene deposited on hexagonal boron nitride using the thermopower measurements. Our results show that at high temperatures the measured thermopower deviates from the generally accepted Mott's formula and that this deviation increases for samples with higher mobility. We quantify this deviation using the Boltzmann transport theory. We consider different scattering mechanisms in the system, including the electron-electron scattering.
In the last chapter, we present the magnetothermopower measurements of high quality graphene on hexagonal boron nitride, where we observe the quantized thermopower at intermediate fields. We also see deviations from the Mott's formula for samples with low disorder, where the interaction effects come into play . In addition, the symmetry broken quantum Hall states due to strong electron-electron interactions appear at higher fields, whose effect are clearly observed in the measured in mangeto-thermopower. We discuss the predicted peak values of the thermopower corresponding to these states by thermodynamic arguments and compare it with our experimental results.
We also present the sample fabrication methods in chapter 2. Here, we first explain the fabrication of the two-terminal and multi-terminal suspended graphene and the current annealing technique used to clean these samples. Then, we illustrate the fabrication of graphene on hexagonal boron nitride as well as encapsulated graphene samples with edge contacts.
In addition, the thermopower measurement technique is presented in Appendix A, in which, we explain the temperature calibration, DC and AC measurement techniques.Condensed matter physics, Quantum physics, Graphene, Quantum Hall effect, Quantum electrodynamicsfg2184PhysicsDissertationsProbing Electronic and Thermoelectric Properties of Single Molecule Junctions
https://academiccommons.columbia.edu/catalog/ac:165142
Widawsky, Jonathan R.http://hdl.handle.net/10022/AC:P:21604Fri, 13 Sep 2013 13:30:57 +0000In an effort to further understand electronic and thermoelectric phenomenon at the nanometer scale, we have studied the transport properties of single molecule junctions. To carry out these transport measurements, we use the scanning tunneling microscope-break junction (STM-BJ) technique, which involves the repeated formation and breakage of a metal point contact in an environment of the target molecule. Using this technique, we are able to create gaps that can trap the molecules, allowing us to sequentially and reproducibly create a large number of junctions. By applying a small bias across the junction, we can measure its conductance and learn about the transport mechanisms at the nanoscale. The experimental work presented here directly probes the transmission properties of single molecules through the systematic measurement of junction conductance (at low and high bias) and thermopower. We present measurements on a variety of molecular families and study how conductance depends on the character of the linkage (metal-molecule bond) and the nature of the molecular backbone. We start by describing a novel way to construct single molecule junctions by covalently connecting the molecular backbone to the electrodes. This eliminates the use of linking substituents, and as a result, the junction conductance increases substantially. Then, we compare transport across silicon chains (silanes) and saturated carbon chains (alkanes) while keeping the linkers the same and find a stark difference in their electronic transport properties. We extend our studies of molecular junctions by looking at two additional aspects of quantum transport - molecular thermopower and molecular current-voltage characteristics. Each of these additional parameters gives us further insight into transport properties at the nanoscale. Evaluating the junction thermopower allows us to determine the nature of charge carriers in the system and we demonstrate this by contrasting the measurement of amine-terminated and pyridine-terminated molecules (which exhibit hole transport and electron transport, respectively). We also report the thermopower of the highly conducting, covalently bound molecular junctions that we have recently been able to form, and learn that, because of their unique transport properties, the junction power factors, GS2, are extremely high. Finally, we discuss the measurement of molecular current-voltage curves and consider the electronic and physical effects of applying a large bias to the system. We conclude with a summary of the work discussed and an outlook on related scientific studies.Physics, Nanotechnology, Quantum physicsjrw2139Applied Physics and Applied MathematicsDissertationsProbing Electronic and Thermoelectric Properties of Single Molecule Junctions
https://academiccommons.columbia.edu/catalog/ac:164391
