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ABSTRACT

Alison Chih Wai Chiu, “The Evolution of the Weep-Hole.”  Submitted May 2012.  

Advisor: Helen Thomas-Haney.

Uncontrolled water intrusion through the envelope is perhaps the most common and insidious 

threat to success of a building’s performance and its structural integrity. Introducing weep-holes 

into wall construction is one method meant to mitigate issues associated with dampness, by 

providing an outlet for drainage at the base of the wall cavity. The use of these small, interstitial 

elements is crucial to the long-term welfare of our building stock and also indirectly, to the 

health and well-being of building inhabitants. A major campaign to prevent dampness, stimulated 

by public health concerns in America and abroad during the 19th century, led to widespread 

development and use of the brick cavity wall in building construction. The hollow space within 

these double-wythe walls acted as an additional layer of weather protection and as a thermal 

barrier, but was also a new location where water could collect. This research traces the 

development of early cavity wall construction methods and theories employed in response to 

dampness problems during the late 19th century, and investigates concepts behind the rise in 

application of the weep-hole during the early 20th century.
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INTRODUCTION
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Weep-holes, interstitial drainage elements within the building envelope fabric, and their 

effectiveness emerge as a frequent topic of discussion within the field of construction defects 

consulting regarding appropriate drainage methods used to prevent moisture build-up within the 

building envelope. These small, obscure voids are often seen in various types of wall and 

window systems. Several technical sources that include the International Building Code, 

Association for Preservation Technology International (APT) bulletins, and construction 

drawings recommend or require the integration of weep-holes during construction, but rarely do 

these sources elaborate beyond simply stating that weep-holes should be used. These mysterious, 

terse references appeared to be fragments of a much grander idea that begged to be put into 

context.

The initial goal of this thesis was to trace the application of through-wall channels used in 

different types of envelope construction for the purpose of drainage. This proved to be more 

complex than originally anticipated. After much preliminary research, weep-holes incorporated 

into the wall for drainage were found to be a relatively recent 20th century development. Delving 

further into the study of weep-holes necessitated a closer examination of the concepts of drainage 

and dampness, the removal of which is the catalyst for a number of construction remedies at the 

envelope. These remedies include the introduction of the cavity wall and, ultimately, weep-holes.

The development of the cavity wall can be traced to the evolution of social thought and scientific 

progress that emerged during the latter half of the 19th century. The proliferation of building 

construction literature, the development of the sanitation movement, and increased scientific 

progress in engineering and architecture identify the late 19th and early 20th centuries as the key 

period when many of the ideas related to wall drainage began to take shape. 

The amount of literature published from approximately 1850 to 1950 on methods to remediate 

dampness in wall construction suggests that although some of these ideas may have been used in 
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earlier traditional building methods, they began to be codified at a time when large scale 

technical and public health developments were also taking place. Undoubtedly, these factors 

influenced the field of building construction. Increasingly widespread publication of construction 

manuals and advertisements also allowed for a greater dissemination of information during this 

period than had been seen in previous years.

A major campaign to prevent dampness, driven by public health concerns in America and abroad, 

led to the development and use of the brick cavity wall. Physicians demanded rational principles 

in architecture, attempting to distinguish professional builders from those who operated by trial 

and error.1 Encouraged by developing theories in the medical profession, public thought held that  

proper ventilation could prevent or even cure the spread of disease. With limited understanding 

of the sources causing dampness and mechanisms of moisture movement, builders primarily 

focused on construction methods that were intended to increase ventilation and evaporation 

throughout the wall.

In order to help keep the interior of a building dry, a second wall layer was added. The hollow air 

space within these double-wythe walls acted as an additional layer of weather protection and as a 

thermal barrier. However, it was also a new location where water could collect. Wind-driven rain 

could seep through the exterior wythe and separately, condensation could form in this new 

hollow air space between the interior and exterior walls. Builders were then confronted with the 

need to drain the hollow wall space. At present, this concept has been largely unexplored within 

the history of American building technology. It remains a particularly pressing and only partially 

resolved issue in today’s construction of increasingly complex, moisture-proof building 

envelopes. 
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Early attempts to rid the cavity of excess moisture involved various strategies to increase air 

ventilation within that space. However, due to the realities of the built world and complex 

