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ABSTRACT

Nonlinear Penalized Estimation of True
Q-Matrix in Cognitive Diagnostic Models

Rui Xiang

Cognitive assessment is a growing area in psychological and educational measure-

ment, where tests are given to assess mastery/deficiency of attributes or skills. A key

issue is the correct identification of attributes associated with items, in other words,

the correct specification of item-attribute relationships. A widely used mathemat-

ical formulation is the well known Q-matrix introduced by Tatsuoka in 1983. The

so-called Q-matrix is a J by K binary matrix establishing the relationship between

responses and attributes by indicating the required attributes for each item. The en-

try in the j-th row and k-th column indicates if item j requires attribute k. Previous

statistical analyses with such models typically assume a known Q-matrix provided

by domain experts such as those who developed the questions. However, if the Q-

matrix is not specified appropriately, it could seriously affect the model goodness of

fit. Unfortunately, the estimation of Q-matrices is largely an unexplored area. As a

result, the primary purpose of this research is to set up a mathematical framework to

estimate the true Q-matrix based on item response data. The research also evaluates

the method through simulation studies, and applies it to estimate Q from real item

response data. However, as the optimization approaches are not common for discrete

values, a probabilistic model with a penalized likelihood function is built. The model

considers all the Q-matrix elements as parameters and estimates them through EM



algorithm. However, as the estimates are continuous values between 0 and 1, cut-

off points are used to transfer them to binary values. Two simulation designs are

conducted to evaluate the feasibility and performance of the model. An empirical

study is also addressed here to estimate the true Q-matrix from a secondary data of

fraction subtraction item responses. The estimated Q-matrix is then compared with

the one originally designed by test developers. The results conclude that our model

performs well and is able to identify 60% to 90% of correct elements of Q-matrix.

The model also indicates possible misspecifications of the designed Q-matrix in the

fraction subtraction test.

Keywords: Q-matrix, cognitive diagnostic models, nonlinear estimations, penal-

ized approach



Table of Contents

1 Introduction 1

2 Literature review 10

2.1 Attribute space and Q-matrix . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Current cognitive diagnostic models . . . . . . . . . . . . . . . . . . . 13

2.2.1 DINA model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 NIDA model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 DINO model . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.4 NIDO model . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Diagnostics on misidentification of Q-matrix . . . . . . . . . . . . . . 18

2.4 Possible Q-matrix estimation methods . . . . . . . . . . . . . . . . . 20

3 Methods 24

3.1 Model specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Estimation approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Model 1: matrix transformation . . . . . . . . . . . . . . . . . 27

3.2.2 Model 2: probabilistic modeling . . . . . . . . . . . . . . . . . 32

3.3 Determination of λ and attribute dimension . . . . . . . . . . . . . . 37

3.4 Finalizing Q-matrix and identification of attributes . . . . . . . . . . 44

i



3.5 Study designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5.1 Simulation study 1: optimized Q-matrix . . . . . . . . . . . . 48

3.5.2 Simulation study 2: fraction subtraction Q-matrix . . . . . . . 49

3.5.3 Empirical study: fraction subtraction responses . . . . . . . . 52

4 Results 54

4.1 Simulation study 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Simulation study 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Empirical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Discussions 81

Bibliography 88

Appendices 93

A R programs 94

A.1 Response data simulation from fraction subtraction test Q-matrix . . 94

A.2 Q-matrix estimation algorithm . . . . . . . . . . . . . . . . . . . . . . 96

A.3 Calculations of minimum discrepancy distance and counts of identical

elements for fraction subtraction Q-matrix . . . . . . . . . . . . . . . 98

ii



List of Figures

3.1 The penalty function of T-matrix approach . . . . . . . . . . . . . . . 31

3.2 The Lasso regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 The penalty function with different lambda values in Gaussian regression 42

3.4 The penalty function with different lambda values in the model . . . 43

iii



List of Tables

2.1 A simple Q-matrix example . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Optimized Q-matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Fraction subtraction Q-matrix . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Designed fraction subtraction Q-matrix . . . . . . . . . . . . . . . . . 53

4.1 Simulation study 1 results . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Estimated Q-matrix in simulation study 1 . . . . . . . . . . . . . . . 58

4.3 Item response patterns and latent class sizes in simulation study 1 . . 60

4.4 Different item response patterns between estimated-Q and true-Q in

simulation study 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Identical item response patterns between estimated-Q and true-Q in

simulation study 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6 Simulation study 2 results . . . . . . . . . . . . . . . . . . . . . . . . 63

4.7 Estimated Q-matrix in simulation study 2 . . . . . . . . . . . . . . . 65

4.8 Item response patterns and latent class sizes in simulation study 2 . . 67

4.9 Unique item response patterns in simulation study 2 . . . . . . . . . . 68

4.10 Empirical study results . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.11 Estimated Q-matrix when λ = 9 in empirical study . . . . . . . . . . 70

4.12 Estimated Q-matrix when λ = 11 in empirical study . . . . . . . . . . 70

iv



4.13 Estimated Q-matrix when λ = 0.001 in empirical study . . . . . . . . 71

4.14 Item response patterns and latent class sizes when λ = 9 in empirical

study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.15 Item response patterns and latent class sizes when λ = 11 in empirical

study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.16 Item response patterns and latent class sizes when λ = 0.001 in empir-

ical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.17 Unique item response patterns when λ = 9 in empirical study . . . . 78

4.18 Unique item response patterns when λ = 11 in empirical study . . . . 78

4.19 Unique item response patterns when λ = 0.001 in empirical study . . 79

4.20 Marginal latent class sizes in empirical study . . . . . . . . . . . . . . 80

v



Acknowledgments

From the formative stages of this thesis, to the final draft, I owe an immense debt of

gratitude to my supervisor, Dr. Matthew S. Johnson. His sound advice and careful

guidance were invaluable as I attempted to examine the possibilities of pure Q-matrix

estimation in cognitive diagnostic models.

Deepest gratitude are also due to the members of the supervisory committee,

Dr. Lawrence T. DeCarlo, Dr. Young-Sun Lee, Dr. Hsu-Min Chiang, and Dr. Ken

Cheung, without whose knowledge and assistance this study would not have been

successful.

I would also like to thank my graduate friends, Mr. Meng-ta Chung, Mr. Jianzhou

Zhang, Ms. Nan Jiang, Ms. Rong Cheng, Ms. Yunting Xiao, Mr. Huacheng Li and

Mr. Jon-Paul Paolino, for sharing the literature, R programs and invaluable assis-

tance, without your time and kind help time, this research would not be completed

on time.

For their efforts and assistance, a special thanks as well to the staffs of the depart-

ment office of Human Development, especially Ms. Diane V. Katanik, Ms. Laurie

Behrman and Ms. Stephanie Phillips for accommodating everything.

Finally, I would be remiss without mentioning my respective parents who have

given me the drive and discipline to tackle any task with enthusiasm and determi-

nation. And my Christian mentor, Dr. Ada C. Mui, whose sage instructions and

patient encouragement will be remembered always.

vi



This thesis is dedicated to my family who have been constant source of inspiration

vii



CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Cognitive diagnostic modeling (CDM), which intends to diagnose subjects’ mastery

status of a group of discretely defined skills or attributes, has become a growing

field of psychometric research over the past several years. The reason why CDM

is so important largely accounts for the call for more formative assessments made

by the No Child Left Behind Act of 2001, and this new psychometric model can

provide students with more detailed information regarding their specific strengths

and weaknesses [Huebner, 2010]. Rather than assigning a score on a continuous

scale to the students representing a broadly defined latent ability, CDM attempts to

assess in detail whether an examinee has mastered a group of specific skills or not,

and these required skills in the test substitute a whole latent ability in a common

item response theory (IRT) or Classical Test Theory (CTT) model. For example, a

test of subtraction fraction may include the skills of 1) converting a whole number

to a fraction, 2) separating a whole number from a fraction, 3) simplifying before

subtracting, and so forth [de la Torre and Douglas, 2004]; and a reading test may

require the attributes of 1) remembering details, 2) knowing fact from opinion, 3)

speculating from contextual clues, and so on [McGlohen and Chang, 2008]. Thus,
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if people are more interested in knowing the mastery of skills by the students and

design a skill-based test, CDM is superior to be used over traditional psychometric

approaches such as IRT on skill assessments [Henson et al., 2009]. CDM may also

potentially aid teachers to direct students to more individualized remediation and

focus on the specific weaknesses [Huebner, 2010].

In CDM, the definition of skill mastery is usually binary, indicating that students

are identified as masters or non-masters of each skill [Huebner, 2010]. A correct

response on an item depends on mastery of multiple skills that required by the item.

Thus, CDM assigns to each subject a vector of binary valued (0/1) ~α = (α1, . . . , αK)

for K skills that are assessed in the test, where 1 denotes mastery of the skill and 0

denotes non-mastery. The total 2K possible attribute patterns are referred to as the

latent classes. Therefore, failing in a test is due to some skills that have not been

mastered by a student, or the latent attribute pattern the student holds does not

cover all the necessary skills that are required by the items. In sum, CDMs provide

diagnostic information about the mastery/non-mastery of specific skills by mastery

pattern [Henson et al., 2009], often by modeling probability of correctly answering an

item as a function of an attribute mastery pattern [Henson and Douglas, 2005].

CDMs have been developed into various types of models, with additional param-

eters such as slipping or guessing, or different model assumptions, and widely used in

different areas of educational measurement, especially standardized large-scale tests

of educational skills. Liu et al. [2011b] had listed a short list of popular CDMs, in-

cluding rule space method [Tatsuoka, 1983, 2009, 1985, 1990], the reparameterized

unified/fusion model (RUM) [DiBello et al., 1995; Hartz, 2002; Templin et al., 2003;

Roussos et al., 2007a], the conjunctive (noncompensatory) DINA and NIDA models

[de la Torre and Douglas, 2004; de la Torre, 2011; Junker and Sijtsma, 2001; Templin,

2006; Maris, 1999], the disjunctive (compensatory) DINO and NIDO models [Templin
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and Henson, 2006; Templin, 2006], the attribute hierarchy method [Leighton et al.,

2004], and clustering methods [Chiu et al., 2009].

Tatsuoka [1983, 2009, 1985, 1990] developed the rule space methodology to ad-

dress the problems associated with diagnosis of mastery of underlying dimensions, or

attributes, of an item. But attributes are not generated by rule space but by a domain

expert. The statistical idea is to classify students’ responses to a set of items into

one (or more) prespecified attribute-mastery patterns. Within rule space, specialized

functions, called Boolean Description Functions (BDF), are used systematically to

determine the knowledge states of interest and to map them into ideal item-response

patterns. Rule space then plots the ideal item-response patterns in terms of two vari-

ables: θ and ζ, which are the ability continuum derived from the IRT theory. Im and

Corter [2011] had indicated that Rule Space Model was seen as one of the most viable

alternatives to the traditional unidimensional models of IRT. The College Board has

used the model to report diagnostic, or scores broken down into relatively specific

achievement areas and cognitive subskills, with SAT scores.

The RUM is another effective psychometric and statistical approach for practical

skills diagnostic testing. It is designed to provide practical tools for standardized

testing that can include effective skills diagnosis in testing. The idea of the model is

to consider both skills-based item parameters and skills-based examinee parameters,

with additional parameters to improve the fit of the model to the data [Roussos

et al., 2007a]. The initial research of the foundational modeling work was conducted

by DiBello et al. [1995], and subsequentially developed by Hartz [2002] and Templin

et al. [2003]. Roussos et al. [2007b] applied a Bayesian version of the RUM to the

math section of American College Testing (ACT) assessment about the skills involved

in successfully answering the math items of the test. Hartz [2002] applied RUM to

the 60-item PSAT in order to inform students of the skills they should master prior



CHAPTER 1. INTRODUCTION 4

to taking the SAT. The study conducted by Templin in his 2006 NCME workshop

was using data from the Trends in International Math and Science Study (TIMSS)

and compared skill mastery between countries.

In addition, it is important to note that CDMs have been classified as either

conjunctive or disjunctive, or similarly, compensatory or non-compensatory. Nor-

mally conjunctive comes with non-compensatory and disjunctive is interchangeable

to compensatory. Models are conjunctive (non-compensatory) if all the required

attributes are necessary for successful completion of the item, and models are dis-

junctive (compensatory) if the absence of one attribute can be made up for by the

presence of other attributes [de la Torre, 2009a]. The RUM method can be designed

as either compensatory or non-compensatory. The deterministic inputs, noisy ”and”

gate (DINA) model [Junker and Sijtsma, 2001] is another example of a conjunctive

(non-compensatory) model. It is determined by a latent response ξij, a slipping pa-

rameter sj and a guessing parameter gj, on the ith persons and jth tasks. DINA

has particularly enjoyed much attention due to its simplicity of estimation and inter-

pretation [Huebner, 2010]. Another stochastic conjunctive model is the noisy inputs,

deterministic, ”and” gate (NIDA) model which was introduced by Maris [1999]. The

difference between NIDA and DINA is that DINA has item-level parameters but NI-

DA has attribute-level parameters [de la Torre, 2009a], in other words, NIDA includes

one more item-attribute information in the determination of the three parameters in

DINA. Both models had been used in past studies for simulation research and real

data analysis such as the fraction subtraction data done by de la Torre and Douglas

[2004].

The deterministic input, noisy ”or” gate model (DINO) is a disjunctive (com-

pensatory) model developed by Templin and Henson [2006] and has been used to

diagnose pathological gambling. The DINO is defined in a similar manner as DINA
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but now the equivalence latent deterministic aspect of the model is based on a dis-

junctive factor ωij which divides individuals into a group that satisfied at least one

necessitated criterion and a group that have not satisfied any necessitated criteria.

Another disjunctive model, the noisy input, deterministic ”or” gate model (NIDO)

is the compensatory analog of the NIDA model. The model specifies two parameters

per attribute, one representing examinees who have mastered the attribute and the

other representing examinees who are lacking mastery the attribute [Templin, 2006].

The attribute hierarchy method (AHM) was introduced by Leighton et al. [2004]

and represented a variation of Tatsuoka’s rule space method. The assumption is

that attributes are organized in a hierarchical way to form a cognitive model for task

performance. The model was applied to the domain of syllogistic reasoning to evaluate

the cognitive competencies required in a higher-level thinking task. Besides AHM,

cluster analysis [Chiu et al., 2009] provides an alternative way to cluster subjects

who posses the same skills into one group by K-means or hierarchical agglomerative

clustering without an item response model. The English language skills were assessed

by Chiu et al. [2009] using the clustering methods from the Examination for the

Certificate of Proficiency in English (ECPE) conducted by the University of Michigan

English Language Institute.

However, despite the vast majority of CDMs, most of the models need a way to

demonstrate an item-by-attribute relationship, thus utilizing a relationship mapping

matrix referred to as a Q-matrix first introduced by Tatsuoka [Tatsuoka, 1985]. The

Q-matrix is an efficient way to represent specific skills that are needed to answer each

item correctly. Under the setting of Q-matrix, J items (tasks) are measuring the K

attributes, so the Q-matrix is a J ×K binary matrix (qjk)J×K with elements 0 and 1

indicating whether the jth item requires the kth attribute or not, where j = 1, . . . , J

and k = 1, . . . , K. Each Q-matrix element qjk is then used in the construction of
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CDMs as the most important information factor.

The analysis of CDMs normally assumes a known Q-matrix and the development

of the Q-matrix becomes one of the most important steps of CDMs. The basic

methods of Q-matrix construction include simple inspection of the items; multiple

rater methods; and iterative procedures based on item parameters [Henson, 2009].

Simple inspection means that the domain experts evaluate the items and determine

which attributes are required by each one. Multiple-raters is more likely to be used

where several experts and researchers are working together on the determination of

Q-matrix. The last method is the refinement based on item parameters, which is

done after model fit and not normally used. However, even though so much care has

been placed in determining an initial Q-matrix, it is still possible that the matrix is

incorrectly identified [Henson, 2009]. Because the results of CDMs and model fits

are very sensitive to the construction of Q-matrix, if a prior Q-matrix provided by

experts is identified correctly, it will surely very helpful to the model estimation and

identification of latent attributes, but a misspecified Q-matrix could seriously affect

the goodness of fit of the model and the results will not be trustable [Liu et al., 2011b].

Due to the concern, some studies have been conducted to examine the statistical

consequences of misspecification of attributes in Q-matrix. For example, Rupp and

Templin [2008] did a study on the effects of Q-matrix misspecification on parameter

estimates and classification accuracy in DINA model by changing one ”0” or ”1” for

each item in an assessment. Results indicated high overestimation of slipping and

guessing parameters and misclassification for attribute classes on students. Thus how

to construct a correct specification of Q-matrix is becoming an important issue in

CDMs.

Statistically, a good way to estimate Q-matrix is based on empirical data rather

than subjective judgments of experts. However, the estimation problem is largely an
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unexplored area [Liu et al., 2011b]. The only paper found was done by Liu et al.

[2011b,a] presenting the estimation procedures for Q-matrix in DINA and DINO

models. The reason why people has not done much about this area is possibly that

the inference and estimation of the Q-matrix are very challenging. First of all the Q-

matrix is on a discrete space with binary elements of 0 and 1. Estimation for discrete

variables increases computation complexity because calculus tools are not applicable.

Secondly, the Q-matrix is latent and nonidentifiable [Liu et al., 2011b]. It is entirely

possible that multiple Q-matrices lead to an identical response distribution, which

means two Q-matrices from the same equivalence class may not be distinguishable

based on data. Last but not least, CDMs make assumptions on the distributions

of unobserved latent attributes. The responses of items based on attributes via Q-

matrix created a highly nonlinear discrete linking function. The nonlinearity of linking

function also adds to the difficulty of the estimation [Liu et al., 2011b].

Considering these difficulties, Liu et al. [2011b,a] defined an estimator of the Q-

matrix and talked about regularity conditions under which desirable theoretical prop-

erties were established. They continued to complete the estimation of the Q-matrix

under the DINA model specification with known and unkonwn slipping and guess-

ing parameters, and extended the estimation procedure along with the consistency

results to the DINO model. Their research provided an estimation procedure on the

Q-matrix with sufficient conditions under which a consistent estimator exists, and a

parallel analysis for the DINA and DINO model. Liu et al. [2011a] also stated that

their estimation procedure was able to be implemented to NIDA and NIDO models,

with modifications on the theoretical properties under such model specifications.

Despite the contribution done by Liu et al. [2011b,a, 2012], their theoretical meth-

ods required a lot of assumptions to prove the theories of their estimation results with

a pre-defined criteria. These assumptions had to be made due to the difficulties of



CHAPTER 1. INTRODUCTION 8

discrete and nonlinear estimation. For example, the Q-matrix needs to be complete

which means each attribute there exists an item only requiring that attribute, and

a nonlinear transformation of Q-matrix should be saturated which means the trans-

formed matrix has to contain all combinations of positive responses to items. However,

it is not always the case in real situations and their methods are hard to apply into real

data analysis. This dissertation is to establish an alternative way, hopefully a better

way, to estimate Q-matrix based on fewer assumptions. The fundamental difference

between this dissertation and the previous literature is considering the Q-matrix ele-

ments as probabilities of requiring an attribute by an item, and estimate the Q-matrix

on a continuous space. The procedure becomes much easier and multiple ways could

be used to estimate the continuous latent variables. Numerical methods for uncon-

strained optimization and nonlinear equations, and expectation-maximization (EM)

algorithm which is an iterative method for finding maximum likelihood estimates, are

good options of methods for the estimation. Moreover, a penalized technical can help

build restrictions and push the matrix elements asymptotically to 0 or 1 as close as

possible for the further recovery back to the discrete Q-matrix.