Widawsky, Jonathan R.http://hdl.handle.net/10022/AC:P:21389Tue, 20 Aug 2013 17:01:35 +0000In an effort to further understand electronic and thermoelectric phenomenon at the nanometer scale, we have studied the transport properties of single molecule junctions. To carry out these transport measurements, we use the scanning tunneling microscope-break junction (STM-BJ) technique, which involves the repeated formation and breakage of a metal point contact in an environment of the target molecule. Using this technique, we are able to create gaps that can trap the molecules, allowing us to sequentially and reproducibly create a large number of junctions. By applying a small bias across the junction, we can measure its conductance and learn about the transport mechanisms at the nanoscale. The experimental work presented here directly probes the transmission properties of single molecules through the systematic measurement of junction conductance (at low and high bias) and thermopower. We present measurements on a variety of molecular families and study how conductance depends on the character of the linkage (metal-molecule bond) and the nature of the molecular backbone. We start by describing a novel way to construct single molecule junctions by covalently connecting the molecular backbone to the electrodes. This eliminates the use of linking substituents, and as a result, the junction conductance increases substantially. Then, we compare transport across silicon chains (silanes) and saturated carbon chains (alkanes) while keeping the linkers the same and find a stark difference in their electronic transport properties. We extend our studies of molecular junctions by looking at two additional aspects of quantum transport - molecular thermopower and molecular current-voltage characteristics. Each of these additional parameters gives us further insight into transport properties at the nanoscale. Evaluating the junction thermopower allows us to determine the nature of charge carriers in the system and we demonstrate this by contrasting the measurement of amine-terminated and pyridine-terminated molecules (which exhibit hole transport and electron transport, respectively). We also report the thermopower of the highly conducting, covalently bound molecular junctions that we have recently been able to form, and learn that, because of their unique transport properties, the junction power factors, GS², are extremely high. Finally, we discuss the measurement of molecular current-voltage curves and consider the electronic and physical effects of applying a large bias to the system. We conclude with a summary of the work discussed and an outlook on related scientific studies.Physics, Nanotechnology, Quantum physicsjrw2139Applied Physics and Applied MathematicsDissertationsSpectroscopy of Two Dimensional Electron Systems Comprising Exotic Quasiparticles
https://academiccommons.columbia.edu/catalog/ac:143043
Rhone, Trevor David Nathanielhttp://hdl.handle.net/10022/AC:P:12155Tue, 10 Jan 2012 12:01:23 +0000In this dissertation I present inelastic and elastic light scattering studies of collective states emerging from interactions in electron systems confined to two dimensions. These studies span the first, second and third Landau levels. I report for the first time, high energy excitations of composite fermions in the quantum fluid at v = 1/3. The high energies discovered represent excitations across multiple composite fermion energy levels, demonstrating the topological robustness of the fractional quantum Hall state at v = 1/3. This study sets the ground work for similar measurements of states in the second Landau level, such as those at v = 5/2. I present the first light scattering studies of low energy excitations of quantum fluids in the second Landau level. The study of low energy excitations of the quantum fluid at 3 ≥ v ≥ 5/2 reveals a rapid loss of spin polarization for v ≤ 3, as monitored by the intensity of the spin wave excitation at the Zeeman energy. The emergence of a continuum of low-lying excitations for v ≤ 3 reveals competing quantum phases in the second Landau level with intriguing roles of spin degrees of freedom and phase inhomogeneity. The first light scattering studies of the electron systems in the third Landau level are reported here. Measurements of low energy excitations and their spin degrees of freedom reveal contrasting behavior of states in the second and third Landau levels. I discuss these measurements in the context of the charge density wave phases, that are believed, by some, to dominate the third Landau level, and suggest ways of verifying this belief using light scattering. Distinct behavior in the dispersion of the spin wave at v = 3 is measured for the first time. The study may highlight differences in the first and second Landau levels that are manifested through the electron wavefunctions. In addition to intra-Landau level measurements, inter-Landau level studies are also reported. The results of which reveal roles of spin degrees of freedom and many body interactions in odd denominator integer quantum Hall states.Condensed matter physics, Optics, Quantum physicstnr2103Physics, Applied Physics and Applied MathematicsDissertations