unforeseen conditions within the as-built envelope, waiting for evaporation to fully remove 

moisture within a wall cavity cannot be relied upon. The installation of weep-holes, seen at the 

base of the exterior wall or over lintels and shelf angles, represents a crucial shift that occurred 

from approximately 1920 through the 1940s in effectively addressing the issue of moisture 

intrusion by providing an outlet for drainage. Weep-holes provide a pathway for water to escape 

without compromising the strength, stability, and insulative properties of the cavity wall. Without 

weep-holes, moisture can remain within the wall indefinitely, causing material damage and 

fostering an environment for the growth of organisms and insects potentially harmful to human 

health. The purpose of this thesis is to examine the introduction and evolution of the weep-hole 

within the building envelope, based upon prevailing notions of dampness in buildings during the 

late 19th and early 20th centuries.

The shift from employing drainage instead of ventilation in order to remove moisture from walls 

did not immediately occur in cavity walls, as they experienced a decline in use immediately 

following the turn of the 20th century. Instead, this understanding of drainage as a necessary 

component in wall construction first occurred in engineered retaining walls, windows, and terra-

cotta cladding systems. Advancements in material testing and the simultaneous growth of the 

insulation and brick veneer industry helped facilitate the translation of weep-holes used in wall 

cladding and window systems to cavity walls, as they again gained popularity in America during 

the 1930s. 

In the years following World War II, America’s construction industry experienced significant 

changes with the advent of new building methods and materials, stimulated by technology and 

production methods developed during the war. The application of weep-holes and the concept of 
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wall drainage continued to evolve during the middle and later part of the century, but it did so in 

an atmosphere of rapidly changing technology and building systems. Though the popularity of 

the traditional brick cavity wall has since been replaced by that of veneer, steel frame and curtain 

wall cladding, and exterior insulated finish systems, among others, the weep-hole and the 

concept of wall drainage remains a fixture of these modern day envelope systems, as do our 

intentions to prevent damage to interior finishes and to promote healthy indoor environments 

within our buildings.
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CHAPTER 1.

Dampness And Its Effects Upon Building Construction
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1.1 What is Dampness?

Dampness is moisture caused by the presence of water in the atmosphere and/or environment. 

The issue of controlling dampness is of great importance in building construction due to material 

concerns of structural degradation, as well as the personal health of building inhabitants. Factors 

that affect the amount of dampness in a material include: rate of moisture ingress throughout the 

wall, rate of evaporation, humidity, size of capillary vessels in a porous material, height of the 

water table, and the rate of water vapor transmission through the wall.2 The severity of building 

component deterioration and our perceptions of the issues associated with it largely depend on 

the capacity of these masonry materials to transmit, retain, or dispel moisture. 

1.2 Sources of Dampness

Dampness may result from exposure to one or more of the following primary sources of water 

intrusion into buildings.

1) Rising damp: Rising damp refers to the upward movement of water through a material. 

In building construction, moisture present in the ground may be drawn up into porous 

materials through capillary action, in a uniform or non-uniform manner. 

2) Wind-driven rain: Wind-driven rain is rain falling with a horizontal velocity onto the 

exterior surfaces of a building. Winds with strong horizontal pressure may contribute 

to rain penetration through the envelope by driving moisture into masonry pores, 

joints, and cracks. Additionally, upward pressures produced by wind encourage water 
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already collected at these areas of weakness to breach the envelope through a suction 

effect, thereby permitting further penetration into materials through capillary action.3

3) Condensation: When warm, moisture-laden air comes into contact with a cooler 

surface, the water vapor present in the air precipitates into a liquid against the cooler 

surface. The amount of saturation in the air is often referred to as relative humidity; 

and the temperature at which fully saturated water vapor precipitates is called the dew 

point.4 The term “condensation” describes this phenomenon of precipitation, which 

often occurs within cavity walls where the airspace forms a barrier between the cooler 

outside atmosphere and a warmer, more humid indoor atmosphere. 

4) Leaks: Deficiencies in roof cover, improper flashing, lack of drainage due to blocked 

gutters, and open mortar joints are examples of poor construction and maintenance 

methods that can result in leaks. Moisture, acted upon by the force of gravity, will 

continue to move in a downward pattern, wetting materials beneath the point of origin. 