In sum, this dissertation is going to establish a purely exploratory method to es-

timate the whole Q-matrix from item response data. The primary research questions

include whether the methods are able to estimate the Q-matrix, how the method per-

forms on estimation accuracy, and what the differences would be between estimated

Q-matrix and designed Q-matrix in a real situation. The secondary research ques-

tions seek to find out if estimated Q-matrices are in fact identical to true or designed

Q-matrices, and how their latent class sizes are distributed. The primary research

questions can be answered by the proportion of correctly identified elements of es-

timated Q-matrices in simulation studies, and the proportion of identical elements

between estimated Q-matrix and the designed Q-matrix in an empirical study. The
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secondary research questions can be answered by the comparison of unique ideal item

response patterns between Q-matrices, and the comparison of estimated results on

latent class sizes. The researcher have constructed multiple evaluation criteria based

on data mining theories for a precise and robust comparison. The second chapter is

a literature review on the past Q-matrix related issues, the third one is the detailed

method descriptions developed to estimate the Q-matrix, including the designs of

both simulation and empirical studies. Chapter four shows the results from all types

of studies and the last chapter will be the discussion on the strength, weakness and

future development of the research.
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Chapter 2

Literature review

This chapter reviews the development of Q-matrix in CDMs in more detail. Although

most of current studies are concerned about CDM applications and Q-matrix misspec-

ifications, some useful information regrading why Q-matrix estimation is necessary

and how to possibly solve the estimation problems could still be found. The first part

of the section is about attribute space and Q-matrix defined in CDMs, then some

popular CDMs based on attributes and Q-matrix will be discussed. The next topic is

a review on the diagnostics on misspecification of Q-matrices in CDMs, followed by

the last part of possible ways that could estimate Q-matrix done by other researchers.

2.1 Attribute space and Q-matrix

The analysis of most CDMs is based on an item-attribute incidence matrix called a

Q-matrix [Tatsuoka, 1983]. The diagnostic power of CDMs relies on the construc-

tion of a Q-matrix with attributes that is theoretically appropriate and empirically

supported [Lee and Sawaki, 2009]. Apparently the quality of final inference results

from the CDMs is heavily influenced by how the attributes and Q-matrix are de-
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fined. How to specify attributes and Q-matrix becomes the most fundamental step

in CDMs, and how to define attribute space comes before the establishment of Q-

matrix. It is usually subjective to choose attributes that represent the latent cognitive

process being assessed. Sometimes the target attributes we are interested in for stu-

dent evaluation can serve as the basis to develop the attribute space and Q-matrix.

Normally content or domain experts are responsible for this step. Nevertheless, the

attributes and Q-matrix identified by experts are not guaranteed to be true or most

appropriate. Systematic research efforts have not been done enough to investigate

the appropriateness of cognitive attributes identified in the context of CDMs.

When developing the attribute space, it is also important to be aware of whether

the attributes interact with each other, such as a correlation or a nature of inter-

actions [DiBello et al., 2007]. This case leads us to the issue of conjunctive (non-

compensatory) versus disjunctive (compensatory). Conjunctive attribute space re-

quires all necessary attributes of an item to perform it correctly and lack of any one

would lead to a failure. Compensatory interaction of attributes might have a chance

that a high enough level of competence on one skill can compensate for a low level

of competence on another skill and results in successful task performance. These

different assumptions of attribute interactions will lead to different types of cognitive

diagnostic models based on even the same Q-matrices.

An example of attributes defined in a cognitive assessment test is the mathematical

contents in the fraction subtraction data being used in some previous studies [de la

Torre and Douglas, 2004; de la Torre, 2009b; DeCarlo, 2011]. The data consisted of

responses to 40 items involving subtraction of fractions by 536 examinees firstly used

and described by Tatsuoka [1990]. The eight attributes required were: (A1) Convert

a whole number to a fraction, (A2) Separate a whole number from a fraction, (A3)

Simplify before subtracting, (A4) Find a common denominator, (A5) Borrow from



CHAPTER 2. LITERATURE REVIEW 12

Table 2.1: A simple Q-matrix example

Item A1 A2 A3 A4 A5 A6 A7 A8
3
4
− 3

8
0 0 0 1 0 0 1 0

6
7
− 4

7
0 0 0 0 0 0 1 0

31
2
− 23

2
0 1 1 0 1 0 1 0

3− 21
5

1 1 0 0 0 0 1 0

whole number part, (A6) Column borrow to subtract the second numerator from the

first, (A7) Subtract numerators, and (A8) Reduce answers to simplest form.

After the attributes are identified, the Q-matrix specifies which attributes are

needed to solve each item [Tatsuoka, 1983, 1990]. The J ×K Q-matrix (qjk)J×K of

zeros and ones indicates whether the jth item requires the kth attribute or not, where

there are J items and K attributes. If qjk = 1 then the jth item at least needs the

knowledge of kth attribute to answer the question correctly. If the item does not

need the knowledge of kth attribute, then qjk = 0. An example of a small part of

the Q-matrix of the fraction subtraction items designed by previous experts is shown

as an example in the Table 2.1 [de la Torre and Douglas, 2004]. From the Q-matrix

example, we see that in order to solve the math problem of 6
7
− 4

7
, the students are

considered to master the skill of (A7) subtract numerators; to solve the problem of

31
2
− 23

2
, students are supposed to master multiple skills of (A2) separate a whole

number from a fraction, (A3) simplify before subtracting, (A5) borrow from whole

number part, and (A7) subtract numerators. As long as the attributes and Q-matrix

are established, cognitive diagnostic models are able to be developed.
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2.2 Current cognitive diagnostic models

After the attribute space and Q-matrix are established, the next step is attempting

to discover the latent attributes the examinees possess from the test items. Cognitive

diagnostic models have been developed for this purpose by researchers in the past

several years [DeCarlo, 2011]. One important difference among the models is based on

whether the proficiency variables are discrete or continuous depending on the purpose

of the assessment, and another distinction lies on the attribute interaction manner

[DiBello et al., 2007]. However, fundamentally all the function of CDMs specifies

the probability of a particular correct item response with the attribute pattern of the

subject and also the item characteristics. Here the discussion will concentrate on these

models with an explicit Q matrix: DINA, NIDA, DINO and NIDO models, due to

their simplification and fewer assumptions. DINA and NIDA are based on conjunctive

attribute space, while DINO and NIDO are based on compensatory attribute space.

2.2.1 DINA model

The deterministic input, noisy ”and” gate (DINA) model [Junker and Sijtsma, 2001]

is considered the foundation of the other three models and some other CDMs, and

it is also one of the least complex models [Rupp and Templin, 2008]. In DINA

model, the probability of responding to an item correctly is determined by two error

probabilities and one latent response variable. The guessing probability (gj)represents

the probability of getting a correct response on the jth item when at least one required

attribute is lacking. The slipping probability (sj) represents the probability of getting

a wrong response on the jth item when all required attributes are present. The latent

dichotomous variable ξij indicates whether the ith respondent possess all required

attributes to answer the jth item correctly or not whereas the value ”1” in this case
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and ”0” otherwise (deterministic input) [Rupp and Templin, 2008].

Let Xij be the binary score of respondent i to jth item (1 means correct and 0

means incorrect), qjk represent the element in Q-matrix for item j and attribute k

(jth row and kth column), αik indicate whether ith respondent possess attribute k,

and ~αj· = (αj1, αj2, . . . , αjK)′ denote the vector of total K skills that are needed to

solve the jth item.

P (Xij = 1|ξij) = (1− sj)ξijg
1−ξij
j (2.1)

where

ξij =
∏

k:qjk=1

αik =
K∏
k=1

α
qjk
ik (2.2)

indicating whether the ith respondent has all the attributes required for the jth

item. The latent vector ~αi· = (αi1, αi2, . . . , αiK) are called knowledge states, and the

vectors ~ξi· = (ξi1, ξi2, . . . , ξiJ) are called ideal response patterns [Junker and Sijtsma,

2001]. The above represents the deterministic input part of the model that indicates a

deterministic prediction of task performance from each respondent’s knowledge state.

And

sj = P (Xij = 0|ξij = 1) (2.3)

gj = P (Xij = 1|ξij = 0) (2.4)

where sj and gj are error probabilities: false negative (slipping) and false positive

rates (guessing).

Each ξij acts as an ”and” gate with the deterministic inputs α
qjk
ik , and each Xij is

modeled as a noisy observation of each ξij [Junker and Sijtsma, 2001]. The final item

response function of DINA model is

P (Xij = xij,∀i, j|ξ, s, g) =
N∏
i=1

J∏
j=1

[(1− sj)xijs
1−xij
j ]ξij [g

xij
j (1− gj)1−xij ]1−ξij (2.5)



CHAPTER 2. LITERATURE REVIEW 15

Where xij = 1 or 0.

The DINA model has been fit within a fully Bayesian framework using Markov

chain Monte Carlo (MCMC) methods or maximum-likelihood estimation (MLE) [De-

Carlo, 2011]. In fact the following models are using the same or similar methods

for parameter estimation. Reparameterized DINA and higher order DINA model are

further developments of the DINA model.

2.2.2 NIDA model

The noisy inputs, deterministic ”and” gate model (NIDA) was first discussed by Maris

[1999]. Unlike DINA model, the slips and guessing in NIDA model happen at the

attribute level instead of the item level. ηijk = 1 or 0 is defined as whether the ith

respondent’s performance on the jth item is consistent with possessing attribute k.

Thus ηijk is related to the ith respondent’s attribute space αi.

sk = P (ηijk = 0|αik = 1, Qjk = 1) (2.6)

gk = P (ηijk = 1|αik = 0, Qjk = 1) (2.7)

and

P (ηijk = 1|αik = a,Qjk = 0) = 1 (2.8)

regardless of the value a (0 or 1) of αik. Observed item performance is related to the

latent response variable ηijk through

Xij =
∏

k:qjk=1

ηijk =
K∏
k=1

ηijk (2.9)
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So the item response function is

P (Xij = 1|α, s, g) =
K∏
k=1

P (ηijk = 1|αik, qjk) =
K∏
k=1

[(1− sk)αikg1−αik
k ]qjk =

K∏
k=1

(
1− sk
gk

)αikqjk
K∏
k=1

g
qjk
k

(2.10)

The noisy inputs ηijk which show the attributes αik in respondents are combined

in a deterministic ”and” gate Xij [Junker and Sijtsma, 2001]. The joint item response

function is

P (Xij = xij,∀i, j|α, s, g) =
N∏
i=1

J∏
j=1

{
K∏
k=1

[(1− sk)αikg1−αik
k ]qjk}xij{1−

K∏
k=1

[(1− sk)αikg1−αik
k ]qjk}1−xij

(2.11)

2.2.3 DINO model

The deterministic, noisy ”or” gate model is the compensatory analog of the DINA

model and is defined in a similar way [Templin, 2006]. The latent ”or” gate now is

determined by a binary disjunctive model ωij instead of ξij.

ωij = 1−
K∏
k=1

(1− αik)qjk (2.12)

If ωij = 1 then the ith individual has satisfied at least one Q-matrix necessitated

attribute of the jth item. If ωij = 0 then the ith individual has not occupied any

necessitated attribute needed for the jth item [Templin and Henson, 2006]. Thus the

probability of a positive response based on ωij will be:

P (Xij = 1|ωij) = (1− sj)ωijg
1−ωij
j (2.13)
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where sj = P (Xij = 0|ωij = 1) is the slipping parameter and gj = P (Xij = 1|ωij =

0) is the guessing parameter, 1 − sj > gj. Compared with the DINA model, the

item response function will be almost the same expect the substitution of ωij on ξij.

However, the meanings of slipping and guessing are slightly different. In DINO model,

slipping is the probability of failure on the item although examinees have mastered

one or more specified attributes for the item (In DINA the examinees have to master

all the needed attributes), while guessing is the probability of getting the item right

when examinees are lacking mastery of every of the Q-matrix specified attributes

for the item (In DINA the examinees lack at least one of the specified attributes)

[Templin, 2006].

2.2.4 NIDO model

The NIDO model (Noisy Inputs, Deterministic ”or” gate) is the compensatory analog

of the NIDA model for cognitive diagnosis [Templin, 2006]. The model construction

has different notations and definitions on slipping and guessing. Two parameters per

attribute are specified in the model, one representing examinees who have mastered

the attribute (called the beta parameter) and one representing examinees who are

lacking mastery the attribute (called the tau parameter). The set of attribute param-

eters for the NIDO model are the same for each item (item discrimination is equal

for all items) [Templin, 2006]. The NIDO model has not been widely used in the past

literatures.

P (Xij = 1|αij) = [1 + exp(
K∑
k=1

(τk + βkαij)qjk)]
−1 (2.14)

The above four models are the basis for more complicated cognitive diagnostic

models such as higher order, hierarchical, or reparameterized models. After the model

is implemented, the check on goodness of fit is the next important step. which is
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particularly related back to the specification of Q-matrix. However, the Q-matrix is

usually determined by expert judgments so that there might be some mistakes, or

uncertainty about its elements. Fortunately people have realized this problem and

some researches have been conducted to detect the uncertainty and misspecification

of Q-matrix.

2.3 Diagnostics on misidentification of Q-matrix

Rupp and Templin [2008] researched Q-matrix misspecification and its effects on item

parameter estimates and respondent classification accuracy for the DINA model. A

Q-matrix for an assessment with 15 possible attribute patterns based on four inde-

pendent attributes was misspecified by changing one ”0” or ”1” for each item. As

a result, certain attribute combinations were completely deleted from the Q-matrix,

and certain incorrect dependency relationships between attributes were represented.

Their results showed clear evidences that included an item specific overestimation of

slipping parameters when attributes were deleted from the Q-matrix, an item-specific

overestimation of guessing parameters when attributes were added to the Q-matrix,

and high misclassification rates for attribute classes that contained attribute combi-

nations that were deleted from the Q-matrix.

Im and Corter [2011] investigated the statistical consequences of attribute mis-

specification in the rule space method for cognitively diagnostic measurement. The

two types of attribute misspecifications were exclusion of an essential attribute (which

affected problem-solving performance) and inclusion of a superfluous attribute (which

did not). Their results showed that exclusion of an essential attribute tended to lead

to underestimation of examinees’ mastery probabilities for the remaining attributes,

whereas inclusion of a superfluous attribute generally led to overestimation of at-
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tribute mastery probabilities for the other attributes. In addition, order relation-

s among attributes induced by superset/subset relationships affected the biases in

the estimated attribute mastery probabilities in systematic ways. These results un-

derscored the importance of correct attribute specification in cognitively diagnostic

assessment and delineate some specific effects of using incorrect attribute sets.

DeCarlo [2011] applied DINA model in the fraction subtraction data and revealed

some problems on the classification of respondents. For example, examinees who got

all of the items incorrect were classified as having most of the skills. Some respondents

were classified as having a higher level skill but not having a lower level skill. Again

some of the latent class sizes of the attributes were very large. Obtaining large

estimates of the latent class sizes can indicate misspecification of the Q-matrix, such

as the inclusion of an irrelevant skill. Analytical studies and simulations were able to

find out these problems that largely associated with the structure of Q-matrix.

Another approach to check the Q-matrix appropriateness was stated by de la Torre

[2008]. It proposed an empirical based method of validating a Q-matrix used in the

DINA model by minimizing the sum of the average slip and guess parameters. The

correct row vector (item vector) of qj in Q-matrix is based on

qj = arg max
α

[1− sj − gj] = arg max
α

[δj] (2.15)

where δj = 1 − sj − gj. This sequential EM-Based δ-Method intended to improve

model-data fit by selecting the optimal q vectors. But there are still some potential

problems such as the slipping and guessing parameters are assumed to be known.

Since misspecification of Q-matrix has became a huge problem on cognitive diag-

nostic models, it is important to find out a way to get an accurate specification of

Q-matrix before fitting the model. However, besides expert judgments, few studies
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have been done on empirical estimation on Q-matrix. Liu et al. [2011b] have imple-

mented a theoretical analysis on the learnability of the underlying Q-matrix which

was the milestone literature on the estimation issue to my perspective. Some other

possible methods will also be discussed in the next topic.

2.4 Possible Q-matrix estimation methods

Theoretically the uncertainty of Q-matrix can be recognized by using a Bayesian ap-

proach where some elements of the Q-matrix are specified as being randomly binomial

distributed but not all elements are missing. The posterior distribution of a hyperpa-

rameter can then be used to obtain information about each element [DeCarlo, 2011,

2012]. However, the method requires a large number of hyperparameters to be spec-

ified in the model. Another approach is to consider a bunch of possible Q-matrices

with each fitted an associated model. When the models are fitted, we compare the

indices of relative goodness of fit, such as the Bayesian information criterion (BIC) or

Akaike information (AIC)[Rupp and Templin, 2008; DeCarlo, 2012; Cen et al., 2005;

de la Torre and Douglas, 2008]. However it is hard to decide the number and elements

of possible Q-matrices used for comparison at the very beginning, and it still requires

some of the Q-matrix elements are already known.

Tiffany Barnes [Romero et al., 2011] talked about a computation Q-matrix algo-

rithm in her paper Novel Derivation and Application of Skill Matrices: The Q-Matrix

Method selected by the Book Handbook of Educational Data Mining to extract skill

matrices from student problem-solving data and use these derived skill matrices in

novel ways to automatically assess, understand, and correct student knowledge. The

algorithm which is called ”hill-climbing” algorithm creates a matrix representing re-

lationships between concepts and questions directly from student response data by
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minimizing the total error for all students among the number of attributes, values of

Q-matrix, and the answers to all questions. The algorithm is a nice try on Q-matrix

establishment from a computer programming perspective, and provides an idea that

the estimation can be based on a selection criteria such as the total error. A detailed

description of her algorithm is stated below.

The algorithm first sets the number of concepts to one and then generates a

random Q-matrix, then calculates the ideal response vector (IDR) and compares it

to each student response, and assigns the response to the closest IDR and concept

state, with an ”error” being the distance from the response to the IDR. The total

Q-matrix error is the sum of these errors over all students. Then hill-climbing is

performed by adding or subtracting a small fixed delta to a single Q-matrix value,

and recomputing its error. If the overall Q-matrix error is improved, the change is

saved. This process is repeated for all the values in the Q-matrix several times until

the error in the q-matrix is not changing significantly. After a Q-matrix is computed

in this fashion, the algorithm is run again with a new random initial Q-matrix several

times, and the Q-matrix with minimum error is saved. To determine the best number

of skills or attributes to use in the Q-matrix, this algorithm is repeated for increasing

the number of attributes, until a stopping criterion is met: either when the Q-matrix

error falls below a pre-set threshold, such as that of less than 1 per student as used

here, or by looking for a decrease in the marginal reduction of error by adding more

concepts.

The research conducted by Liu et al. [2011b] is the pioneer study on the empirical

estimation of Q-matrix based on response data. Their idea is similar to Barnes’ that

minimize a criteria of total error. They introduce a central quantity the T-matrix

which connected the Q-matrix with the response and attribute distributions. The

non-linear transformation matrix T (Q) has 2K − 1 (total K attributes) columns each
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of which corresponds to one nonzero attribute vector α ∈ {0, 1}K \{(0, . . . , 0)}. Each

row of T (Q) corresponds to positive response on one item or one ”and” combination of

items. Here Let Ij be a generic notation for positive responses to item j, and let ”∧”

stand for ”and” combination so that Ij1 ∧Ij2 denotes positive responses to both items

j1 and j2. Then the rows of T (Q) stand for Ij1 ,Ij1∧Ij2 ,or Ij1∧Ij2∧Ij3 ,. . . . If the rows

of T (Q) contain all positive responses to the single items and all ”and” combinations,

then the number of rows equal to 2J − 1 where J is the total number of items. And

the T (Q) is defined as saturated. Thus each element of T (Q) indicates whether the

attribute vector would possibly get the positive responses to the item combination.

The next step is to build a column vector the length of which equals to the number

of rows of T (Q) and each element corresponds to the proportion of number of people

who have positive response to the item combinations. Let the column vector be p we

will have

T (Q)P̂ = p (2.16)

where P̂ contains the estimated proportions of respondents with each attribute profile.

As a result for any binary matrix Q′, let

S(Q′) = inf
ˆP∈[0,1]2K−1

|T (Q′)P̂− p| (2.17)

and

Q̂ = arg inf
Q′
S(Q′) (2.18)

then Q̂ is an estimator of Q-matrix.

If a Q-matrix is complete (for each attribute there exists an item only requiring

that attribute), and T (Q) is saturated, Liu et al. [2011b] has proved the existence of

best Q that can be drawn from the empirical response data mathematically together
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with two more conditions.

With the established theoretical framework, Liu et al. [2011b] implements the

model into cognitive diagnostic models and consider slipping and guessing parameters

into the estimation of Q-matrix. They have proved the consistence in DINA model

with known or unknown slipping parameter and a known guessing parameter. They

extended their theories to DINO model in their next paper and talked about the

estimation of Q-matrix again under the condition of no slipping or guessing, and

nonzero slipping and guessing probabilities in DINA model [Liu et al., 2011a]. They

have also claimed that their results were consistent in all the four models mentioned

above.

The estimation methods discussed by Liu et al. [2011b,a, 2012] do require lots

of assumptions such as complete Q-matrix, saturated T-matrix, or known guessing

parameters in DINA model, and the computation is so difficult and it is not practical

to apply to real response data situation. However, it does provide a new and reliable

idea to possibly estimate Q-matrix based on the real response data from subjects.

Inspired by their studies, the dissertation comes up a new way, and hopefully a better

and more applied method, that could possibly estimate Q-matrix elements.
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Chapter 3

Methods

This section formally introduces model establishment and estimation approach on

Q-matrix. As the elements of Q-matrix are dichotomous and the estimation process

of discrete variables is extremely hard and complicated, we consider the components

of Q-matrix as continuous variables within (0,1) indicating the probabilities that an

item requires a specific attribute. With penalized techniques we are able to push the

estimated values as close to 0 or 1 as possible and use cutoffs to get back to the discrete

Q-matrix. In order to reduce computation complexity the dissertation considers the

model conjunctive (non-compensatory) and first consider that item responses are free

from guessing and slipping. In other words, guessing or slipping parameters are not

considered and item responses are totally determined by the mastery of skills. Adding

guessing and slipping parameters or disjunctive models will be discussed in the future

studies. Detailed model assumptions will be discussed below.
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3.1 Model specification

Some definitions have to be introduced first at the very beginning, although most of

them have been talked about in the previous sections.

• Attribute: The certain skills that a subject masters or not. Assume that all

items of the test require K attributes, ~α = (α1, ..., αK) is the vector of at-

tributes. αk ∈ {0, 1} indicates the presence or absence of the kth attribute,

k ∈ {1, 2, . . . , K}.

αk =


1 if a subject holds the kth attribute/skill

0 if a subject does not hold the kth attribute/skill

• Responses: The binary responses that a subject gets an item right or not.

Assume that there are J items in the test, R = (R1, ..., RJ) is the vector of item

responses. Rj ∈ {0, 1} indicates whether a subject gets the jth item right or

not, j ∈ {1, 2, . . . , J}.

Rj =


1 if a subject gets the jth item right

0 if a subject gets the jth item wrong

• Q-matrix: Q-matrix is defined as the link between attributes and the items. A

traditional J ×K matrix (qjk)J×K has binary elements qjk ∈ {0, 1} which tell

us whether the jth item requires the kth attribute or not.

qjk =


1 if the jth item requires the kth attribute

0 if the jth item does not require the kth attribute
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The next step is to establish connections between the Q-matrix and the item

responses. Some assumptions have to be restated here: the item responses are com-

pletely determined by the attributes; no slipping or guessing exists in the response

determination; all required attributes together in each item from the Q-matrix are

necessary and sufficient to provide a positive response (Rj = 1) to the specific item;

lacking any of required attribute would lead to failure of answering the item, and

possessing additional attributes does not compensate for the absence of necessary at-

tributes. In sum, it could be considered as a conjunctive (non-compensatory) model

without slipping or guessing. The appropriate mathematical demonstration for the

ith subject on the jth item response is

Rij = ξij =
K∏
k=1

αik
qjk = 1(αk ≥ qjk : k = 1, . . . , K, j = 1, . . . , J) (3.1)

Imagine that the ith respondent has a combination of the latent K attributes

~αi = (αi1, . . . , αiK), then according to the Q-matrix, there would be a theoretical

item response pattern ~Ri for ith subject, where ~Ri = (Ri1, . . . , RiJ) and each of the

element Rij is calculated according to the above equation.

Total K attributes would have 2K possible attribute patterns, thus leading to 2K

latten classes. Now another matrix can be defined as the link between the attribute

combinations and item responses.

• D-Matrix: The J × 2K matrix (djl)J×2K has binary elements djl ∈ {0, 1} which

indicate the ideal response for the jth item when a subject has a lth combination

of attributes.

djl =


1 get the jth item right with the lth combination of attributes

0 fail to get the jth item right with the lth combination of attributes
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So far all the matrices here have binary elements 0 and 1. Estimating and opti-

mizing discrete variables are much more difficult to achieve and time consuming, but

continuous variables are easier to be estimated. Moreover, with penalization tech-

niques it is possible to restrict the estimations close to 0 and 1 and get back to the

binary matrices using reasonable cutoffs.

For this purpose, we define continuous Q-matrix as follows: A J × K matrix

(qjk)J×K has proportional elements qjk ∈ (0, 1) which tells us the probability of qjk

that the jth item requires the kth attribute. Similarly, D-Matrix is a J × 2K matrix

(djl)J×2K with proportional elements djl ∈ (0, 1) which indicate the probability of djl

to get positive response on the jth item when a subject has the lth combination of

attributes.

Here comes out two possible methods to build criterions and estimate elements of

Q-matrix. The first method is inspired and followed by Liu et al. [2011b] to construct

a total error through a ”regression” liked function. The second approach is based on

item response function and maximum likelihood estimation method, to find out the

best Q that maximize the likelihood function from the latent model.

3.2 Estimation approaches

3.2.1 Model 1: matrix transformation

The D-matrix is not enough to build up an equation and estimate the Q-matrix from

item response data. The proportions of positive responses on each item is supposed

to be used for estimation. However, a subject who gets one item right is possible to

get another one right too, thus making each item accuracy proportion not exclusive;

that is, intersections exist among proportions of correct responses for each item. The
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response data is hard to be categorized by the overlapping categories. The problem

could be solved by one more step further: building the relationship between attribute

patterns and the item response patterns. In this case, each response pattern will

contain a unique group of subjects. People who fall into one response pattern are not

able to fall into another. As a result, the probabilities of all item response patterns

we get from the response data are mutually exclusive.

Because item responses are binary too, J items will lead to 2J possible item re-

sponse patterns. Now a similar T-matrix T (Q) to Liu et al. [2011b] can be constructed

below.

• T-matrix The 2J × 2K T-matrix (tml)2J×2K has binary elements (tml) ∈ {0, 1}

which indicate that whether an attribute pattern ~α could get a response pattern

~R.

tml =


1 get the mth item response pattern with the lth attribute pattern

0 not get the mth item response pattern with the lth attribute pattern

The T-matrix is the central quantity that connects the Q-matrix with the re-

sponse and attribute distributions. The 2K columns each corresponds to one possible

attribute vector ~α and the 2J rows each corresponds to one possible item response

vector ~R. Instead of labeling the rows and columns of T (Q) by ordinal numbers,

the method follows Liu et al. [2011b,a]’s notation and label them by the vectors of

attribute pattern and response pattern. For instance, the ~αl-th column of T (Q) is

the column that corresponds to attribute ~αl, and the Rm-th row of T (Q) is the row

that corresponds to item response ~Rm.

Similarly the proportional continuous T-matrix can be defined as a 2J×2K matrix

(tml)2J×2K with proportional elements tml ∈ (0, 1) which indicate the probability of
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tml if an attribute pattern ~αl could get an ideal response pattern ~Rm.

Now it is time to build relationships between established matrices and the real

item response data of the subjects.

• y-vector. Let ~y be a 2J column vector the length of which equals to the number

of rows of T-matrix T (Q). Each element corresponds to one row vector item

response pattern ~Rm of T (Q) and indicates the proportion of the sample that

has the response pattern ~Rm.

Let the total number of subjects be N , we will have the definition of y-vector (ym)1×2J

in the following mathematical way.

ym = N ~Rm
/N (3.2)

Where N ~Rm
=

∑N
i=1 1(~Rim = 1).

• p̂-vector. We let p̂ be a 2K column vector the length of which equals to the

number of columns of T-matrix T (Q). Each element corresponds to one column

vector attribute pattern ~αl of T (Q) and indicates the proportion of the sample

that has the attribute combination pattern ~αl.

Similarly the mathematical definition of p̂-vector (p̂l)1×2k is

p̂l = N~αl/N (3.3)

Where N~αl =
∑N
i=1 1(~αil = 1).

Note that in fact it is not possible to get the true value of vector of p̂-vector because

it is a latent class size. But the value of y-vector of response pattern proportions can

be obtained from the real item response data.
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After all the definitions are issued, the estimation model for Q-matrix can be

addressed. A good way to restrict the matrix elements qjk between 0 and 1 is to use

a transformation function: a logit function is a good option.

This approach is based on relationships between T (Q) and response data. If

function (3.1) is strictly respected, then

T (Q)p̂ = ~y (3.4)

The idea is to build a non-linear transformation function T to get T (Q) from Q, then

use the relationship between T (Q) and ~y in (3.1) to create a criteria, minimize it and

optimize the elements of Q. Pseudocode for the algorithm is givien below:

Obj = function(Γ){

Γ = (γjk)J×K

qjk =
eγjk

1 + eγjk

Q = (qjk)J×K

T = T (Q)

p̂ = (T′T)−1T′~y

penalty = λ(
∑

qajk(1− qjk)a)

SSE = (Tp̂− ~y)′(Tp̂− ~y) + penalty

}

Q = arg min{Obj(Q)}

The method shrinks estimations by imposing a penalty on qjk and minimize a penal-
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ized residual sum of squares,

Q̂ = arg min
q
{min

p
||T(Q)p̂− ~y||2 + penaltyq} (3.5)

The penalty function penalty = λ(
∑
qaij(1− qij)a) constrains qij between 0 and 1.

Here λ ≥ 0 is a complexity parameter that controls the amount of shrinkage: the larg-

er the value of λ the greater the amount of shrinkage. The function of
∑
qaij(1− qij)a

will force the estimations of qij as close as to 0 or 1 as possible to the extent when

parameter a goes down. The contours of the penalty function are shown in Figure

3.1, for the care of different parameters.
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Figure 3.1: The penalty function of T-matrix approach

Regarding the estimation theory, we have multiple ways to optimize the penalized

SSE and get estimated elements of Q. For example, Non-Linear Minimization car-

ries out a minimization of the function f using a Newton-Raphson type algorithm.
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General-purpose optimization based on Nelder-Mead, quasi-Newton and conjugate-

gradient algorithms is also a good alternative [Dennis and Schnabel, 1987]. It includes

an option for box-constrained optimization and simulated annealing (R documents).

These methods are positive to optimize the function and get final results of Q.

However, in real situation, the nonlinear transformation of T from Q to T (Q) is

not easy to build, and the algorithm is hard to program, which is a key barrier in

this method. So far the T-matrix transformation method is only theoretically stated

here, the application is remained to be further discussed in the future.

3.2.2 Model 2: probabilistic modeling

The other approach that can possibly get the estimation of Q is to create the density

function of item response and based on maximal likelihood estimation method. The

idea is shown below:

• Let (~αl)1×K be the binary attribute vector for an individual i. We have N

subjects and 2K attribute patterns in total, i = 1, 2, . . . , N , l = 1, 2, . . . , 2K .

• The Q-matrix Q = (qjk) has elements qjk ∈ (0, 1) that indicates the probability

for item j requiring attribute k. We have J items and K attributes in total,

j = 1, 2, . . . , J k = 1, 2, . . . , K.

• ym is the proportion of the sample that has item response pattern ~Rm (the same

as y-vector defined above), where m = 1, 2, . . . , 2J .

• The response of the ith subject on the jth item is defined as

Rij =


1 if subject i gets the jth item right

0 if subject i gets the jth item wrong
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Thus Pr{Rij = 1|~αl} indicates the probability of the correct response on the

jth item by the ith subject under the condition of the attribute pattern vector ~αl.

We can also take it as the probability that the attribute pattern ~αl contains all

attributes required by the jth item (~αl corresponds to one possible attribute pattern

vector within the total 2K attribute patterns where K attributes exist). Equivalently

the probability equals the one that the jth item does not require any of the skills

individual i does not have (~αl does not contain). Let ~αl = (αik)1×K , αik =1 or 0

indicates whether the ith person has the kth attribute or not, we will have

Pr{Rij = 1|~αl} =
K∏
k=1

(1− qjk)(1−αik) (3.6)

In this model q can be considered as the probability that the item requires the

skill, or the proportion of persons who need the skill to get the item right. The

combined item response function would be

Pr{Rij = rij,∀i|~αl, qjk} = [1−
K∏
k=1

(1− qjk)(1−αik)](1−rij)[
K∏
k=1

(1− qjk)(1−αik)]rij (3.7)

Where rij = 1 or 0. So the probability for individual i to get a response pattern Ri is

Pr{Ri = ri, ∀i|~αl, qjk} =
J∏
j=1

[1−
K∏
k=1

(1− qjk)(1−αik)](1−rij)[
K∏
k=1

(1− qjk)(1−αik)]rij (3.8)

In the estimation process, in order to make sure that the Q elements are restricted

within 0 and 1, we can assign a logit function to qjk. Let qjk = e
γjk

1+e
γjk or logit(qjk) =

log(
qjk

1−qjk
) = log(qjk)− log(1− qjk) = γjk, the item response function could become

Pr{Rij = rij,∀i, j|~αl, γjk} = [1−
K∏
k=1

(1− eγjk

1 + eγjk
)(1−αik)](1−rij)[

K∏
k=1

(1− eγjk

1 + eγjk
)(1−αik)]rij

(3.9)
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The next step is to use an EM-algorithm to find the maximum likelihood estimates

of qjk. The likelihood function of the item response function (3.8) is

L =
N∏
i=1

(
∑
~αl

Pr{Rij = rij,∀i, j|~αl, qjk}Pr{~αl}) (3.10)

Let ~θ = {qjk}J×K , ~π = Pr{~αl},l = 1, 2, . . . , 2K , then ~ψ = (~θ, ~π) will be the parameter

space (total number of J ×K + 2K parameters). The parameters are all probability

based which are continuous variables. Let A = {~αl}2K be the latent class which

are discrete classification patterns, drawn from a fixed number of 2K values. The

parameter ~π = Pr{~αl} are actually latent class sizes.

Again a penalty function is implemented into the likelihood function to push

estimated matrix elements to either 1 or 0 so that the results may be more accurate

and robust. Based on visual inspection of several function plots, a beta distribution is

selected here due to our purpose and its feasibility to push the elements of Q-matrix

to {0,1}. The penalty function is constructed as below:

Penalty = −λ
J∑
j=1

K∑
k=1

[log qjk + log(1− qjk)] (3.11)

which is equivalent to

Penalty’ =
J∑
j=1

K∑
k=1

[qjk ∗ (1− qjk)]−λ (3.12)

If we use a logit function to transfer qjk to γjk then the penalty function will be

Penalty = −λ
J∑
j=1

K∑
k=1

[γjk − 2 log(1 + eγjk)] (3.13)
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Here λ ≥ 0 is a complexity parameter of the penalty function that controls the amount

of shrinkage. Normally in LASSO regression the larger the value of λ the greater the

amount of shrinkage.

As a result the Penalized Log-Likelihood function will be

log(Lpenalized) = logL+ Penalty

=
N∑
i=1

log(
∑
~αl

Pr{Rij = rij,∀i, j|~αl, qjk}Pr{~αl})

−λ
J∑
j=1

K∑
k=1

[log qjk + log(1− qjk)]

=
N∑
i=1

log(
∑
A

Pr{R = r|A, ~θ}Pr{A}) + Penalty(~θ)

= ∆(A, ~θ)

Let ∆ = ∆(A, ~θ) = log(Lpenalized) which is a function of the parameters ~θ (Q-

matrix elements) and latent class A, the maximum likelihood estimators (MLE) of the

parameters are obtained by maximizing ∆, or minimizing−2∆, or−2 log(Lpenalized),

which is more commonly used. The Expectation-Maximization (EM) algorithm seeks

to find the MLE of the marginal likelihood with latent class by iteratively applying

the following two steps:

Expectation step (E step): Calculate the expected value of the log likelihood

function, with respect to the conditional distribution of A given R = r under the

current estimate of the parameters ~θ(t)

Q(~θ|~θ(t)) = EA|R,~θ(t)
(∆) (3.14)
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Maximization step (M step): Find the parameter that maximizes this quantity:

~θ(t+1) = arg max
~θ
Q(~θ|~θ(t)) (3.15)

The model strictly follows the assumptions of EM algorithm and the penalty func-

tion does not include any latent variable. The EM algorithm is set with a maximum

100, 000 iterations in this research. The latent variables A are attribute patterns

which are 2K discrete classifications, and there is one latent variable per observed

data point. The parameter ~θ is continuous probabilities, and it is associated with

data points whose corresponding latent variable has a particular value. The iterative

algorithm will calculate us estimates for the parameter of Q-matrix elements and the

latent class sizes of attribute pattern probabilities by the following algorithm:

1. First, initialize the parameters ~θ to some random values.

2. Compute the best value for A given these parameter values.

3. Then, use the just-computed values of A to compute a better estimate for the

parameters ~θ. Parameters associated with a particular value of A will use only

those data points whose associated latent variable has that value.

4. Iterate steps 2 and 3 until convergence.

Typically the convergence criteria for EM is that the values of ln f(y|θ(i)) converge.

For the moment, the stopping criteria is set when |θ(i+1)− θ(i)| < ε, where ε is any ar-

bitrarily small positive number. Evaluations of stochastic models are normally based

on comparing the equivalent AIC (Akaike information criterion) or BIC (Bayesian

information criterion) among multiple models to measure the relative goodness of fit.

AIC = 2× number of parameters− 2×∆max (3.16)
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BIC = −2×∆max + number of parameters× ln(sample size) (3.17)

Where ∆max is the the logarithm of the maximized value of the penalized likelihood

function log(Lpenalized). Besides the value of log-likelihood function, AIC and BIC

have also considered the number of parameters (BIC takes sample size into account

as well).

AIC can be said to describe the tradeoff between bias and variance in model

construction, or loosely speaking between accuracy and complexity of the model.

Similarly the BIC resolves overfitting by introducing a penalty term for the number

of parameters in the model. The penalty term is larger in BIC than in AIC due to

the additional factor of sample size. However, AIC and BIC values provide a means

for model selection without a test of a model in the sense of testing a null hypothesis;

i.e. they can tell nothing about how well a model fits the data in an absolute sense.

In the dissertation, AIC or BIC can be used to compare models when different

number of attributes K is applied to the model so that we are able to select the best

K with the smallest value of AIC or BIC.

3.3 Determination of λ and attribute dimension

The estimation process comes across two problems that need to be solved. The first

one is the determination of the penalty function, which is equivalent to the selection of

the parameter λ (and possibly a in T-matrix Approach). The second problem is how

to determine the number of attributes K. The estimation of parameters (Q-matrix

elements) are drawn from the values which can maximize the penalized maximum

likelihood function −2(logL+ Penalty) = −2
∑

logL+ λ
∑

(logQ+ log (1−Q)), in

which the penalty function we select is a beta distribution and it is constructed as
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below:

Penalty = −λ
J∑
j=1

K∑
k=1

[log qjk + log(1− qjk)] (3.18)

The idea of the penalty function in the both models is to shrink the value of

q ∈ (0, 1) and push q’s to either 1 or 0 as close as possible. However, when a penalty

function is added, the estimations of our parameter q’s are biased estimator, and as

the λ → ∞ then q → 0, due to the nature of the constraint. If we treat λ as an

estimated parameter together with q’s in the model, there is a great possibility that

λ has to be equal to zero in order to get the optimized results. Thus this is not a

good approach to determine the value of λ. In fact, in Lasso regression, a shrinkage

condition is added to do a kind of continuous subset selection by causing some of the

coefficients to be exactly zero. Lasso translates each coefficient by a constant factor

λ, truncating at zero. This is called ”soft thresholding”, and is used in the context of

wavelet-based smoothing. The idea is very similar to our approaches that we would

like to keep some of the q’s 0 and some approaching 1. Figure 3.2 is an example of

the profiles of Lasso coefficients, as the tuning parameter t is varied, where
∑
β2 ≤ t.