Once moisture comes into contact with, and is absorbed by, building materials, it moves from 

wetter to drier areas through capillary action. Capillary action, or the ability of liquid to flow 

through the narrow tube-like spaces of a material, is the result of inter-molecular attractive forces 

and surface tension within the walls of the tube. It is stronger within narrower spaces, and may 

occur in opposition to gravity.5 
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4 Denison Olmsted, A Compendium of Natural Philosophy, ed. E.S. Snell (New York: Clark & Maynard, 1864), 152.

5 Gratwick provides a detailed and thorough description of capillary action and the mechanisms of moisture 
movement through materials. See R. T. Gratwick, Dampness in Buildings, Chapter 4.



1.3 Effects of Dampness on Buildings

Given the ability of moisture to breach the building envelope and travel through materials, the 

appearance of dampness in a building can manifest in a number of ways that can affect the 

durability of materials and may lead to conditions that affect both the physical and mental well-

being of building inhabitants. The complexity of building systems and their varied exposure to 

weather elements and user patterns often make identifying the origin of moisture intrusion a very 

difficult, confusing, and lengthy process. Possible combinations produced by different sources of 

moisture intrusion, mechanisms of movement, and material reactions in different environments 

around the world create a unique scientific case study for each individual structure. 

The following short and by no means inclusive list identifies a few conditions that may indicate 

the presence of dampness and moisture.

• Stains

• Damage to interior finishes

• Spalled or eroded masonry

• Crumbling mortar

• Efflorescence and frost attack

• Biological growth (sometimes accompanied by a musty odor)
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1.4 Dampness as a Health Risk

People rely on buildings for safety and shelter, and often take for granted the controlled comforts 

of modern building structures as they spend an increasing amount of time within their walls. 

Over time, people have come to expect a certain degree of comfort, warmth, and dryness as 

inherent qualities in buildings. Today, these qualities are still not ensured as a result of the 

construction process and allergy concerns often prompt discussions about the need for “healthy” 

buildings. 

Historically, afflictions ranging from general ill health to tuberculosis, rheumatism, and death 

were often associated with dampness in buildings.6 Sanitary engineering developed as a 

professional discipline in Great Britain during the 1860s and 1870s.7 Schools and institutes 

began to offer courses in rationalizing the science of architecture. Early “building doctors” and 

sanitary inspectors, who were tasked with investigating residential buildings in an attempt to 

diagnose and treat architectural problems, often criticized the lack of scientific basis in building 

construction as a primary reason that enabled the spread of various diseases despite medical 

efforts to cure them.8 

R. Scott Burn, editor of The New Guide to Masonry, Bricklaying and Plastering: Theoretical and 

Practical, wrote in 1870, “When experienced medical officers see rows of houses springing up 
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6 Annmarie Adams attributes this connection to Edwin Chadwick’s 1842 Report on the Sanitary Condition of the 
Labouring Population of Great Britain, a seminal text identifying housing and environmental conditions as primary 
factors that led to, and even encouraged, the spread of disease. By 1870, the fear that houses could cause sickness 
was widespread. See Adams, Architecture in the Family Way: Doctors, Houses, and Women, 1870-1900, 29.

7 In 1883, a British surgeon named T. Pridgin Teale published Dangers to Health: A Pictorial Guide to Domestic 
Sanitary Defects, a book which focuses on the dangers of poor drainage conditions and the spread of illness through 
poor ventilation. The book attempts to educate the public on sanitary conditions within their own homes, and to 
inform the architect, “who may learn how by every sanitary detail which he designs amiss, or by oversight allows to 
be badly carried out, [that] he is opening a door for illness to the future occupant of the house.” See Adams, 
Architecture in the Family Way: Doctors, Houses, and Women, 1870-1900, 11; T. Pridgin Teale, preface to Dangers 
to Health: A Pictorial Guide to Domestic Sanitary Defects, 4th ed. (New York: D. Appleton & Company, 1883), xiv.