In Ridge and Lasso regression, the parameters of the penalty function are adap-

tively chosen to minimize an estimate of expected prediction error. The idea of

prediction can be used in our case to determine the parameter in the penalty func-

tion. Choosing the penalty function according to prediction error is out-of-sample

evaluation. It normally split data into training and test sets and focus on how well

the model predicts things. Prediction error is all that matters, and the parameter λ

in the penalty function is determined from a set of values by the one with the least

prediction error. If model is overfit, will not perform well on out-of-sample data. As

a result, it reduced the chance that λ = 0 in this situation and avoid overfitting of
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Figure 3.2: The Lasso regression

the model.

In order to evaluate the prediction error, we have to randomly partition data into

training and test set first. In training set, data is used to train/build the model and

estimate parameters. The test set is a set of examples not used for model induction

but used for performance evaluation. The evaluation criteria is the prediction (gen-

eralization) error: the model error on the test data. Cross-validation is an estimate

of the expected generalization error for each λ and λ can sensibly be chosen as the

minimizer of this estimate.

The cross-validation method is the most popular and effective type of repeated

holdout methods. Repeated holdout is repeating the process with different subsam-

ples. In each iteration, a certain proportion is randomly selected for training (possibly

with stratification) and the error rates on the different iterations are averaged to yield
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an overall error rate. K-fold cross-validation avoids overlapping test sets by spliting

the data in k subsets of equal size, and using each subset in turn for testing and the

remainder for training. Often the subsets are stratified before the cross-validation is

performed because stratification reduces the estimate’s variance. Extensive experi-

ments have shown that stratified ten-fold cross-validation is the best choice to get an

accurate estimate. It is even better if ten-fold cross-validation is repeated ten times

and results are averaged which could reduce the sampling variance. This is called

repeated stratified cross-validation. Error estimate is the mean across all repetitions.

There are two kinds of predictions that can be conducted here which depends on

what we are interested in predicting for. We could look at how well the the model

could be used to predict future students’ performance on the test, and split the sample

by N students. However, in cognitive diagnostic models we are more interested in

how effective the model is to predict the students’ performance on a specific item.

Therefore it is preferred here to split the total responses (N × J , total N subjects

and J items) into ten folds instead of the students.

In the T-matrix approach, each error estimate in a repetition is the penalized SSE

(function 3.5) calculated by estimated Q and the item responses in the test set. The

final error estimate is the mean across all repetitions (all penalized SSEs). The best

choice of λ and a relies on which could come out with the smallest average SSE.

The probabilistic model can apply a similar idea as the one in the T-matrix ap-

proach to construct an estimate error. One way is to implement the deviance distances

as the error estimate for the test set data. Because the total responses are split into

training and test sets, we can regard the training set as observed data and the test

set as missing data. The judgement is based on the prediction performance on the

test set by using the training set data, and the prediction performance is assessed by
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the deviance distance. The deviance distance is defined as:

Dλ = −2
∑
i,j

log Pr (Rij,missing|Rij,observed) (3.19)

Therefore, Dλ will be a function of the Q and include the information about the

conditional probability of the missing responses in the test set given the observed

responses in the training set. Estimated Q is obtained through model fit using the

observed responses in training set. Due to the repetitions in the cross-validation

method, final error estimate is the mean value across all single error estimates in rep-

etitions. For example, if we use ten-fold cross-validation, the final deviance distance

(error estimate) will be the mean across all the ten deviance distances from the ten

times of model fittings and performance evaluations. The parameter λ can be cho-

sen when the smallest value of final deviance distance is achieved. Mathematically,

λ = arg min 1
10

∑
Dλ.

Figure 3.3 is an example of the cross-validation curve in LASSO regression, and

upper and lower standard deviation curves, as a function of the λ values used. De-

pendent and independent variables were generated through a standard normal dis-

tribution, fitted by a gaussian model. X-axis represents logarithm values of λ and

Y-axis is the mean-square prediction error of each LASSO regression model fitted

with corresponding λ. According to Figure 3.3 when log(λ) = −1.7, or λ = 0.183,

the regression would have the least mean-square error based on the cross-validation.

As a result, λ = 0.183 would be the best penalty selection for the LASSO regression.

Although we intended to do the traditional cross-validation analysis to find out the

optimal λ value of our model, the algorithm to estimate Q elements took much longer

time than we expected, and it was impossible to run and select from a very large grid
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Figure 3.3: The penalty function with different lambda values in Gaussian regression

of λ values in the penalty function. For an exploratory purpose we first select a set of

7 possible λ values, for example, λ ∈ (0, 0.05, 1, 2, 6, 9, 11) according to their penalized

effects. When λ = 0 there is no penalized effect. Figure 3.4 presents the penalized

function plots of different λ values that can shrinkage estimated elements to 0 and

1, and we can have an idea on the penalized effects based on visual inspection. For

instance, λ = 0.05 the model would have a larger effect to penalize values to 0 and 1

than the rest of λ values, but it might not be the best fit to the data. With these λ

values, we run the models and summarized the deviance distances on the predictive

responses of each model. The ten-fold cross-validation average deviance is defined

as Dev = 1
10

∑
Dλ where Dλ = −2

∑
i,j log Pr (Rij,missing|Rij,observed). λ is choose

when the minimum deviance is achieved.

Meanwhile the attribute dimension has not been decided yet. If no information is
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Figure 3.4: The penalty function with different lambda values in the model

given about the number of the domain of skills, this Q-matrix estimation procedure is

like finding out the factors and factor loadings in exploratory factor analysis (EFA).

EFA is used to uncover the underlying structure of a relatively large set of variables,

and describe variability among observed, correlated variables in terms of a potentially

lower number of unobserved, uncorrelated variables called factors. In this case we are

trying to find out the factor loadings that can connect items with unobserved latent

factor attributes.

Determination on attribute dimension is easier than the selection of parameters

in penalty function because we only care about the model goodness of fit rather
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than prediction errors. The number of attributes is chosen when the minimum AIC

or BIC is obtained, which means we select the model with best fit to the current

data. Another possible way is to treat the number of attributes K as an estimated

parameter together with q’s in the model. However, as K changes, the number of q’s

will change too. It will be more complicated if we do not determine K in advance.

3.4 Finalizing Q-matrix and identification of at-

tributes

The next step is finalizing the Q-matrix estimated back to the binary Q-matrix be-

cause the cognitive diagnostic models are relying on the discrete Q-matrix rather

than the continuous probabilities. This is the main reason that the penalty function

is applied into the model to push the element values to 0 or 1. When the estimated

Q-matrix is calculated, we are going to use cutoffs of .9/.1 or .8/.2 or .7/.3 etc. to

recode the estimated elements back to 1 and 0. The selection of cutoffs depends on

the Q-matrix element estimation results. For example, if we use .8/.2 cutoff, those

elements which are greater than .8 will be recorded into 1 and those smaller than

.2 will be recorded into 0 in the Q-matrix. The rest values not recorded are those

item-attribute relationships we are not sure about. For these uncertain elements, one

possible solution is to apply a Bayesian extension of the DINA model developed by

DeCarlo [2012] to recognize possible values in the estimated Q-matrix. The present

study will report results based on .3/.7, .4/.6, and .5/.5 the three cutoff points, where

.5/.5 is able to transfer all continuous estimates to binary values. In addition, .5/.5

cutoff point has been empirically proved to be the best choice when all ratio needs

to be converted to binary data [Durongwatana, 2011; Fall, 2009]. As a result the
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estimated Q after .5/.5 cutoff will be selected as the final Q-matrix from the model.

The last problem is how to identify the attributes corresponding to the columns

of the Q-matrix when the number of attributes have been determined. However the

identification of attribute columns of Q-matrix is very difficult to solve. One possible

solution is to look for experts to help determine the identifications of attributes (each

column of the estimated Q-matrix) subjectively. Another way is to compare the

estimated Q-matrix to the true Q in simulation study or expert-designed Q in real

data study. The approach is more like finding the meaning of factor loading in

confirmatory factor analysis (CFA). CFA seeks to determine if the number of factors

and the loadings of measured variables on them conform to what is expected on the

basis of pre-established theory. Indicator variables are selected on the basis of prior

theory and factor analysis is used to see if they load as predicted on the expected

number of factors. The researcher’s a priori assumption is that each factor (the

number and labels of which may be specified a priori) is associated with a specified

subset of indicator variables.

Attribute identification can also draw from the ideas of rotation in factor analysis

and label switching in latent class analysis. Rotation serves to make the output from

factor analysis more understandable, by seeking a pattern of loadings where items

load most strongly on one factor, and much more weakly on the other factors. The

label switching methods deal with the unidentifiability of the permutation of clusters

or more generally latent variables, which makes interpretation of results computed

with MCMC sampling difficult.

However, sometimes it is still impossible to estimate the Q-matrix precisely and

identify the attributes. For example, the model is hard to distinguish the following two

Q-matrices because the second attribute always comes with the first one in the second

Q-matrix, thus making the first attribute meaningless when an item requires the
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second one. Both of the two Q-matrices would possibly produce the same probabilities

of success under the same attribute pattern through our model. This problem is called

”Rotation” problem in cognitive diagnostic models [Johnson, 2009]. A possible way

to solve the problem is to look at the ideal response patterns drawn from each Q-

matrix. If two Q-matrices come to the same ideal response pattern we can regard the

two matrices are equivalent.



1 0

0 1

1 0

0 1


and



1 0

1 1

1 0

1 1



Despite of the difficulties, the results from our model can provide a general idea on

how these attributes are distributed among items, and it is still worth trying to iden-

tify the attributes as possible as we can. For pure exploratory analysis, the columns

of estimated Q-matrix should be carefully examined by researchers together with do-

main experts to interpret the latent meanings, which is similar to mapping loadings

in factor analysis. In this research, the model applies the discrepancy distance to

match the attributes to the Q-matrix columns.

Discrepancy = −(
∑
j,k

qjk log q̂jk +
∑
j,k

(1− qjk) log (1− q̂jk)) (3.20)

Where qjk is from true Q-matrix or expert-designed Q-matrix, and q̂jk is from the

estimated Q-matrix. By switching the matrix columns, we are expecting to get a

match between Q and Q̂ with the minimum discrepancy distance, and this column

match will be considered as the results of identification.

The next steps will be model evaluation and application. The primary research
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and secondary questions are recorded here:

Are the methods designed able to estimate the Q-matrix? If they are, how accurate

they perform on estimation of Q-matrix? How well they perform on real response data

and what are the differences between estimated Q-matrix and the designed Q-matrix?

Are those Q-matrices are identical? How about their latent class size distributions?

The questions will be answered through both simulation studies and empirical

study of real data. The next section contains designs of both simulation studies and

empirical study, together with their evaluation criteria. Evaluation methods on com-

parison of Q-matrices include discrepancy distance judgment; counts and proportions

of correct identified elements in simulation studies, or consistent elements in empirical

study. Item response patterns will be constructed to evaluate if those Q-matrices are

identical.

3.5 Study designs

This research is going to perform two simulation studies in which the response data

is generated through the DINA model. The first one is simulated from a made-up Q-

matrix with a optimized attribute combination property. The second one uses a real

Q-matrix designed in the fraction subtraction test to simulate a new response data

set. The idea of simulation study is to use the simulated response data to estimate the

Q-matrix through our methods, and then compare the estimated Q with the true Q

to evaluate the estimation performance. Thus the simulation studies are able to check

the model feasibility and evaluate the model performance. Note that in simulation

studies, the attribute dimensions are pre-determined because we have already known

the true Q-matrices. Besides, it also helps us to reduce computation complexity, and

makes results easier to compare if Q-matrices have the same number of columns.
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We are also going to conduct an empirical study based on real response data. The

purpose of empirical study is to find out the differences between estimated Q-matrix

from our model and the original Q-matrix designed by domain experts. Again, the

total numbers of attributes are assumed to be the same as the number of columns in

designed Q-matrix, due to computation and comparison feasibility. In other words,

we do not consider the procedure to determine the total number of attributes, which

is similar to exploratory factor analysis, but set the number fixed as in confirmatory

factor analysis. However, we have to identify the attributes to the columns of our

estimated matrices.

3.5.1 Simulation study 1: optimized Q-matrix

The first simulation adopts the optimized Q-matrix designed from de la Torre’s re-

search in 2009 on DINA model [de la Torre, 2009b]. This Q-matrix has ordered

and well organized attribute combinations in items. 30 items and 5 attributes are

included in the Q-matrix. The first ten items include only one attribute; the next

ten items require two and the last ten items need three skills. None of the items

contains exactly the same attributes as any other. This Q-matrix has been used for

response data simulation before [de la Torre, 2009b]. The simulated data employs

2, 000 examinees. Because our model does not have slipping or guessing parameters,

the simulation program is set with small slipping and guessing parameters equal to

0.1 in the DINA model.

P (Xij = 1|ξij) = 0.9ξij0.11−ξij (3.21)
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where

ξij =
∏

k:qjk=1

αik =
K∏
k=1

α
qjk
ik (3.22)

We use A1 to A5 to denote the five attributes. The qjk’s in the Q-matrix for this

data are given in Table 3.1.

3.5.2 Simulation study 2: fraction subtraction Q-matrix

The second simulation applies a real expert-designed Q-matrix without such regular

arrangement. The purpose is to see if the method still works well for estimating a

complex and unorganized Q-matrix. We adopt The Q-matrix of fraction substraction

data in de la Torre’s research in 2009 on DINA model [de la Torre, 2009b], which is

a simplified version of the whole Q-matrix developed by Tatsuoka [1990], and treat

it as the true Q-matrix for the data simulation. Assigning detailed contents to any

attribute or item is meaningless in simulation study. We use A1 to A5 to indicate the

five attributes associated with the the 15 items (Table 3.2). The Q-matrix contains 15

items and 5 attributes. The same designed DINA model simulates 2, 000 examinees,

with the slip and guessing parameters equal to 0.1. The Q-matrix for this data is

given in Table 3.2.

An example of simulation program based on DINA model is shown in the Appendix

A.1. First of all the program generates 2000 examinees’ attribute patterns using

binomial distribution with a 0.5 probability that an examinee either has a skill or not.

Then the program calculates the deterministic parameter η by attribute patterns and

the true Q-matrix, and applies it into the DINA model with pre-determined guessing

and slipping parameters (0.1) to get the probabilities of correct item responses for

each examine. The last step is to generate responses by binomial distribution with

these probabilities from DINA model. Because the people are randomly assigned
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Table 3.1: Optimized Q-matrix

Item A1 A2 A3 A4 A5
1 1 0 0 0 0
2 0 1 0 0 0
3 0 0 1 0 0
4 0 0 0 1 0
5 0 0 0 0 1
6 1 0 0 0 0
7 0 1 0 0 0
8 0 0 1 0 0
9 0 0 0 1 0
10 0 0 0 0 1
11 1 1 0 0 0
12 1 0 1 0 0
13 1 0 0 1 0
14 1 0 0 0 1
15 0 1 1 0 0
16 0 1 0 1 0
17 0 1 0 0 1
18 0 0 1 1 0
19 0 0 1 0 1
20 0 0 0 1 1
21 1 1 1 0 0
22 1 1 0 1 0
23 1 1 0 0 1
24 1 0 1 1 0
25 1 0 1 0 1
26 1 0 0 1 1
27 0 1 1 1 0
28 0 1 1 0 1
29 0 1 0 1 1
30 0 0 1 1 1
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Table 3.2: Fraction subtraction Q-matrix

Item A1 A2 A3 A4 A5
1 1 0 0 0 0
2 1 1 1 1 0
3 1 0 0 0 0
4 1 1 1 1 1
5 0 0 1 0 0
6 1 1 1 1 0
7 1 1 1 1 0
8 1 1 0 0 0
9 1 0 1 0 0
10 1 0 1 1 1
11 1 0 1 0 0
12 1 0 1 1 0
13 1 1 1 1 0
14 1 1 1 1 1
15 1 1 1 1 0

50% chance of occupying an attribute, the theoretical latent class sizes should be the

same across all possible patterns. For example in our situation we have 5 attributes

which lead to 25 = 32 possible attribute patterns. Therefore the 32 latent class sizes

should be equally distributed with a proportion of 1/32 = 3.125% in each latent class.

Meanwhile, the marginal latent class size for each attribute should be 50% as people

are designed to have only a half chance to occupy each skill.

The simulated data was then used in the model for backward estimation of

the Q. After the Q-matrix is estimated, the columns have to be corresponded to

A1 to A5 in the true Q-matrix. According to the discrepancy distance function

−(
∑
j,k qjk log q̂jk +

∑
j,k (1− qjk) log (1− q̂jk)), where qjk is from true Q-matrix and

q̂jk is from the estimated Q-matrix, the matched Q̂ is the one with the minimum

discrepancy distance, and the matched columns will be considered as A1 to A5 in

estimated Q-matrix. The final model with the best λ value is selected according to
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the prediction criteria (deviance distances) or the highest counts of correct estimated

elements in simulation studies. The final estimation efficacy is evaluated by counting

the numbers of q’s correctly estimated, which is similar to sensitivity and specificity

(false positive or negative) in categorical data analysis.

3.5.3 Empirical study: fraction subtraction responses

It is also important to apply the methods to real data situation and see how it works

for real response data. We can compare the estimated Q-matrix with the expert-

designed Q-matrix to evaluate the estimation effects and find out if there is any

inappropriate designed Q-matrix element in the test. We are again very interested

in what the differences are between the estimated Q-matrix and expert-designed Q-

matrix, and we expect to see a small discrepancy. However, if the difference is huge,

it could be a problem of the estimation method that does not fit the data well, or

the Q-matrix was poorly designed by the experts and the items did not measure

correctly what they were supposed to measure for. The item response data used

in analysis is from fraction subtraction test. To simplify the computation, a less

complicated version of the fraction subtraction data is adopted which has been used

by de la Torre [2009b]. The data contains responses of 536 middle school students

to 15 fraction subtraction items measuring the five skills listed by experts. The five

attributes are: A1: subtract basic fractions; A2: reduce and simplify; A3: separate

whole from fraction; A4: borrow from whole; and A5: convert whole to fraction. The

data were originally described and used by Tatsuoka [1990] and more recently de la

Torre [2008, 2009b], and DeCarlo [2011]. The expert-designed Q-matrix is shown

in Table 3.3. The identification of attributes is done by the minimum discrepancy

distance, and the best model with λ value is selected by the minimum deviance
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Table 3.3: Designed fraction subtraction Q-matrix

No. Item A1 A2 A3 A4 A5 No. of total attributes needed
1 3

4
− 3

8
1 0 0 0 0 1

2 31
2
− 23

2
1 1 1 1 0 4

3 6
7
− 4

7
1 0 0 0 0 1

4 3− 21
5

1 1 1 1 1 5
5 37

8
− 2 0 0 1 0 0 1

6 4 4
12
− 2 7

12
1 1 1 1 0 4

7 41
3
− 24

3
1 1 1 1 0 4

8 11
8
− 1

8
1 1 0 0 0 2

9 34
5
− 32

5
1 0 1 0 0 2

10 2− 1
3

1 0 1 1 1 4
11 45

7
− 14

7
1 0 1 0 0 2

12 73
5
− 4

5
1 0 1 1 0 3

13 4 1
10
− 2 8

10
1 1 1 1 0 4

14 4− 14
3

1 1 1 1 1 5
15 41

3
− 15

3
1 1 1 1 0 4

distance of response prediction, or the direct results from simulations studies. The

comparison between our final estimated Q and expert-designed Q is evaluated by

counting the numbers of consistent q elements.
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Chapter 4

Results

In general, the Q-matrix elements are virtually regarded as parameters and estimated

with latent variables using EM algorithm in the probabilistic model. The total number

of parameters is the total number of Q-matrix elements. For example, in simulation

study 1 the number of parameters estimated is 30 × 5 = 150 for a Q-matrix with

30 rows and 5 columns; the total number of parameters in simulation study 2 and

empirical study is 15 × 5 = 75 because the Q-matrix has 15 rows and 5 columns.