8 Adams, Architecture in the Family Way: Doctors, Houses, and Women, 1870-1900, 42.



on a foundation of deep retentive clay, inefficiently drained, they foretell the certain appearance 

among the inhabitants of catarrh, rheumatism, scrofula, and other diseases, the consequence of 

an excess of damp, which break out more extensively and in severer forms in the cottages of the 

poor...”9 Construction manuals published just before and after the turn of the century similarly 

identify poor health as a result of injurious conditions manifest from unregulated moisture and 

decay.10 

One common theory regarding the spread of disease held that miasmas transmitted the evils of 

dampness and decay from the ground environment to the house and subsequently, to the body 

through the presence of adulterated air, particularly within a contained space. Circa 1870, Burn 

pointed to fog as an ideal vehicle to convey decomposing matter within damp soil into the 

confines of the home, adversely affecting the mental and physical efforts of inhabitants.11 

Similarly, George Powell, author of Foundations and Foundation Walls, wrote in 1884, “A dry 

cellar is one of the requisites to a healthy house. A moist or damp cellar acts as a constant 

reservoir of damp, chilly and impure air... Many fatal cases of sickness can be traced to this 

cause, and, doubtless, if our cellars were looked after more carefully, there would be less 

complaint of malaria and kindred ailments.”12 
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9 Robert Scott Burn, ed., The New Guide to Masonry, Bricklaying and Plastering: Theoretical and Practical 
(Edinburgh: A. Fullarton & Co., 1868-72), 149.

10 For further reference, see Baird Smith’s discussion on historic attitudes to dampness. The language associating 
dampness with sickness is prevalent in construction manuals and echoes that seen in contemporary sanitary 
engineering literature. See Baird M. Smith, Dampness in Historic Buildings: Methods of Diagnosis and Treatment 
(dissertation, University of York, 1979), 16-17; George T. Powell, Foundations and Foundation Walls (New York: 
William T. Comstock, 1884), 67-68; Advanced Building Construction: A Manual for Students (London: Longmans, 
Green & Co., 1896), 59; Henry Adams, Cassell’s Building Construction: Comprising Notes on Materials, Processes, 
Principles, and Practice (London: Cassell and Company, Limited, 1913), 75; Walter R. Jaggard and Francis E. 
Drury, Architectural Building Construction: A Text Book for the Architectural and Building Student, Vol. 2 
(Cambridge: University Press, 1936), 21. 

11 Burn, The New Guide to Masonry, 149.

12 Powell, Foundations and Foundation Walls, 68.



In recent years, scientists have found consistent, although not conclusive, associations between 

bio-organic growth and adverse effects on the respiratory health of building inhabitants.13  A 

2004 study by the Institute of Medicine of the National Academy of Sciences concluded that 

“excessive indoor dampness is a public health problem” and recommended corrective action.14 A 

subsequent quantitative study performed by the Lawrence Berkeley National Laboratory in 2006 

concluded that building dampness and mold are associated with a 30% - 80% increase in upper 

respiratory tract symptoms, but the causal relationship has not been defined to date.15 Strong 

correlations were found between exposure to dampness and health issues. As noted in the report, 

it is unlikely that dampness itself will cause adverse health effects. However, it may be argued 

that dampness fosters conditions that allow organisms such as mold, mildew, and pests to 

flourish. These, in turn, may directly impact the health of inhabitants, as previously feared during 

the 19th century. Research on this issue, however, remains ongoing. 

1.5 The Search for a Solution to Dampness

Dampness in buildings was so prevalent in masonry structures and accounts varied so wildly as 

to its exact causes that a seemingly infinite number of attempts toward a solution were tried from 

the turn of the 19th century onwards. Emerging medical theories regarding the origins of disease 

significantly influenced the development of brick construction methods, which remained largely 
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13 A quantitative study of the effects of bio-organic growth on health are discussed in a research paper published by 
the Environmental Energy Technologies Division of the Lawrence Berkeley National Laboratory. See William J. 
Fisk, Quanhong Lei-Gomez, and Mark J. Mendell, Meta-Analyses of the Associations of Respiratory Health Effects 
with Dampness and Mold in Homes (Berkeley: Lawrence Berkeley National Laboratory, Environmental Energy 
Technologies Division, Indoor Environment Department, 2006).

14 Fisk et al., Respiratory Health Effects, 2.

15 Ibid., 7.



unstandardized until after the turn of the 20th century.16 Spurred by public concern, wall 

ventilation was increasingly promoted as a way to eliminate dampness. Application and 

development of these measures were primarily based on trial and error. A review of literature 

published during the late 19th and early 20th centuries indicates that some methods of addressing 

dampness were relatively similar, while others, in retrospect, appear to be unique exercises in 

preventing moisture intrusion. Some methods may never have entered into common building 

practice. Builders recognized the need to mitigate moisture intrusion into the building, but their 

lack of expertise in identifying and isolating the various sources precluded their ability to 

effectively do so. 

Besides wall ventilation, contemporary published literature also focused on damp-proofing and 

water-proofing solutions at the foundation and grade levels. This suggests that builders, as well 

as the public, generally associated illness with conditions that were primarily thought to originate 

from ground conditions but could be solved through evaporation at the wall level.17 As quoted in 

Baird Smith’s dissertation, Building News Magazine noted in 1880, “...There is, perhaps, no 

source of mischief so pernicious to health and so destructive to the comfort of a house, as a damp 

wall, and certainly there is nothing so difficult to cure, save by having to resort to radical 

measures of an expensive kind.”18 
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16 Standardization presumably occurred sometime after the tenth edition of Ira Baker’s A Treatise on Masonry 
Construction was published in 1909. He stated, “There is not even a remote approach to uniformity in the 
specifications for the brick-work of buildings. Ordinarily the specifications for the brick masonry are very brief and 
incomplete.” See Ira O. Baker, A Treatise on Masonry Construction, 10th ed. (New York: John Wiley and Sons, 
1909), 178.

17 Baird Smith notes in his dissertation that some builders surmised that only those structures which had been built 
on soil exhibiting a moist condition at the time of construction would be affected by capillary action. Another theory 
posited by Joseph Gwilt in the Encyclopedia of Architecture, published in 1842, states dampness in buildings is a 
result of damp materials used during construction, which then continue to draw dampness from the soil. See Smith, 
Dampness in Historic Buildings: Methods of Diagnosis and Treatment, 16-17; Joseph Gwilt, An Encyclopaedia of 
Architecture, Historical, Theoretical, and Practical (London: Longman, Brown, Green, and Longmans, 1842), 962.

18 Smith, Dampness in Historic Buildings: Methods of Diagnosis and Treatment, 24.



Promoting ventilation and evaporation by incorporating air spaces into wall construction was a 

method used to address damp walls that stemmed from long-held beliefs connecting sickness and 

dampness that existed prior to the development of professional sanitary engineering. Builders 

commonly stated that increased ventilation and air circulation through confined spaces was an 

effective means of preventing damp and promoting dryness of walls, though details and further 

explanation were vague or non-existent.19 Within the broader discussion of public health in the 

years before and after the turn of the 20th century, architects and engineers responded to the call 

for increased ventilation and daylight by modifying various aspects of the building envelope in 

an effort to ensure that the buildings they constructed would prove more conducive to health. An 

1873 report titled “Sanitary Relations to Health Principles in Architecture” stated, “after 

medicine, ‘as professions most concerned in the preservation of public health rank those of the 

Architect and Engineer.’”20 The idea that increased ventilation in buildings, particularly in 

houses, could help to prevent and even potentially cure illness reinforced early notions that 

incorporating a means of ventilation within wall construction was necessary, thus encouraging 

further development of cavity wall construction. 
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19 Ventilation was a predominant topic in the discussion of how to rid hollow, hollow-brick, and cavity walls of 
dampness. Sources frequently recommended ventilation without a clear explanation of how it actually worked, 
which contributes to an overall lack of clarity in the historical discussion of effective damp-resisting construction 
methods. See J. C. Loudon, The Architectural Magazine and Journal of Improvement in Architecture, Building, and 
Furnishing and in the Various Arts and Trades Connected Therewith, vol. 1, “On A Method of Preventing Damp 
From Rising in the Walls of Buildings on Clay and Other Moist Soils,” by William J. Short (London: Longman, 
Rees, Orme, Brown, Green, and Longman, 1834), 233; J. C. Loudon, An Encyclopaedia of Cottage, Farm, and Villa 
Architecture and Furniture (London: Longman, Orme, Brown, Green & Longmans, 1839), 172; “Lessons in 
Brickwork - V: Hollow or Cavity Walls,” The National Builder 47, no. 5 (November 1908), 30; F. W. Haglock, 
“Concrete Block Walls Act as Ventilators,” The National Builder 47, no. 4 (1908), 28; Carl Pfeiffer, “Sanitary 
Relations to Health Principles in Architecture” (presentation, Annual Meeting of the American Public Health 
Association, New York, NY, 1873); Adams, Cassell’s Building Construction, 75; Jaggard and Drury, Architectural 
Building Construction, 20, 42, 53; Advanced Building Construction: A Manual for Students, 59.