Both data simulation and model estimation processes are programmed in R language

and EM algorithm is set with a maximum 100, 000 iterations. The starting points are

randomly generated by the program.

All studies report the information of selected λ values in penalty function, the

penalized likelihood values from each model fit, the minimum discrepancy distance,

counts and proportions of identical elements after different cutoff points. Although

we are suppose to determine our best final model based on the response prediction

criteria of minimum deviance distances, the cross-validation analysis is not taken into

account at this time. One reason is that in simulation studies the information given

by deviance distances is redundant because we can choose the best model according
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to the highest correct identification of true Q-matrices. However, in empirical study

it is not the case because the designed Q-matrix might be wrong and should not be

the criteria to select the best model. One option to select the best model in empirical

study could be based on the results from simulation studies that we select the same

λ values which provide the highest estimation accuracy in simulation studies. For

example, if simulation study 1 and 2 indicate that the best model has a penalty

function with λ = 10, then we should use λ = 10 in empirical study regardless

of how many consistent elements between the estimated Q-matrix and designed Q-

matrix in this model. Besides we can also look at the estimated Q-matrix which

is most close to the expert-designed Q-matrix, if we trust the original Q-matrix is

well designed. Moreover, so far the researcher has not found a practical way to

predict the corresponding missing responses from the estimated Q-matrices in the

cross-validation analysis of deviance distances, thus the selection method of λ based

on deviance distances is not discussed temporarily at this time but possibly in the

future studies.

The purpose of discrepancy distance is to identify estimated Q-matrix columns

to the corresponding attributes; cutoff points are used to transfer the continuous

elements to binary values (0 or 1) in estimated Q-matrix; the correct counts and

proportions show the performance to evaluate our estimated Q-matrix compared with

the true Q’s or expert-designed Q.

4.1 Simulation study 1

Table 4.1 demonstrates the results from simulation study 1 on the optimized Q-matrix

Q30×5. A set of ten different λ values are deliberately pre-determined: 0, 0.001, 0.05,

1, 2, 3, 6, 9, 11, 13 (λ ≤ 0). When λ = 0 the penalty function is zero and no penalized
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effect exists in fact; as the λ values increase from 0.001 to 13, the penalized effects

vary differently. When λ is small there is a large penalty and when λ gets bigger the

penalized effects are decreasing (Figure 3.4). In other words, for smaller λ values such

as 0.001 or 0.05, estimated elements are more likely to be pushed to either 0 or 1; for

larger λ values such as 11 or 13 it is more possibly to get estimated values around 0.5.

Initially we believe that large penalty may work well because the correct Q-matrix

elements should be either 1 or 0, therefore we select some comparatively small λ

values such as 0.001, 0.05, 1, 2, and 3. But we also choose some larger numbers (6,

9, 11, and 13) because they might be better fit the data. In addition, we try to have

these λ values uniformly distributed and that is how the ten values are selected.

According to Table 4.1, the probabilistic models with different λ values are able

to identify 64% to 91.3% correct Q-matrix elements in the first simulation study,

after we transfer all results into binary values using 0.5 cutoff point. The model with

λ = 11 is selected as our final model because it has the highest probability of correctly

identified Q-matrix elements among all models, regardless of which cutoff pint we

choose (0.3/0.7, 0.4/0.6, or 0.5). But 0.5 cutoff is able to transfer all continuous Q-

matrix elements to binary values. When we use 0.5, the estimated binary Q-matrix

has a very high correct identification (91.3%) of the true Q elements. The continuous

estimated Q-matrix and the final one after 0.5 cutoff are shown in Table 4.2 (red

numbers indicate the incorrectly identified elements).

To answer the primary research questions, according to the final estimated Q-

matrix in Table 4.2, 13 out of 150 elements are not correctly identified (8.7%). It

is very interesting to see that for items which require only one skill (Item 1 to 10),

the model is able to identify all the required attributes perfectly. However as the

true Q-matrix goes more complex when the items need more than one skills, the

model starts to make incorrect identification of these Q-matrix elements. For the
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Table 4.1: Simulation study 1 results

Identified elements of the true Q-matrix
0.3/0.7 Cutoff 0.4/0.6 Cutoff 0.5/0.5 Cutoff

No. λ -2LL Discrepancy Counts Prob Counts Prob Counts Prob
1 0 61017.75 99.80 98/150 65.3% 117/150 78% 128/150 85.3%
2 0.001 66103.89 121.22 60/150 40% 76/150 50.7% 105/150 70%
3 0.05 62268.25 104.30 89/150 59.3% 105/150 70% 121/150 80.7%
4 1 59772.38 85.71 98 / 150 65.3% 109/150 72.7% 116/150 77.3%
5 2 60703.65 72.09 105/150 70% 125/150 83.3% 134/150 89.3%
6 3 60093.59 215.11 78/150 52% 89/150 59.3% 101/150 67.3%
7 6 65367.08 90.78 46 / 150 30.7% 76/150 50.7% 96/150 64%
8 9 60966.08 67.50 72/150 48% 103/150 68.7% 124/150 82.7%
9 11 54467.29 46.69 108/150 72% 126/150 84% 137/150 91.3%
10 13 49649.16 162.63 106/150 70.7% 119/150 79.3% 124/150 82.7%

items which require two attributes (Item 11 to 20), 3 out of 50 elements (6%) are

incorrectly identified, occurring in item 15 and 19. For the items which require three

attributes (Item 21 to 30), 10 out of 50 elements (20%) are not identified correctly.

Item 21, 22, 24, 25, 27, and 28 have misspecified elements. In sum, all 13 incorrectly

identified elements happen in the last 15 items which require at least two skills. For

example, item 15 does not require the 4th attribute according to the true Q-matrix

but happens to require the skill in our estimated Q. The same situation occurs again

in item 28. The other incorrectly identifications appear to reverse a required skill

to non-required and another unnecessary attribute into required group within one

item. For instance, item 21, 22, 25, and 27 need total three attributes both in

true Q-matrix and estimated Q-matrix, but the specific attributes are different. For

example, item 21 is designed to require A1, A2, and A3 in true Q-matrix, but it

is estimated to need A1, A2, and A4 instead from the model. Overall our model

performs well on the estimation of Q-matrix from the simulated response data in the

first study. For the rest 9.7% discrepancies in estimated Q-matrix that are different

from the true Q-matrix, we regard them as the elements that the model is not able

to recognize correctly. They are indicators of mistakes performed by the model and
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Table 4.2: Estimated Q-matrix in simulation study 1

Continuous Q-matrix Binary Q after 0.5 cutoff True Q-matrix
Item A1 A2 A3 A4 A5 A1 A2 A3 A4 A5 A1 A2 A3 A4 A5
1 0.827 0.092 0.232 0.217 0.112 1 0 0 0 0 1 0 0 0 0
2 0.186 0.831 0.054 0.242 0.183 0 1 0 0 0 0 1 0 0 0
3 0.073 0.171 0.678 0.417 0.019 0 0 1 0 0 0 0 1 0 0
4 0.032 0.288 0.031 0.891 0.291 0 0 0 1 0 0 0 0 1 0
5 0.194 0.277 0.238 0.367 0.952 0 0 0 0 1 0 0 0 0 1
6 0.792 0.029 0.021 0.214 0.378 1 0 0 0 0 1 0 0 0 0
7 0.145 0.844 0.098 0.063 0.174 0 1 0 0 0 0 1 0 0 0
8 0.053 0.031 0.763 0.440 0.145 0 0 1 0 0 0 0 1 0 0
9 0.211 0.200 0.143 0.921 0.194 0 0 0 1 0 0 0 0 1 0
10 0.057 0.191 0.196 0.348 1.000 0 0 0 0 1 0 0 0 0 1
11 0.785 0.842 0.160 0.172 0.118 1 1 0 0 0 1 1 0 0 0
12 0.924 0.118 0.602 0.302 0.260 1 0 1 0 0 1 0 1 0 0
13 0.907 0.177 0.006 0.763 0.390 1 0 0 1 0 1 0 0 1 0
14 0.904 0.387 0.000 0.034 0.992 1 0 0 0 1 1 0 0 0 1
15 0.152 0.785 0.779 0.566 0.237 0 1 1 1 0 0 1 1 0 0
16 0.251 0.808 0.027 0.908 0.263 0 1 0 1 0 0 1 0 1 0
17 0.327 0.819 0.275 0.425 0.746 0 1 0 0 1 0 1 0 0 1
18 0.250 0.082 0.701 0.913 0.463 0 0 1 1 0 0 0 1 1 0
19 0.652 0.359 0.498 0.290 0.990 1 0 0 0 1 0 0 1 0 1
20 0.295 0.420 0.172 0.683 0.969 0 0 0 1 1 0 0 0 1 1
21 0.844 0.912 0.395 0.521 0.384 1 1 0 1 0 1 1 1 0 0
22 0.795 0.489 0.387 0.709 0.659 1 0 0 1 1 1 1 0 1 0
23 0.777 0.735 0.276 0.439 0.974 1 1 0 0 1 1 1 0 0 1
24 0.726 0.174 0.676 0.836 0.664 1 0 1 1 1 1 0 1 1 0
25 0.865 0.326 0.399 0.700 0.814 1 0 0 1 1 1 0 1 0 1
26 0.709 0.459 0.196 0.750 0.919 1 0 0 1 1 1 0 0 1 1
27 0.432 0.828 0.086 0.910 0.633 0 1 0 1 1 0 1 1 1 0
28 0.471 0.623 0.604 0.549 0.778 0 1 1 1 1 0 1 1 0 1
29 0.176 0.899 0.171 0.848 0.883 0 1 0 1 1 0 1 0 1 1
30 0.335 0.458 0.556 0.819 0.966 0 0 1 1 1 0 0 1 1 1

we cannot do much about them at this time. These discrepancies could be due to the

fundamental difference between simulation model and estimation model, or a single

random data simulation, or the estimation procedures based on EM algorithm (no

model is guaranteed to perform perfectly).

To answer the secondary research questions, we look at the latent class sizes from

our model and compare the ideal item response patterns between the estimated Q-

matrix and the true Q-matrix (Table 4.3). Ideal item response patterns indicate the



CHAPTER 4. RESULTS 59

theoretical item responses for each latent class (attribute pattern) under the Q-matrix

of the relationship between items and attributes. It is entirely possible two different Q-

matrices can generate the same item response pattern, and in this case we regard the

two Q-matrices are identical. We have mentioned this issue called ”rotation” problem

in the method section and pointed out that looking at item response patterns could

be one solution to this problem. By comparing item response patterns between true

Q-matrix and estimated Q-matrix, we are able to confirm whether the two Q-matrices

are in fact identical or not. If they generate the same item response patterns we will

not care about the differences among the elements any more. But if they do not

generate the same item response patterns, we will say that true differences exist and

the estimated Q-matrix is indeed different from the true one. If discrepancies really

exist, they may be caused by different models we use for simulation and estimation, or

the simulation process considered additional fixed guessing and slipping parameters.

According to Table 4.3, each item response pattern generated from all attribute

patterns is unique, both for estimated Q and true Q. In other words, students within

every 32 attribute pattern will have a total of 32 unique ideal item responses on

the 30 items. It is not possible for two persons who have different attributes to get

the same item responses. As a result, if one of the item response patterns from

estimated Q-matrix cannot be found in the item response pattern list generated in

true Q-matrix, we are not able to make the conclusion that the two Q-matrices are

identical. Clearly there are some differences between the two lists. For example, the

item response pattern from attribute combination A3 and A5 (00101) from estimated

Q-matrix does not exist in the list of item response patterns from true Q-matrix in

Table 4.4. Only 14 out of 32 (43.75%) latent classes come up with the same item

response patterns in Table 4.5, and the forms of attribute patterns are simper than

different item response patterns in Table 4.4. For example, latent classes in Table 4.5
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Table 4.3: Item response patterns and latent class sizes in simulation study 1

Attribute 1 to 5 Ideal response patterns Item 1 to 30 Latent class sizes
No. Latent class True Q Estimated Q True Q Estimated Q
1 00000 000000000000000000000000000000 000000000000000000000000000000 3.13% 0.30%
2 00001 000010000100000000000000000000 000010000100000000000000000000 3.13% 0.10%
3 00010 000100001000000000000000000000 000100001000000000000000000000 3.13% 1.10%
4 00011 000110001100000000010000000000 000110001100000000010000000000 3.13% 0.30%
5 00100 001000010000000000000000000000 001000010000000000000000000000 3.13% 2.20%
6 00101 001010010100000000000000000000 001010010100000000100000000000 3.13% 10.30%
7 00110 001100011000000001000000000000 001100011000000001000000000000 3.13% 0.10%
8 00111 001110011100000001010000000001 001110011100000001110000000001 3.13% 0.00%
9 01000 010000100000000000000000000000 010000100000000000000000000000 3.13% 1.70%
10 01001 010010100100000010000000000000 010010100100000010000000000000 3.13% 0.10%
11 01010 010100101000000100000000000000 010100101000000100000000000000 3.13% 0.10%
12 01011 010110101100000110010000001010 010110101100000110010000000010 3.13% 0.00%
13 01100 011000110000000000000000000000 011000110000001000000000000000 3.13% 0.40%
14 01101 011010110100000010000000000000 011010110100001010100000000100 3.13% 0.00%
15 01110 011100111000001101000000000000 011100111000001101000000001000 3.13% 15.50%
16 01111 011110111100001111010000001111 011110111100001111110000001111 3.13% 5.30%
17 10000 100001000000000000000000000000 100001000000000000000000000000 3.13% 0.00%
18 10001 100011000100010000100000000000 100011000100010000000000000000 3.13% 0.00%
19 10010 100101001000100000000000000000 100101001000100000000000000000 3.13% 0.30%
20 10011 100111001100110000110100110000 100111001100110000010000010000 3.13% 3.00%
21 10100 101001010001000000000000000000 101001010001000000000000000000 3.13% 12.70%
22 10101 101011010101010000100000000000 101011010101010000100000100000 3.13% 8.50%
23 10110 101101011001100001000000000000 101101011001100001000001000000 3.13% 7.30%
24 10111 101111011101110001110101110001 101111011101110001110001110001 3.13% 4.60%
25 11000 110001100010000000000000000000 110001100010000000000000000000 3.13% 0.20%
26 11001 110011100110010010100010000000 110011100110010010000010000000 3.13% 5.70%
27 11010 110101101010100100001000000000 110101101010100100000100000000 3.13% 4.70%
28 11011 110111101110110110111110111010 110111101110110110010110010010 3.13% 4.00%
29 11100 111001110011000000000000000000 111001110011001000001000000000 3.13% 0.00%
30 11101 111011110111010010100010000000 111011110111011010101010100100 3.13% 6.00%
31 11110 111101111011101101001000000000 111101111011101101001101001000 3.13% 4.50%
32 11111 111111111111111111111111111111 111111111111111111111111111111 3.13% 1.00%

contain equal or less than 2 attribute combinations or all total 5 attributes; patterns

in Table 4.4 are mostly combined by 3 or 4 attributes. Therefore we have to conclude

that the two matrices are different from each other.

The model will also generate the probabilities within each of the 32 latent at-

tribute patterns from EM algorithm, and these estimates are important indicators of

estimation on latent variables in the model. When we simulated the data from DINA

model, we assumed an equal distribution of students in all 32 latent class so that the

latent class size in any group is 1/32 = 3.125%. Of course, a single simulation might

not generate exactly the same percentage of subjects in each latent class, but if we

simulate thousands of times the average latent class sizes will be close to 3.125% in
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each attribute pattern. Replications could be one possible solution but this research

is based on a single simulated dataset due to computation complexity. Moreover,

latent class sizes are not the key purpose of the model. It is entirely possible that

the discrepancies on class sizes are caused by the difference between simulation DI-

NA model and the probabilistic model in this research. As a result, we will still use

3.125% as the theoretical latent class distributions to compare with the estimated

latent class sizes from our model, for an exploratory attempt. If our estimated latent

class sizes are close to 3.125% for all attribute patterns, the estimated Q-matrix will

be considered identical to the true Q-matrix.

Latent class sizes in either Table 4.4 or 4.5 are very different from the theoretical

ones thus we are not able to conclude that the estimated Q-matrix is identical to the

true one. According to Table 4.3, we can sum up the marginal latent class sizes for

each attribute: 62.5% of examinees have A1, 49.2% have A2, 78.4% have A3, 51.8%

have A4, and 48.9% have A5. Although the proportions of people who have A2, A4, or

A5 are close to 50%, the marginal latent class sizes of A1 and A3 are much higher than

50%. Again we are not able to conclude the latent class sizes are similar to what we

designed in the simulation. This supports the conclusion that the estimated Q-matrix

is different from the true Q in the first simulation study. It could also be possible that

the simulated response data has different true latent class sizes than the theoretical

probabilities because of randomly simulation with guessing and slipping parameters.

Fortunately no extremely large estimate of latent class sizes come from our model

(Table 4.3) so that we do not see obvious misspecification problems [DeCarlo, 2011].

In sum our probabilistic model is able to identify 64% to 91% Q-matrix elements

in simulation study 1. When λ = 11 in penalty function, the model can achieve a

high accuracy up to 91.3%. The estimated Q-matrix is not identical to the true Q-

matrix according to their differences on item response patterns or latent class sizes.
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Table 4.4: Different item response patterns between estimated-Q and true-Q in sim-
ulation study 1

Attribute 1 to 5 Ideal response patterns Latent class sizes
No. Latent class True Q Estimated Q True Q Estimated Q
6 00101 001010010100000000000000000000 001010010100000000100000000000 3.13% 10.30%
8 00111 001110011100000001010000000001 001110011100000001110000000001 3.13% 0.00%
12 01011 010110101100000110010000001010 010110101100000110010000000010 3.13% 0.00%
13 01100 011000110000000000000000000000 011000110000001000000000000000 3.13% 0.40%
14 01101 011010110100000010000000000000 011010110100001010100000000100 3.13% 0.00%
15 01110 011100111000001101000000000000 011100111000001101000000001000 3.13% 15.50%
16 01111 011110111100001111010000001111 011110111100001111110000001111 3.13% 5.30%
18 10001 100011000100010000100000000000 100011000100010000000000000000 3.13% 0.00%
20 10011 100111001100110000110100110000 100111001100110000010000010000 3.13% 3.00%
22 10101 101011010101010000100000000000 101011010101010000100000100000 3.13% 8.50%
23 10110 101101011001100001000000000000 101101011001100001000001000000 3.13% 7.30%
24 10111 101111011101110001110101110001 101111011101110001110001110001 3.13% 4.60%
26 11001 110011100110010010100010000000 110011100110010010000010000000 3.13% 5.70%
27 11010 110101101010100100001000000000 110101101010100100000100000000 3.13% 4.70%
28 11011 110111101110110110111110111010 110111101110110110010110010010 3.13% 4.00%
29 11100 111001110011000000000000000000 111001110011001000001000000000 3.13% 0.00%
30 11101 111011110111010010100010000000 111011110111011010101010100100 3.13% 6.00%
31 11110 111101111011101101001000000000 111101111011101101001101001000 3.13% 4.50%

Table 4.5: Identical item response patterns between estimated-Q and true-Q in sim-
ulation study 1

Attribute 1 to 5 Ideal response patterns Latent class sizes
No. Latent class True Q Estimated Q True Q Estimated Q
1 00000 000000000000000000000000000000 000000000000000000000000000000 3.13% 0.30%
2 00001 000010000100000000000000000000 000010000100000000000000000000 3.13% 0.10%
3 00010 000100001000000000000000000000 000100001000000000000000000000 3.13% 1.10%
4 00011 000110001100000000010000000000 000110001100000000010000000000 3.13% 0.30%
5 00100 001000010000000000000000000000 001000010000000000000000000000 3.13% 2.20%
7 00110 001100011000000001000000000000 001100011000000001000000000000 3.13% 0.10%
9 01000 010000100000000000000000000000 010000100000000000000000000000 3.13% 1.70%
10 01001 010010100100000010000000000000 010010100100000010000000000000 3.13% 0.10%
11 01010 010100101000000100000000000000 010100101000000100000000000000 3.13% 0.10%
17 10000 100001000000000000000000000000 100001000000000000000000000000 3.13% 0.00%
19 10010 100101001000100000000000000000 100101001000100000000000000000 3.13% 0.30%
21 10100 101001010001000000000000000000 101001010001000000000000000000 3.13% 12.70%
25 11000 110001100010000000000000000000 110001100010000000000000000000 3.13% 0.20%
32 11111 111111111111111111111111111111 111111111111111111111111111111 3.13% 1.00%

The model works well for simple items with single attribute but performs worse on

more complicated items which require combination of at least two skills. Similarly,

for skill patterns with simple attribute combinations (either one or two attributes,

or all attributes), the model can come up with the same item response patterns.