20 Pfeiffer, “Sanitary Relations to Health Principles in Architecture,” 3.



Builders explored various methods of preventing building contact with ground air, moisture, 

water, and drainage during the late 19th and early 20th centuries. These methods included, but 

are not limited to, the following:

• Damp-proof coursing at foundations21

• Foundation areaways22

• Water-proof coating processes23

• Hollow walls

• Hollow-block walls

• Cavity walls

In their search for a solution to dampness, builders were forced to confront a number of complex 

variables and developments that lacked the benefit of scientific and time-tested application. In 

general, hollow, hollow-brick, and cavity walls were thought to prevent dampness in walls by 

maximizing surface exposure to air, thereby increasing the possibility for ventilation, and thus, 
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21 Various damp-proofing techniques were documented during the 19th century. Although methods of installation 
vary widely, common types of damp-proof coursing involved application of stones of low porosity (typically slate), 
high fired or glazed brick, sheet lead, or a layer of concrete or asphalt. Not all were efficacious. See Smith, 
Dampness in Historic Buildings: Methods of Diagnosis and Treatment, 18; Advanced Building Construction: A 
Manual for Students, 61.

22 Foundation areaways, also known as air drains, were narrow, dry areas constructed along the perimeter of 
foundation walls to prevent damp walls caused by rising damp. Advanced Building Construction states, “...The 
width of the area is... sometimes is so reduced that the arrangement simply amounts to providing a hollow wall.” 
Gratwick attributes the origin of the hollow wall to foundation areaways. Giovanni and Ippolito Massari’s Damp 
Buildings, Old and New discounts the general effectiveness of this method of damp prevention by the early 1990s. 
See Advanced Building Construction: A Manual for Students, 59-60; Gratwick, Dampness in Buildings, 51; 
Giovanni and Ippolito Massari, Damp Buildings, Old and New, trans. Cynthia Rockwell (Rome: International Centre 
for the Study of the Preservation and Restoration of Cultural Property, 1993), 89-91.

23 Asphalt and tar, as well as hydraulic cement and insoluble compounds, were common methods recommended by 
19th century builders to render the interior or exterior of basement walls dry. Builders recognized, however, that 
these “expensive external coverings” did not mitigate rising damp on the interior. See Advanced Building 
Construction, 58 - 59.; Smith, Dampness in Historic Buildings, 16.



evaporation. The plethora of these hollow wall systems invented from roughly 1830 to 1930 

attests to the prevalence of dampness and public concerns as to the effects of dampness on 

health. Other innovations in building construction also occurred in the areas of damp-proofing, 

waterproofing, and site drainage. Despite various experiments and proposed “solutions,” perhaps 

Ira Baker, in A Treatise on Masonry Construction, was the most accurate when he observed, “It 

sometimes becomes necessary to prevent the percolation of water through brick walls. A cheap 

and effective process has not yet been discovered, and many expensive trials have proved 

failures.”24

Driven by the fundamental desire to construct healthful indoor environments, successful 

mitigation of moisture at the envelope occurred through a lengthy trial and error process that 

progressed during the late 19th century and well into the 20th century, through a process that 

paralleled technological developments and changing concepts of building envelope construction. 

Solid wall construction was generally recognized as a system that inevitably resulted in 

dampness due to the ability of materials to retain moisture. Cavity wall construction, on the other 

hand, provided an extra layer of protection against moisture because the outer wythe provided 

increased weather protection for the inner wall. The cavity air space itself helped to prevent 

direct transmission of moisture from one wall to the next. This system was not waterproof, but 

the continuous air space between the two wythes was thought to increase air circulation and 

stimulate evaporation, theoretically ridding any moisture from porous wall materials. The ability 

of the outer wythe to act as a functional outer skin that shed the majority of rain and inclement 

weather before they reached interior spaces and the principles behind maintaining a dry wall 

system is described in the following chapter. 
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CHAPTER 2. 