But for the rest their item response patterns are different. Last but not least, either

estimated latent class sizes or marginal latent class sizes are different from theoretical
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ones designed in simulation.

4.2 Simulation study 2

In the second simulation study, we simulate response data from a irregular and com-

plex Q-matrix which comes from the fraction subtraction exam. The simulation

process is the same as the first simulation study. The same set of ten λ values are

pre-determined. Table 4.6 presents the results from simulation study 2. The Q-matrix

from fraction subtraction test has 15 items and 5 attributes Q15×5 so that total 75

elements are estimated from the model. According to Table 4.6, when all estimat-

ed continuous elements are transformed to binary values 0, 1 by 0.5 cutoff point, the

models are able to identify 61.3% to 88% true Q-matrix elements. The highest correct

Q-matrix identification occurs when λ = 9 with a corresponding identified proportion

of 88%. Table 4.7 is the final Q-matrix information from the model with λ = 9 (red

numbers are incorrectly identified elements).

Table 4.6: Simulation study 2 results

Identified elements of the true Q-matrix
0.3/0.7 Cutoff 0.4/0.6 Cutoff 0.5/0.5 Cutoff

No. λ -2LL Discrepancy Counts Prob Counts Prob Counts Prob
1 0 26067.06 50.09 45/75 60% 50/75 66.7% 55/75 73.3%
2 0.001 26140.86 47.40 50/75 66.7% 53/75 70.7% 55/75 73.3%
3 0.05 26114.67 51.77 52/75 69.3% 54/75 72% 57/75 76%
4 1 25074.66 134.55 45/75 60% 47/75 62.7% 47/75 62.7%
5 2 25020.93 142.37 47/75 62.7% 49/75 65.3% 50/75 66.7%
6 3 24803.77 47.70 54/75 72% 56/75 74.7% 61/75 81.3%
7 6 23455.52 132.63 42/75 56% 44/75 58.7% 46/75 61.3%
8 9 22558.35 41.29 52/75 69.3% 61/75 81.3% 66/75 88%
9 11 15635.16 161.57 45/75 60% 48/75 64% 51/75 68%
10 13 11461.72 337.94 40/75 53.3% 43/75 57.3% 47/75 62.7%

To answer the primary research questions, according to the final estimated Q-

matrix in Table 4.7, 9 out of 75 elements are not correctly identified (12%). For items
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which require only one single attribute (Item 1, 3 and 5) the model is able to identify

all correct elements; for items which require two attributes (Item 8, 9, and 11) the

model again has a perfect estimation accuracy; for items which require three attributes

(Item 12) the model identifies 3 out of 5 (60%) attributes correctly; for items which

require four attributes (Item 2, 6, 7, 10, 13, 15), 3 out of 30 (10%) elements are

not correctly identified by the model; for items which require five attributes (Item 4

and 14) 4 out of 10 (40%) elements have not been recognized. In sum, identification

mistakes come from items that require at least three attributes (Item 2, 4, 6, 10,

12, and 14), which supports the conclusion from simulation study 1 that our model

performs worse on items which need more attributes. It is also very interesting to

see that 8 out of 9 (88.9%) of the incorrectly identified elements do not believe the

corresponding items require a necessary attribute in true Q-matrix (estimates are 0

while true elements are 1). In other words, our model indicates that the items need

less required attributes than they should do. For example, in true Q-matrix item 4

and item 14 are supposed to require all five attributes but in our estimated Q-matrix

these two items only require three attributes (A2, A3 and A4). Overall the model

performs well to estimate the true Q-matrix elements in the second simulation study

with the highest accuracy up to 88%.

The secondary research questions can be answered by item response patterns and

latent class sizes of this simulation study shown in Table 4.8. The 32 latent classes

with 5 attributes generate 10 unique item response patterns under the true Q-matrix

and 12 item response patterns under the estimated Q-matrix (Table 4.9). In Table

4.9 the first six item response patterns in blue are identical under both Q-matrices

while the rest ones in dark are different in the two lists. For example, the true Q-

matrix is able to generate the item response pattern (101010001011000) which cannot

be found in the list generated by estimated Q. Similarly the item response pattern
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Table 4.7: Estimated Q-matrix in simulation study 2

Continuous Q-matrix Binary Q after 0.5 cutoff True Q-matrix
Item A1 A2 A3 A4 A5 A1 A2 A3 A4 A5 A1 A2 A3 A4 A5
1 0.783 0.013 0.038 0.019 0.018 1 0 0 0 0 1 0 0 0 0
2 0.000 0.999 0.892 0.853 0.108 0 1 1 1 0 1 1 1 1 0
3 0.895 0.040 0.022 0.006 0.034 1 0 0 0 0 1 0 0 0 0
4 0.008 0.588 0.968 0.921 0.064 0 1 1 1 0 1 1 1 1 1
5 0.106 0.129 0.948 0.305 0.155 0 0 1 0 0 0 0 1 0 0
6 0.754 0.940 0.649 0.165 0.490 1 1 1 0 0 1 1 1 1 0
7 0.656 1.000 0.988 0.766 0.002 1 1 1 1 0 1 1 1 1 0
8 0.842 0.660 0.025 0.006 0.399 1 1 0 0 0 1 1 0 0 0
9 0.889 0.094 0.999 0.044 0.071 1 0 1 0 0 1 0 1 0 0
10 0.123 0.436 0.998 0.503 0.621 0 0 1 1 1 1 0 1 1 1
11 0.859 0.001 0.963 0.275 0.006 1 0 1 0 0 1 0 1 0 0
12 0.031 0.565 0.778 0.914 0.023 0 1 1 1 0 1 0 1 1 0
13 0.679 0.994 0.858 0.670 0.057 1 1 1 1 0 1 1 1 1 0
14 0.038 0.971 1.000 0.874 0.130 0 1 1 1 0 1 1 1 1 1
15 0.557 0.902 0.896 0.698 0.139 1 1 1 1 0 1 1 1 1 0

(000010000100000) generated by estimated Q-matrix is not in the list of true Q-

matrix. Their corresponding pattern sizes are also different in Table 4.9. Therefore

the two Q-matrices do not generate the same list of item response patterns and we

have to conclude that they are not identical Q-matrices.

In Table 4.8 the theoretical class sizes in simulation studies should be 1/32 =

3.125% in each of the 32 latent classes. However, the latent class sizes from our

estimated results are again different from the theoretical ones. The marginal latent

class sizes for each attributes are A1: 25.2%, A2: 83.45%, A3: 7.72%, A4: 83.52%,

and A5: 43.36%. None of them is close to 50% (the marginal sizes designed in the

simulation) except the fifth attribute. It is interesting that most people are considered

to have the second and fourth attributes (above 80%) while only a few occupy the

third skill (less than 10%) from our estimation. Similarly, there is an extremely high

latent class size (52.8%) of attribute combination A2 and A4 (01010). DeCarlo [2011]

mentioned in his paper that obtaining large estimates of the latent class sizes could
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indicate misspecification of the Q-matrix, such as the inclusion of an irrelevant skill.

According to our estimated Q-matrix, there is only one item (Item 10) that requires

the fifth attribute. Thus the fifth skill might not be necessary according to our model

based on the response data. In the true Q-matrix 3 out of 15 (20%) items need

the fifth attribute, which is not a frequently required attributes. Therefore the fifth

attribute might be considered irrelevant because the data is simulated from a DINA

model with added in guessing and slipping parameters which we do not consider in our

probabilistic model. In sum we are not able to conclude that either latent class sizes

or marginal latent class sizes are similar to what we have designed in the simulation.

This supports the conclusion drawn from item response patterns that the estimated

Q-matrix is different from the true Q in the second simulation study.

In general, for complex Q-matrices such as the one from fraction subtraction test,

the model can still perform very well with 61% to 88% accuracy on estimation of

Q-matrix elements in the second simulation study after binary transformation by 0.5

cutoff point. The highest accuracy of 88% is achieved when λ = 9 in the penalty

function. The estimated Q-matrix and true Q-matrix are not identical according to

their differences on unique item response patterns or latent class sizes. For simple

items with a single or two attributes the model is able to identify all correct elements.

But it performs not well when it comes to items with three or more skills. Large

estimates of latent class sizes might indicate misspecification of the Q-matrix. The

fifth attribute might not be required according to the model but that is not the

case in the true Q-matrix. These discrepancies could be explained by fundamental

difference between simulation DINA and our estimation model, or random generation

of simulated response data which might not be consistent with what we have designed

for the data properties, or true estimation mistakes.
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Table 4.8: Item response patterns and latent class sizes in simulation study 2

Attribute 1 to 5 Ideal response patterns Latent class sizes
No. Latent class True Q Estimated Q True Q Estimated Q
1 00000 000000000000000 000000000000000 3.13% 0.05%
2 00001 000000000000000 000000000000000 3.13% 0.54%
3 00010 000000000000000 000000000000000 3.13% 0.07%
4 00011 000000000000000 000000000000000 3.13% 0.00%
5 00100 000010000000000 000010000000000 3.13% 0.45%
6 00101 000010000000000 000010000000000 3.13% 0.07%
7 00110 000010000000000 000010000000000 3.13% 0.71%
8 00111 000010000000000 000010000100000 3.13% 4.69%
9 01000 000000000000000 000000000000000 3.13% 1.07%
10 01001 000000000000000 000000000000000 3.13% 0.01%
11 01010 000000000000000 000000000000000 3.13% 52.82%
12 01011 000000000000000 000000000000000 3.13% 13.79%
13 01100 000010000000000 000010000000000 3.13% 0.01%
14 01101 000010000000000 000010000000000 3.13% 0.19%
15 01110 000010000000000 010110000001010 3.13% 0.00%
16 01111 000010000000000 010110000101010 3.13% 0.34%
17 10000 101000000000000 101000000000000 3.13% 0.00%
18 10001 101000000000000 101000000000000 3.13% 1.82%
19 10010 101000000000000 101000000000000 3.13% 0.00%
20 10011 101000000000000 101000000000000 3.13% 7.03%
21 10100 101010001010000 101010001010000 3.13% 0.89%
22 10101 101010001010000 101010001010000 3.13% 0.01%
23 10110 101010001011000 101010001010000 3.13% 0.00%
24 10111 101010001111000 101010001110000 3.13% 0.23%
25 11000 101000010000000 101000010000000 3.13% 0.00%
26 11001 101000010000000 101000010000000 3.13% 11.26%
27 11010 101000010000000 101000010000000 3.13% 0.48%
28 11011 101000010000000 101000010000000 3.13% 3.35%
29 11100 101010011010000 101011011010000 3.13% 0.09%
30 11101 101010011010000 101011011010000 3.13% 0.03%
31 11110 111011111011101 111111111011111 3.13% 0.01%
32 11111 111111111111111 111111111111111 3.13% 0.00%

4.3 Empirical study

Empirical study applies the model with a real response data set from the fraction

subtraction test, including 536 responses of middle school students and their respons-

es to 15 items. The expert-designed Q-matrix is the same as the one we used in

simulation study 2. However, in empirical study the expert-designed Q-matrix could

be wrong and should not be the criteria for our judgment. As discussed in the earlier
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Table 4.9: Unique item response patterns in simulation study 2

No. Item response patterns Pattern sizes
True Q Estimated Q True Q Estimated Q

1 000000000000000 000000000000000 25% 68.35%
2 000010000000000 000010000000000 25% 1.43%
3 101000000000000 101000000000000 12.5% 8.85%
4 101000010000000 101000010000000 12.5% 15.09%
5 101010001010000 101010001010000 6.25% 0.9%
6 111111111111111 111111111111111 3.13% 0.00%

7 101010001011000 000010000100000 3.13% 4.69%
8 101010001111000 010110000001010 3.13% 0.00%
9 101010011010000 010110000101010 6.25% 0.34%
10 111011111011101 101010001110000 3.13% 0.23%
11 101011011010000 0.12%
12 111111111011111 0.01%

section, one option to select the best λ values is based on the results from simulation

studies. In previous two simulations studies, when λ = 9 or 11 (small penalty effect-

s) the model has the highest correct identification of true Q-matrix elements. As a

result we will choose the models with λ equal to 9 and 11 as final models to compare

the estimated Q to the designed Q. There is no better options at this time as the

calculation of deviance distances is not practical. In addition, it is also interesting to

look at the estimated Q-matrix which is most close to the designed Q-matrix, if we

assume that the designed Q is similar to the true one and take the experts’ opinions

into account. Thus total three estimated Q-matrices will be discussed here in the

empirical study.

Table 4.10 demonstrates the estimated results from our model. The estimated

Q-matrix has 75 elements Q15×5 with a set of the same ten λ values as simulation

study 1 and 2. The proportions of consistency of elements between estimated and

expert-designed Q-matrices are from 57.3% to 72% among all models, if we use 0.5 as

the cutoff point. The highest consistency comes with the λ = 0.001, which indicates a

very strong penalty effect. Thus the estimated Q-matrix is most close to the designed
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Q-matrix (72% identical elements) when λ = 0.001. However based on the best λ’s

which are either 9 or 11 from the simulation studies, the estimated Q-matrices have 52

out of 75 (69.3%) consistent elements with the expert-designed Q-matrix. The results

indicate that about 30% of the elements might be possibly misspecificated in the

expert-designed Q-matrix. Table 4.11 to 4.13 demonstrate the estimated Q-matrices

from the three models with λ = 9, 11, or 0.001, compared with the expert-designed

Q (red numbers indicate the incorrectly identified elements).

Table 4.10: Empirical study results

Consistent elements with the expert-designed Q-matrix
0.3/0.7 Cutoff 0.4/0.6 Cutoff 0.5/0.5 Cutoff

No. λ -2LL Discrepancy Counts Prob Counts Prob Counts Prob
1 0 6556.15 71.53 46/75 61.3% 48/75 64% 52/75 69.3%
2 0.001 6574.38 61.84 44/75 58.7% 50/75 66.7% 54/75 72%
3 0.05 6491.15 68.92 44/75 58.7% 50/75 66.7% 51/75 68%
4 1 5460.46 164.77 46/75 61.3% 48/75 64% 50/75 66.7%
5 2 4928.05 203.92 44/75 58.7% 48/75 64% 48/75 64%
6 3 2516.49 344.47 33/75 44% 36/75 48% 43/75 57.3%
7 6 2208.01 137.31 47/75 62.7% 50/75 66.7% 52/75 69.3%
8 9 4467.84 49.35 39/75 52% 46/75 61.3% 52/75 69.3%
9 11 4605.37 46.93 32/75 42.7% 45/75 60% 52/75 69.3%
10 13 2305.89 79.64 36/75 48% 40/75 53.3% 43/75 57.3%

The primary research questions are answered by the three models in Table 4.11

to 4.13. Models with λ = 9 and 11 have 23 out of 75 (30.7%) inconsistent elements

between estimated Q-matrix and designed Q-matrix, while the model with λ = 0.001

has 21 out of 75 (28%) inconsistent elements. According to the estimated Q-matrix

when λ = 9 in Table 4.11, item 1, 2, 4, 5, 7 to 15 (13 out of 15) have inconsistent

elements with the designed Q-matrix and that accounts to 86.7% of total 15 items.

In most cases the estimated Q-matrix does not require the same amount of skills

designed in the original Q-matrix, which could be reasonable if we believe that people

may have different strategies to solve these items and sometimes some strategies need

less required skills. For example if we look at the 7th item 41
3
− 24

3
which requires
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Table 4.11: Estimated Q-matrix when λ = 9 in empirical study

Continuous Q-matrix Binary Q after 0.5 cutoff Expert-designed Q
No. Item A1 A2 A3 A4 A5 A1 A2 A3 A4 A5 A1 A2 A3 A4 A5

1 3
4
− 3

8
0.631 0.157 0.202 0.660 0.137 1 0 0 1 0 1 0 0 0 0

2 3 1
2
− 2 3

2
0.121 0.131 0.959 0.222 0.226 0 0 1 0 0 1 1 1 1 0

3 6
7
− 4

7
1.000 0.117 0.390 0.043 0.127 1 0 0 0 0 1 0 0 0 0

4 3− 2 1
5

0.153 0.745 0.548 0.723 0.178 0 1 1 1 0 1 1 1 1 1

5 3 7
8
− 2 0.111 0.309 0.238 0.041 0.077 0 0 0 0 0 0 0 1 0 0

6 4 4
12
− 2 7

12
0.959 0.572 0.904 0.703 0.111 1 1 1 1 0 1 1 1 1 0

7 4 1
3
− 2 4

3
0.731 0.363 0.826 0.780 0.128 1 0 1 1 0 1 1 1 1 0

8 11
8
− 1

8
0.216 0.090 0.213 0.118 0.052 0 0 0 0 0 1 1 0 0 0

9 3 4
5
− 3 2

5
0.572 0.603 0.726 0.711 0.382 1 1 1 1 0 1 0 1 0 0

10 2− 1
3

0.471 0.039 0.125 0.089 0.175 0 0 0 0 0 1 0 1 1 1

11 4 5
7
− 1 4

7
0.437 0.072 0.261 0.172 0.337 0 0 0 0 0 1 0 1 0 0

12 7 3
5
− 4

5
0.852 0.654 0.736 0.576 0.142 1 1 1 1 0 1 0 1 1 0

13 4 1
10
− 2 8

10
0.534 0.901 0.438 0.863 0.102 1 1 0 1 0 1 1 1 1 0

14 4− 1 4
3

0.019 0.331 0.649 0.868 0.653 0 0 1 1 1 1 1 1 1 1

15 4 1
3
− 1 5

3
0.820 0.734 0.215 0.962 0.461 1 1 0 1 0 1 1 1 1 0

Table 4.12: Estimated Q-matrix when λ = 11 in empirical study

Continuous Q-matrix Binary Q after 0.5 cutoff Expert-designed Q
No. Item A1 A2 A3 A4 A5 A1 A2 A3 A4 A5 A1 A2 A3 A4 A5

1 3
4
− 3

8
0.891 0.038 0.155 0.587 0.276 1 0 0 1 0 1 0 0 0 0

2 3 1
2
− 2 3

2
0.149 0.222 0.054 0.911 0.308 0 0 0 1 0 1 1 1 1 0

3 6
7
− 4

7
0.177 0.162 0.188 0.301 0.399 0 0 0 0 0 1 0 0 0 0

4 3− 2 1
5

0.519 0.513 0.360 0.710 0.664 1 1 0 1 1 1 1 1 1 1

5 3 7
8
− 2 0.138 0.638 0.336 0.225 0.091 0 1 0 0 0 0 0 1 0 0

6 4 4
12
− 2 7

12
0.314 0.447 0.603 0.360 0.435 0 0 1 0 0 1 1 1 1 0

7 4 1
3
− 2 4

3
0.581 0.491 0.261 0.956 0.289 1 0 0 1 0 1 1 1 1 0

8 11
8
− 1

8
0.170 0.422 0.190 0.269 0.071 0 0 0 0 0 1 1 0 0 0

9 3 4
5
− 3 2

5
0.887 0.609 0.922 0.214 0.408 1 1 1 0 0 1 0 1 0 0

10 2− 1
3

0.116 0.055 0.033 0.882 0.227 0 0 0 1 0 1 0 1 1 1

11 4 5
7
− 1 4

7
1.000 0.207 0.688 0.370 0.357 1 0 1 0 0 1 0 1 0 0

12 7 3
5
− 4

5
0.977 0.379 0.567 0.906 0.216 1 0 1 1 0 1 0 1 1 0

13 4 1
10
− 2 8

10
0.893 0.540 0.204 0.761 0.085 1 1 0 1 0 1 1 1 1 0

14 4− 1 4
3

0.937 0.753 0.470 0.700 0.696 1 1 0 1 1 1 1 1 1 1

15 4 1
3
− 1 5

3
0.658 0.783 0.419 0.671 0.682 1 1 0 1 1 1 1 1 1 0
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Table 4.13: Estimated Q-matrix when λ = 0.001 in empirical study

Continuous Q-matrix Binary Q after 0.5 cutoff Expert-designed Q
No. Item A1 A2 A3 A4 A5 A1 A2 A3 A4 A5 A1 A2 A3 A4 A5

1 3
4
− 3

8
0.998 0.108 0.440 0.309 0.648 1 0 0 0 1 1 0 0 0 0

2 3 1
2
− 2 3

2
0.407 0.143 0.815 0.002 0.006 0 0 1 0 0 1 1 1 1 0

3 6
7
− 4

7
0.907 0.023 0.065 0.023 0.137 1 0 0 0 0 1 0 0 0 0

4 3− 2 1
5

1.000 0.276 0.725 0.764 0.854 1 0 1 1 1 1 1 1 1 1

5 3 7
8
− 2 0.010 0.164 0.251 0.000 0.993 0 0 0 0 1 0 0 1 0 0

6 4 4
12
− 2 7

12
0.862 0.256 0.944 0.727 0.013 1 0 1 1 0 1 1 1 1 0

7 4 1
3
− 2 4

3
0.737 0.071 0.908 0.610 0.040 1 0 1 1 0 1 1 1 1 0

8 11
8
− 1

8
0.900 0.059 0.135 0.359 0.011 1 0 0 0 0 1 1 0 0 0

9 3 4
5
− 3 2

5
0.601 0.392 0.964 0.985 0.911 1 0 1 1 1 1 0 1 0 0

10 2− 1
3

0.995 0.037 0.063 0.562 0.212 1 0 0 1 0 1 0 1 1 1

11 4 5
7
− 1 4

7
0.941 0.055 0.132 0.464 0.154 1 0 0 0 0 1 0 1 0 0

12 7 3
5
− 4

5
0.927 0.111 0.926 0.112 0.457 1 0 1 0 0 1 0 1 1 0

13 4 1
10
− 2 8

10
0.824 0.162 0.697 0.981 0.202 1 0 1 1 0 1 1 1 1 0

14 4− 1 4
3

0.828 0.350 0.961 0.048 0.981 1 0 1 0 1 1 1 1 1 1

15 4 1
3
− 1 5

3
0.004 0.207 0.984 0.990 0.007 0 0 1 1 0 1 1 1 1 0

4 attributes in the expert-designed Q but only needs 3 attributes in the estimated

Q, the second attribute is considered unnecessary in the model. Record that the five

attributes are A1: subtract basic fractions; A2: reduce and simplify; A3: separate

whole from fraction; A4: borrow from whole; and A5: convert whole to fraction. It is

possible that students can solve the item without using the second attribute (reduce

and simplify). The strategy could be transfer 41
3

to 34
3

and then calculate 34
3
−24

3
= 1.

The whole process does not have to use the skill of reduce and simplify. However, it

is interesting that items 5, 8, 10, and 11 do not require any attribute in the estimated

Q-matrix. It is reasonable that the 5th item 37
8
−2 might not need the third attribute

(separate whole from fraction) to get it right. Item 8 and 11 might require at least

the first attribute but it is hard to define what is subtracting basic fractions at the

first place. However item 10 may need some skills to the researcher’s perspective and

estimation could be wrong. Thus it is not appropriate to rely only on the estimation

results from model solely without considering experts’ opinions.

Similarly, according to the estimated Q-matrix in Table 4.12 when λ = 11, only
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two items 11 and 12 (2 out of 15 is 13.3%)have all elements consistent to the designed

Q-matrix. Similar to the model with λ = 9 the estimated Q-matrix does not require

as many attributes as needed in the designed Q-matrix, especially for A1 to A3.

However, unlike the first model, in this model the third item 6
7
− 4

7
and the eighth

item 11
8
− 1

8
are considered to require no attribute at all. Besides, item 5 is estimated to

require the second attribute (reduce and simplify) instead of A3 (separate whole from

fraction). Item 10 needs only the fourth attribute (borrow from whole) in estimatedQ,

which might be understandable to some extent based on possible different strategies.

However the model consider the first item: 3
4
− 3

8
to require the fourth skill (borrow

from whole) but in fact there is no whole number associated with the fractions in the

item. It is surprising to see the same issue happens in the model with λ = 9 too.

It could be an estimation mistake the model performs, or the different meanings of

attributes generated in the estimated Q-matrix. Moreover, the last item: 41
3
− 15

3
in

the estimated Q-matrix requires attribute 1, 2, 4 and 5 while in the designed Q-matrix

it requires 1, 2, 3, and 4. Again the difference on the 3rd and 4th attributes may

account to different strategies. It is entirely possible here that either combinations of

four attributes can lead to the correct answer of the last item.

In sum, estimated Q-matrices generated from the models with λ = 9 or 11 can have

up to 70% consistent elements with the designed Q-matrix. Some of the discrepancies

are reasonable that we may have different strategies to solve the problems. For

example, both models indicate that students without any required attribute are still

able to get item 8: 11
8
− 1

8
right as long as they have a simple subtraction skill of

calculating 11 − 1 while keeping the denominator constant. However some of the

discrepancies make no sense; for example, item 10: 2 − 1
3

requires no skill in the

estimated Q-matrix with λ = 9 and the first item 3
4
− 3

8
requires the fourth attribute

(borrow from whole) in the estimated Q with λ = 11. In addition, in simulation
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studies the model is not able to estimate all true Q-matrix. It is entirely possible

that the models could make estimation mistakes. These discrepancies could also be

caused by different meanings of attributes generated by the model. It is too arbitrary

if we only depend on the model without considering the experts’ opinions. As a

result it is necessary to investigate the estimated Q-matrix that is most close to the

expert-designed Q in Table 4.13, with λ = 0.001.

According to the model with λ = 0.001 in Table 4.13, 54 out of 75 elements (72%)

are consistent between estimated Q and expert-designed Q, and the rest of 21 (28%)

elements are different. In general, no item is estimated to require no attribute in this

model, but the model concludes that the second attribute (reduce and simplify) is not

required by all 15 items. On the other hand, in experts’ opinion, half of the items need

the second attribute. This result strongly supports the findings by DeCarlo [2011,

2012] that an irrelevant attribute might have been included in the designed fraction

subtraction Q-matrix. One possible reason is that the second attribute always comes

with the first attribute, but that is the same case for the 4th and 5th attributes.

Another possible explanation is based on the different strategies used to achieve the

right answers. It is entirely possible that students can get the answers right without

the unclear defined skill: reduce and simplify, such as the item 7 we discussed above.

In addition to this finding, some items require less attributes in estimated Q-matrix

than we expected in designed Q-matrix, which is similar to the previous two models.

For instance, experts considered that student should have four attribute A1 to A4

to solve the second item: 31
2
− 23

2
. However our model tells that as long as students

had the third attribute: separate whole from fraction, they would be able to get the

answer right. Likewise, item 10, 11, 12, 14, and 15 also require less attributes than

what experts believed. To our surprise, Item 9: 34
5
− 32

5
needs four attributes to get

it right in estimated Q, but in experts’ perspectives this item only requires A1 and
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A3.

It is really hard to judge which Q-matrix assignment is correct. One possible

solution is to fit the DINA model to the response data with estimatedQ’s and designed

Q separately, and then compare the goodness of fit. The log-likelihood of DINA model

with the designed Q is: −3555.116, while the log-likelihoods of estimated Q’s of the

model with λ = 9 is: −3821.356; λ = 11 is: −3722.744; and λ = 0.001 is: −3405.737.

It is interesting that the estimated Q from the model with λ = 0.001 fits better than

the others due to its largest log-likelihood value. Therefore, if we apply the DINA

model to classify students into different attribute groups in the fraction subtraction

test, the modified Q-matrix by the model with λ = 0.001 is the best to be used.

All in all, the three models come out with up to 70% consistency with the designed

Q-matrix, and they find out that the items require less attributes in the corresponding

estimated Q than what they need in the expert-designed Q. Misspecification of

designed Q-matrix is supported with evidence of these discrepancies. However, these

discrepancies might be caused by some other reasons too, and they should be carefully

discussed not only based on the model results, but also with professional suggestions

of test makers.

To answer the secondary research questions in empirical study, the item response

patterns and latent class sizes for the three models are shown from Table 4.14 to

Table 4.16. When λ = 9 the ideal responses of item 5, 8, 10, and 11 are correct

for all attribute patterns in estimated Q-matrix because these items are considered

to require none of the five attributes. The same situation happens to item 4 and 8

in the model with λ = 11 in Table 4.15. In the last model with λ = 0.001 there

is no such issue because every item requires at least one attribute in the estimated

Q in Table 4.16. However, a student without only the second attribute is also able

to get all items correct and the latent classes (10111) and (11111) will generate the
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Table 4.14: Item response patterns and latent class sizes when λ = 9 in empirical
study

Attribute 1 to 5 Item response patterns Latent class sizes
No. Latent class Expert-designed Q Estimated Q Estimated Q
1 00000 000000000000000 000010010110000 2.56%
2 00001 000000000000000 000010010110000 0.45%
3 00010 000000000000000 000010010110000 1.74%
4 00011 000000000000000 000010010110000 1.48%
5 00100 000010000000000 010010010110000 0.92%
6 00101 000010000000000 010010010110000 0.68%
7 00110 000010000000000 010010010110000 1.93%
8 00111 000010000000000 010010010110010 2.51%
9 01000 000000000000000 000010010110000 1.77%
10 01001 000000000000000 000010010110000 2.17%
11 01010 000000000000000 000010010110000 0.82%
12 01011 000000000000000 000010010110000 1.02%
13 01100 000010000000000 010010010110000 2.69%
14 01101 000010000000000 010010010110000 1.56%
15 01110 000010000000000 010110010110000 1.87%
16 01111 000010000000000 010110010110010 7.87%
17 10000 101000000000000 001010010110000 0.54%
18 10001 101000000000000 001010010110000 0.40%
19 10010 101000000000000 101010010110000 1.44%
20 10011 101000000000000 101010010110000 3.05%
21 10100 101010001010000 011010010110000 0.48%
22 10101 101010001010000 011010010110000 1.87%
23 10110 101010001011000 111010110110000 1.63%
24 10111 101010001111000 111010110110010 6.34%
25 11000 101000010000000 001010010110000 0.60%
26 11001 101000010000000 001010010110000 2.16%
27 11010 101000010000000 101010010110101 2.73%
28 11011 101000010000000 101010010110101 28.85%
29 11100 101010011010000 011010010110000 3.11%
30 11101 101010011010000 011010010110000 6.05%
31 11110 111011111011101 111111111111101 4.48%
32 11111 111111111111111 111111111111111 4.24%

same item response patterns of all correct answers. Discrepancies of item response

patterns generated by estimated Q-matrices and the designed Q-matrix do exist for all

three models according to the unique item response patterns Table 4.17 to 4.19. For

example, according to Table 4.19 which is for model with λ = 0.001, 10 item response

patterns come from expert-designed Q-matrix and 14 item response patterns come

from estimated Q-matrix, which clearly states that our estimated Q is definitely
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Table 4.15: Item response patterns and latent class sizes when λ = 11 in empirical
study

Attribute 1 to 5 Item response patterns Latent class sizes
No. Latent class Expert-designed Q Estimated Q Estimated Q
1 00000 000000000000000 001000010000000 2.58%
2 00001 000000000000000 001000010000000 1.28%
3 00010 000000000000000 011000010100000 1.54%
4 00011 000000000000000 011000010100000 0.96%
5 00100 000010000000000 001001010000000 0.54%
6 00101 000010000000000 001001010000000 0.64%
7 00110 000010000000000 011001010100000 2.48%
8 00111 000010000000000 011001010100000 5.94%
9 01000 000000000000000 001010010000000 1.04%
10 01001 000000000000000 001010010000000 1.08%
11 01010 000000000000000 011010010100000 0.97%
12 01011 000000000000000 011010010100000 1.18%
13 01100 000010000000000 001011010000000 0.54%
14 01101 000010000000000 001011010000000 0.97%
15 01110 000010000000000 011011010100000 5.58%
16 01111 000010000000000 011011010100000 7.45%
17 10000 101000000000000 001000010000000 0.85%
18 10001 101000000000000 001000010000000 0.77%
19 10010 101000000000000 111000110100000 2.79%
20 10011 101000000000000 111000110100000 1.23%
21 10100 101010001010000 001001010010000 1.78%
22 10101 101010001010000 001001010010000 2.41%
23 10110 101010001011000 111001110111000 3.26%
24 10111 101010001111000 111001110111000 3.02%
25 11000 101000010000000 001010010000000 1.09%
26 11001 101000010000000 001010010000000 0.63%
27 11010 101000010000000 111010110100100 4.54%
28 11011 101000010000000 111110110100111 3.38%
29 11100 101010011010000 001011011010000 3.37%
30 11101 101010011010000 001011011010000 23.60%
31 11110 111011111011101 111011111111100 5.46%
32 11111 111111111111111 111111111111111 7.03%

different from the expert-designed one. Estimated Q-matrix from the model with

λ = 9 generates 13 item response patterns in Table 4.17, while the estimated Q-

matrix from the model with λ = 11 has 16 item response patterns in Table 4.18.

Both of the two models have more item response patterns than the designed Q which

generates 10 item response patterns. Only one item response pattern of all correct

answers happens in both lists in Table 4.17 and 4.18. Thus all three estimated Q-
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Table 4.16: Item response patterns and latent class sizes when λ = 0.001 in empirical
study

Attribute 1 to 5 Item response patterns Latent class sizes
No. Latent class Expert-designed Q Estimated Q Estimated Q
1 00000 000000000000000 000000000000000 0.00%
2 00001 000000000000000 000010000000000 1.00%
3 00010 000000000000000 000000000000000 1.00%
4 00011 000000000000000 000010000000000 0.00%
5 00100 000010000000000 010000000000000 6.00%
6 00101 000010000000000 010010000000000 0.00%
7 00110 000010000000000 010000000000001 0.00%
8 00111 000010000000000 010010000000001 1.00%
9 01000 000000000000000 000000000000000 8.00%
10 01001 000000000000000 000010000000000 5.00%
11 01010 000000000000000 000000000000000 0.00%
12 01011 000000000000000 000010000000000 6.00%
13 01100 000010000000000 010000000000000 0.00%
14 01101 000010000000000 010010000000000 0.00%
15 01110 000010000000000 010000000000001 0.00%
16 01111 000010000000000 010010000000001 0.00%
17 10000 101000000000000 001000010010000 1.00%
18 10001 101000000000000 101010010010000 1.00%
19 10010 101000000000000 001000010110000 0.00%
20 10011 101000000000000 101010010110000 0.00%
21 10100 101010001010000 011000010011000 0.00%
22 10101 101010001010000 111010010011010 5.00%
23 10110 101010001011000 011001110111101 0.00%
24 10111 101010001111000 111111111111111 0.00%
25 11000 101000010000000 001000010010000 0.00%
26 11001 101000010000000 101010010010000 2.00%
27 11010 101000010000000 001000010110000 0.00%
28 11011 101000010000000 101010010110000 21.00%
29 11100 101010011010000 011000010011000 0.00%
30 11101 101010011010000 111010010011010 37.00%
31 11110 111011111011101 011001110111101 0.00%
32 11111 111111111111111 111111111111111 5.00%

matrices from the model are different from the designed Q-matrix according to their

different item response patterns.

The latent class sizes from our estimated results vary differently across the three

models. In model with λ = 9 the proportion in attribute pattern with A1 A2 A4

and A5 (11011) is extremely higher (28.85%) than other latent class sizes. The next

model with λ = 11 also has a large latent class size up to 23.6% of the attribute
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Table 4.17: Unique item response patterns when λ = 9 in empirical study

No. Item response patterns Pattern sizes
Expert-designed Q Estimated Q Estimated Q

1 111111111111111 111111111111111 4.24%

2 000000000000000 000010010110000 12.01%
3 000010000000000 001010010110000 3.70%
4 101000000000000 010010010110000 7.78%
5 101010001010000 010010010110010 2.51%
6 101010001011000 010110010110000 1.87%
7 101010001111000 010110010110010 7.87%
8 101000010000000 011010010110000 11.51%
9 101010011010000 101010010110000 4.49%
10 111011111011101 101010010110101 31.58%
11 111010110110000 1.63%
12 111010110110010 6.34%
13 111111111111101 4.48%

Table 4.18: Unique item response patterns when λ = 11 in empirical study

No. Item response patterns Pattern sizes
Expert-designed Q Estimated Q Estimated Q

1 111111111111111 111111111111111 7.03%

2 000000000000000 001000010000000 5.48%
3 000010000000000 001001010000000 1.18%
4 101000000000000 001001010010000 4.19%
5 101000010000000 001010010000000 3.84%
6 101010001010000 001011010000000 1.51%
7 101010001011000 001011011010000 26.97%
8 101010001111000 011000010100000 2.50%
9 101010011010000 011001010100000 8.42%
10 111011111011101 011010010100000 2.15%
11 011011010100000 13.03%
12 111000110100000 4.02%
13 111001110111000 6.28%
14 111010110100100 4.54%
15 111011111111100 5.46%
16 111110110100111 3.38%

pattern (11101) while all the other latent class sizes are less than 8%. The last model

with λ = 0.001 has two comparatively high latent class sizes (11011, 11101) which

are 21% and 37% separately. It is interesting to see that the three models generate

comparable high latent class sizes in either (11011) or (11101) or both. The marginal
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Table 4.19: Unique item response patterns when λ = 0.001 in empirical study

No. Item response patterns Pattern sizes
Expert-designed Q Estimated Q Estimated Q

1 000000000000000 000000000000000 9.00%
2 000010000000000 000010000000000 12.00%
3 111111111111111 111111111111111 5.00%

4 101000000000000 001000010010000 1.00%
5 101000010000000 001000010110000 0.00%
6 101010001010000 010000000000000 6.00%
7 101010001011000 010000000000001 0.00%
8 101010001111000 010010000000000 0.00%
9 101010011010000 010010000000001 1.00%
10 111011111011101 011000010011000 0.00%
11 011001110111101 0.00%
12 101010010010000 3.00%
13 101010010110000 21.00%
14 111010010011010 42.00%

latent class sizes of the three models are listed in Table 4.20.

The comparison of latent class sizes also indicates that there might be some mis-

specifications of Q-matrix, for example, the second attribute is not necessary in all

items according to the last model, while some of the items might not need any of the

five attribute based on the results from the first two models. More than half of the

students are estimated to occupy most of the attributes in Table 4.20 regardless of

which model is used. It is interesting that the first model with λ = 9 shows a large

proportion of students (71.99%) who have occupies the fourth attribute (borrow from

whole) while the last model with λ = 0.001 indicates only 34% of the examinees who

are estimated to have the skill. Some discrepancies also exist for the third attribute

(separate whole from fraction) but generally the distributions of marginal latent class

sizes across the three models are consistent except for the fourth attribute.

In conclusion the empirical study is an exploratory analysis to estimate the true

Q-matrix from a real response data of the fraction subtraction test. Although differ-

ent models have different results, their estimated Q-matrices still have 55% to 75%
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Table 4.20: Marginal latent class sizes in empirical study

λ A1 A2 A3 A4 A5
9 67.97% 71.98% 48.24% 71.99% 70.71%
11 65.21% 67.91% 74.07% 56.81% 61.57%
0.001 72.00% 84.00% 54.00% 34.00% 84.00%

A1 subtract basic fractions
A2 reduce and simplify
A3 separate whole from fraction
A4 borrow from whole
A5 convert whole to fraction

consistent elements with the designed Q-matrix. We select three models based on

the results from simulation studies and the smallest discrepancy distance from the

expert-designed Q-matrix. There is no uniform criterion to judge which model is the

best to use. Although the models with λ = 9 or 11 perform well in simulation studies,

their estimated Q-matrices have at least 30 inconsistent elements from the designed

Q, and some of these differences are hard to interpret. In addition, we cannot com-

pletely ignore experts’ opinions so that the estimated Q-matrix which is closest to the

designed Q (72% consistent elements) from the model with λ = 0.001 is also select-

ed here for a supplemental analysis. In addition, all the three estimated Q-matrices

are not identical to the expert-designed Q according to their item response patterns.

These discrepancies together with the estimated latent class sizes have indicated pos-

sible misspecifications of the expert-designed Q-matrix. For example, there might be

a unnecessary skill and some items in fact require less attributes than we originally

expected. Due to those conflicts it is important to bring domain experts for a further

discussion on the design of Q-matrix, based on the results of our models.
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Chapter 5

Discussions

The primary purpose of the dissertation is to set up a mathematical framework to

estimate Q-matrix based on item response data. Two methods are developed: the first

one is based on a non-linear transformation of Q-matrix and a penalized sum of square

errors established to estimate the Q-matrix elements; the second one is based on item

response function of q’s in which a penalized likelihood function is maximized to

estimate the elements by EM algorithm. This research focuses on the second method

and develops the probabilistic model with penalized biased estimation. The q’s can

be considered as the probabilities that the items require a skill, or the proportions of

persons who need the skill to get the item right. There are three model assumptions:

given a value of the latent skill pattern the item responses are independent from each

other; no additional guessing or slipping parameters are considered; and the model is

conjunctive while lacking any one of the skills would lead to failure of response.

The primary two research questions include how accurate the method performs

on estimation of the Q-matrix, and what the differences would be between estimated

Q-matrix and designed Q-matrix in a real situation. These questions are answered by

the proportion of correctly identified elements of estimated Q-matrices in simulation
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studies, and the proportion of identical elements between estimated Q-matrix and the

expert-designed Q-matrix in the empirical study. The secondary research questions

include whether the estimated Q-matrix is identical to the true or designedQ, and how

the latent class sizes are distributed. These questions are answered by the comparison

of unique ideal item response patterns between Q-matrices and the estimated results

of the latent class sizes.

Two simulation studies are conducted to evaluate the feasibility and goodness of

the estimation method. Two Q-matrices from de la Torre [2009b] are considered as

true Q’s to simulate 2000 response data through a DINA model with both guessing

and slipping parameters equal to 0.1. Then our model estimates the Q-matrices from

the simulated responses and compare with the true Q-matrices on the estimation

accuracy. One empirical study applies the real response data from fraction subtraction

test used by de la Torre [2009b] to estimate the Q-matrix directly from the model and

then compares the results with the Q-matrix designed by experts. Q-matrix elements

are considered as parameters in the model with latent variables of attributes, and

the parameters are estimated through EM algorithms with 100, 000 iterations in the

study.

Challenges of the model include determination of attribute dimensions, identifi-

cation of attributes in estimated Q-matrices, and selection of penalty functions (λ

values). Total number of attributes used in the model might be determined by the

model goodness of fit, such as likelihood value, AIC, BIC. However this issue is not

discussed in this research, because matrices with different columns are hard to com-

pare. The identification of attributes is solved by the minimum discrepancy distances

between the estimated Q-matrices and the true Q’s or designed Q. Although the

selection of the complexity parameter λ in penalty functions is designed by the pre-

diction accuracy of deviance distances through cross-validation of a large portion of
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candidate values, it is not computation feasible at this time. Besides, in simulation

studies the information given by cross-validation might be redundant because the

best model should have the highest correct identification of true Q-matrices and we

can find the information from the estimation results. Thus in this research we have

pre-determined ten λ values as the candidate pool, and select the best λ according to

its corresponding proportion of identified elements of true Q-matrix after a full binary

transformation of estimated Q-matrix by 0.5 cutoff point in simulation studies. In

empirical study, we use the same set of potential λ values but select the best models

based on the results from simulation studies. For example, if simulation studies in-

dicate that the best model has a penalty function with λ = 10, then we should use

λ = 10 in empirical study as the final model regardless of how many of consistent

elements between the estimated Q-matrix and designed Q-matrix.

The results from simulation studies demonstrate that about 64% to 91% Q-matrix

elements can be correctly identified by the model in simulation study 1, and 61% to

88% correct elements in simulation study 2. The model with λ = 11 can achieve the

highest accuracy up to 91.3% in the first simulation study and the model with λ = 9

has 88% correct identification in the second simulation. In empirical study the model

has comparatively lower percentages from 55% to 75% of consistent elements between

estimated Q-matrices and designed Q-matrices. Based on the results from simulation

studies, λ = 9 and λ = 11 are selected as final models. Both of them have 52 out of

75 (70%) consistent elements with the designed Q but the discrepancies are different.

For example, item 10: 2 − 1
3

requires no skill in the estimated Q-matrix with λ = 9

but one attribute A4 (borrow from whole) in the one generated by λ = 11. However

in expert-designed Q item 10 need four skills (A1, A3, A4, A5). Because some of the

discrepancies are hard to interpret and we cannot completely ignore experts’ opinions,

we also select another model with λ = 0.001 which has the highest counts of consistent
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elements (54 out of 75 which is 72%) in empirical study. This model indicates that the

second attribute of the expert-designed Q-matrix is not required by all items. This

result of an irrelative attribute is consistent with the findings by DeCarlo [2011, 2012].

In sum, the empirical study is similar to an exploratory research of a confirmatory

factor analysis and there is no single criterion to judge which model is the best to

use.

All the final estimated Q-matrices generated by either simulation studies or the

empirical study are not identical to the true Q’s or expert-designed Q, according to

their different item response patterns. Their estimated latent class sizes or marginal

latent class sizes are also different from the theoretical ones in simulation studies. In

simulation studies, the model works well for simple items with one or two attributes

but performs worse on more complicated items which require combinations of three

or more skills. These discrepancies could be explained by the non-perfect estimation

performance, fundamental difference between simulation DINA model and the prob-

abilistic model we designed, or random simulation of response data which might not

be consistent with what we have designed for the data properties. The discrepancies

of item response patterns together with the estimated latent class sizes in empiri-

cal study have indicated possible misspecifications of the expert-designed Q-matrix.

For example, there might be a unnecessary skill identified in the Q-matrix and some

items in fact require less attributes than we originally expected. However, some of

these discrepancies between estimated Q and designed Q might be caused by differ-

ent strategies the students used to get the right answers. Due to those conflicts it is

important to bring domain experts for a further discussion on the design of Q-matrix.

To our knowledge, this research is the first attempt to explore a statistical ap-

proach to purely estimate all Q-matrix elements totally based on item responses

without considering experts’ opinions. Most of past studies on Q-matrix estimation
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are built on developments of existing cognitive diagnostic models [Chiu et al., 2009;

DeCarlo, 2011, 2012; Liu et al., 2011b,a, 2012; de la Torre, 2008], for example, cluster

analysis, generalized DINA model, higher-order DINA model, or reparameterization

of DINA model. This research establishes a new probabilistic model with attributes

as latent variables and Q-matrix elements as parameters. The focus is on the esti-

mation accuracy of parameters rather than classification of students. On one hand,

the model is able to find out backward the estimated Q which is the best fit to the

students’ item responses, rather than taking the subjective designed Q-matrix for

granted; on the other hand, the estimated Q-matrix from the model can be used

forward into the existing cognitive diagnostic models, such as DINA or NIDA, for a

possibly better classification of students’ abilities, according to different assumptions.

The final goal is to provide multiple classifications of students from CDMs based on

possible Q-matrices, and compare the results to reach a reasonable one. Psychometri-

cian can also use the model to check if there is any misspecification of expert-designed

Q-matrix. It is possible that students have different strategies from what the experts’

ideas towards how to solve the problems. A different Q-matrix might be reasonable

too. If no existing Q-matrix is provided, researchers can generate an initial estimated

Q-matrix and then refine it together with experts. However, the model depends on

the both the test and examinees, so that it is not appropriate to generate the results

outside the population.

However, the model has limitations and there are ways to improve it. First of all,

the model assumes the simplest situations, which may not be true in real applications.

For example, the correct item responses are totally determined by the occupation of

required attributes, and no guessing or slipping factors of the students are considered.

These assumptions are even simper than those in DINA model, which have been

criticized to be relatively novel in some cases [de la Torre, 2008]. Besides, depending
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on the construction of parameter q, the model seems to have a built-in ”guessing” on

the item responses. For example, because q is considered as the probability that the

item requires the skill, 1 − q will be the probability that the item does not require

the skill. For students who have no attribute at all, when q’s are not equal to 100%,

there are still some possibilities that the item does not require all attributes. As a

result, the students come up with a ”guessing” opportunity to get the item right. This

”guessing” factor depends on the possibilities of an item not requiring a specific skill,

rather than the students’ personal reasons, so it is not a conflict with the assumptions

we made for our model. But the ”guessing” will indeed affect the results of students’

responses and their classification to attribute patterns.

Besides, the number of skills in estimated Q-matrix is assumed to be known in

this research because of comparisons with true and designed Q-matrices. For a pure

exploratory analysis the attribute dimensions are not available in real situations, and

the meanings of attributes are unclear. Furthermore, in simulation studies, the re-

sponse data should be replicated multiple times, and an average estimated Q-matrix

could be drawn from different models based on those data sets. Replication in com-

puting ensures consistency of estimations and can improve reliability, fault-tolerance,

or accessibility. Moreover, results of estimated Q-matrices from real response data

through the model should be carefully reviewed and discussed before making any

conclusion. One fundamental problem of CDM is that we cannot classify students’

abilities without single attribute items [Chiu et al., 2009]. However it is entirely pos-

sible that the estimated Q-matrix could include no single attribute item and we are

not able to apply it for the further CDM analysis. In addition, discrepancies between

the estimated Q-matrix and the designed one cannot be well explained sometimes and

could be estimation mistakes. Last but not least, selection of final estimated Q from

real response data is still ambiguity. If we run multiple simulation studies and come
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up with many different λ values, it will be meaningless to use all these values in a real

data analysis, because the number of candidate λ values is not reduced significantly.

It is interesting to see that λ = 9 or 11 works best in simulation studies, but

originally we believe small λ values such as 0.001 and 0.05 might perform better

because they have much larger penalty effects to push estimates to either 0 or 1.

This might be the reason that these values are in fact better fit the response data; or

actually the cutoff points we select to transfer continuous elements to binary values

affect the results. When λ is large such as 9 or 11, more estimates are around 0.5.

However after the transformation by cutoff point 0.5, all these uncertainties around

0.5 are gone. But if we select different cutoff points such as 0.3/0.7, the highest

accuracy of identified elements may not be 9 or 11 because they have more un-

categorized values between 0.3 and 0.7. This is exactly the case in Table 4.6 of the

second simulation study.

As a result, for future improvements, based on the results of the model, one can

possibly improve estimation accuracy by selecting cutoff points such as 0.3/0.7 first

to transfer part of the Q-matrix elements to binary values, and then apply a Bayesian

extension of the DINA model developed by DeCarlo [2012] to find out estimates of the

rest Q-matrix elements. Another possible approach could apply different single cutoff

points together with ROC curve to look at false positives and false negatives, then

decide which cutoff point to use, rather than taking 0.5 only to transfer all estimates

to binary values. Analysis of estimated latent class sizes might not be necessary in the

future unless we do replications of simulated studies to compare with the theoretical

designed latent class sizes. Furthermore, development of the cross-validation approach

based on the predication deviance distances could still be a good standard to select

the best Q, as long as people can figure out a practical way to predict the missing

responses. There are some other penalty functions that might be also able to penalize
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estimates to 0 or 1. For example, f(x) = λ|x − 1
2
| or f(x) = λ × x2 when x ≤ 1

2

and f(x) = λ × (1 − x)2 when x ≥ 1
2
. Better penalty functions could accelerate

computation speed and lead to more robust results. The purpose of the penalty in

this research is not for dimension reductions because the number of Q-matrix elements

is fixed. Moreover, the future studies could also consider on how to determine the total

numbers of attributes like an exploratory factor analysis. For example, possibly total

four or three attributes in the Q-matrix might fit even better to the response data

in the fraction subtraction test. But the identification of attributes in this situation

has to be worked with an exam domain expert to understand the meaning of each

Q-matrix column. Meanwhile, guessing or slipping factors of students could also be

additional parameters in the model and that might generate better results.

In summary, the process of deriving a Q-matrix described in this research begins

by building a probabilistic model between item responses and latent attributes as

well as continuous Q-matrix elements as parameters. The estimation process adds a

penalty in the likelihood function in order to get biased but better estimates more

close to 1 or 0. The model is a good example to deal with binary data and nonlinear

relationships. It can also be easily extend to other complicated models under different

assumptions. However, people have to be aware of the large number of parameters

to be estimated in the model, which leads to slow computing and time consuming.

This model is solely based on the item responses to estimate all elements of Q-matrix

without considering the one designed by experts. However, in the real world it is

not appropriate to ignore experts opinions completely because sometimes the model

could make mistakes and sometimes we are not able to interpret all discrepancies.

In the future the researcher would suggest psychometricians corporate with domain

experts to develop an initial Q-matrix together, and improve it according to model

estimations combined with experts’ opinions.
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Appendix A

R programs

Here are the programs used in this dissertation by R languages.

A.1 Response data simulation from fraction sub-

traction test Q-matrix

alpha <- matrix(rbinom(10000, 1, 0.5), nrow=2000)

q <- matrix(c(1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,

0,1,0,1,0,1,1,1,0,0,0,0,1,1,1,

0,1,0,1,1,1,1,0,1,1,1,1,1,1,1,

0,1,0,1,0,1,1,0,0,1,0,1,1,1,1,

0,0,0,1,0,0,0,0,0,1,0,0,0,1,0), ncol = 5, nrow = 15)

tmatrix <- alpha%*%t(q)

attsum <- matrix(1, nrow=1, ncol=15)

for (i in 1:15){

attsum[i] <- sum(q[i,])

}
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reattsum <- matrix(rep(attsum, 2000), nrow=2000, byrow=T)

eta <- matrix(1, nrow=2000,ncol=15)

for(i in 1:2000){

for(j in 1:15){

if(tmatrix[i,j]==reattsum[i,j]){

eta[i,j] <- 1

}else{

eta[i,j] <- 0

}

}

}

p <- matrix(1, nrow=2000,ncol=15)

for(i in 1:2000){

for(j in 1:15){

p[i,j] <- (0.9^eta[i,j])*(0.1^(1-eta[i,j]))

}

}

## generating data ##

sim <- matrix(1,nrow=2000,ncol=15)

for(i in 1:2000){

for(j in 1:15){

sim[i,j] <- rbinom(1,1,p[i,j])

}

}
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A.2 Q-matrix estimation algorithm

as.binary <-

function(x){

ans <- NULL

while(any(x!=0)){

ans <- cbind(x%%2,ans)

x <- floor(x/2)

}

ans

}

optim.fun <- function(X,Q,pi,a=0.5){

N = nrow(X)

J = ncol(X)

K = ncol(Q)

all.a = as.binary(0:(2^K-1)) #2^K x K #

pi = c(1,exp(pi))

pi = pi/sum(pi)

Q = exp(Q)

Q = Q/(1+Q)

#print(pi)

pR.a = exp(tcrossprod(1-all.a,log(1-Q))) #2^K x J #

tmp = tcrossprod(X,log(pR.a)) + tcrossprod(1-X,log(1-pR.a)) # N x 2^K #

tmp[,2^K] = ifelse(apply(X==1,1,all), 0, -Inf)
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pX = exp(tmp)%*%pi

result = sum(log(pX)) + (a-1)*sum(log(Q)+log(1-Q))

-2*result

}

findQ = function(y,ndim=3,a=0.5,trace=0,maxit=500){

y = as.matrix(y)

nitem = ncol(y)

nsubj = nrow(y)

init = c(rnorm(nitem*ndim),rep(0,2^ndim-1))

tmp.out = optim(init, function(p){

optim.fun(y, matrix(p[1:(nitem*ndim)],nitem,ndim), p[-(1:(nitem*ndim))],a=a)},

control=list(maxit=maxit,trace=trace))

final = tmp.out$par

Q = matrix(final[1:(ndim*nitem)], nitem, ndim)

Q = exp(Q)

Q = Q/(1+Q)

pi = c(1,exp(final[-(1:(ndim*nitem))]))

pi = pi/sum(pi)

result = list(Q=Q,pi=pi,deviance=tmp.out$value)

result

}

}
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A.3 Calculations of minimum discrepancy distance

and counts of identical elements for fraction

subtraction Q-matrix

fn_perm <- function (n, r, v = 1:n)

{

if (r == 1)

matrix(v, n, 1)

else if (n == 1)

matrix(v, 1, r)

else {

X <- NULL

for (i in 1:n) X <- rbind(X, cbind(v[i], fn_perm(n - 1, r - 1, v[-i])))

X

}

}

Q2=q

discrepQ2=function(Q.EST){

-sum(Q2*log(Q.EST)+(1-Q2)*log(1-Q.EST))

}

mindiscrepQ2=function(Q.EST){

all_perm=fn_perm(ncol(Q.EST),ncol(Q.EST))

all_result <- c()
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for(i in 1:nrow(all_perm)){

newQ.EST <- Q.EST[,all_perm[i,]]

one_result <- discrepQ2(newQ.EST)

all_result <- c(all_result, one_result)

}

mindis <- min(all_result)

index_min <- which(all_result == min(all_result), arr.ind = TRUE)

min_perm <- all_perm[index_min,]

FQ.EST=Q.EST[,min_perm]

result=list(mindis=mindis,min_perm=min_perm,FQ.EST=FQ.EST)

result

}

disQ2.EST1=mindiscrepQ2(Q2.EST1)

mindisQ2.EST1=disQ2.EST1$mindis

FQ2.EST1=disQ2.EST1$FQ.EST

count=function(a,b,q,Q){

qnew=matrix(,nrow=nrow(q),ncol=ncol(q))

for (i in 1:nrow(q)){

for (j in 1:ncol(q)){

if(q[i,j]<=a){qnew[i,j]=0}

else {if (q[i,j]>=b){qnew[i,j]=1} else {qnew[i,j]=q[i,j]}}

}

}

dif=Q-qnew
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difnew=matrix(,nrow=nrow(dif),ncol=ncol(dif))

for (i in 1:nrow(dif)){

for (j in 1:ncol(dif)){

if(dif[i,j]==0){difnew[i,j]=1}

else {difnew[i,j]=0}

}

}

rowsum=apply(difnew,1,sum)

counts=sum(rowsum)

total=ncol(Q)*nrow(Q)

prob=counts/total

result=list(cutoff=c(a,b),FinalQ=qnew,Correct_Counts=counts,

Total=total,Correct_Prob=prob)

result

}
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