Cavity Wall Construction and the Rain Screen Principle
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2.1 The Cavity Wall Defined

Part of the complexity in understanding the historical development of the cavity wall and related 

concepts stems from a general confusion of terminology used in building construction manuals 

and journals during the late 19th and early 20th centuries. Although terms such as “hollow wall,” 

“hollow brick wall,” and “cavity wall” had various meanings and were used somewhat 

interchangeably in historic literature, a brief look at these terms is required here to clarify and 

define the manner in which they are used in this particular text. 

A hollow wall shall refer to a wall, composed of an inner and an outer wythe, in which standard 

bricks are laid in various configurations so as to form multiple individual hollow spaces.25 These 

spaces typically measure 2 to 3 inches thick in between wythes and run in a continuous vertical, 

but not horizontal, pattern. The hollow wall was typically constructed for the purpose of material 

savings, thermal insulation, and dampness prevention. (See Figure 2.1.)
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25 “Hollow wall” is a very general term seen in 19th and early 20th century literature that builders often used to refer 
to various configurations of hollow-block walls, cavity walls, and hollow walls as defined here.

Figure 2.1: Typical 12” hollow wall construction, plan view. Hatched 
areas represent bricks; solid black areas are hollow voids.



A hollow-brick wall, also known as a hollow-block or hollow-tile wall shall refer to a wall 

constructed of specially molded fired-clay units that are perforated with open spaces.26 They are 

used in wall construction for the purpose of constructing thermally-insulated and, in theory, well-

ventilated walls. (See Figure 2.2.)
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26 The term “hollow brick wall” is often used in construction manuals, and typically refers to the type of wall 
construction seen in Figure 2.1, which shall heretofore be referred to as a “hollow wall.” A hyphen has been added to 
this term for clarification throughout this text, so that “hollow-brick wall,” “hollow-block wall,” and “hollow-tile 
wall” denote only those masonry units molded with voids prior to firing, as seen in Figure 2.2.

Figure 2.2: Typical hollow-brick construction, section view. Note the open cells in the “tile.”

Image blocked due to copyright



The term cavity wall shall refer to a wall composed of an inner and an outer wythe, in which 

standard bricks are laid in two distinct parts that are separated from each other by a horizontally 

and vertically continuous air space, measuring approximately 2 to 3 inches wide. The inner and 

outer wythes are tied together with metal connections.27 Total wall thickness may range from 8 to 

24 inches thick, with the thin outer wall typically built in Flemish, English, or stretcher bond.28 

Buildings constructed with cavity walls typically benefit from improved thermal performance 

and less likelihood of damp penetration at finished interior spaces. (See Figure 2.3.)
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27 James Stevens Curl, Encyclopaedia of Architectural Terms (London: Don Head Publishing, 1992), 73.

28 Advanced Building Construction, 62.

Figure 2.3: Typical cavity wall construction, section view. Note the 2” cavity space and weep holes at the 
wall base. These elements comprised standard recommendation in Architectural Graphic Standards, 1941.

Image blocked due to copyright



A survey of brick and masonry construction manuals supports the notion that providing a dry 

interior space was the primary concern in the minds of builders. Hollow walls were widely 

associated with successful mitigation of dampness both in America and abroad.29 The popularity 

of 19th and early 20th century construction methods that incorporated various hollow spaces in 

walls was primarily tied to efforts to produce a healthy and dry living atmosphere. References to 

“cavity walls,” “hollow-brick walls,” and “hollow walls” consistently appear in the larger 

discussion of preventing dampness at foundations and cellars, repelling moisture, applying 

damp-proof coursing, and providing dry interiors. The hollow spaces created within these walls 

primarily attempted to address dampness issues caused by rising damp or wind-driven rains. 

Although cavity, hollow-brick, and hollow walls were used concurrently, it is the cavity wall that 

stands out because of its role as a precursor to modern day veneer systems and curtain wall 

cladding. Its construction reflects the beginnings of an effective concept for preventing water 

penetration known as the rain screen principle, a crucial component of these modern wall 

systems. 
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29 Some discussion is necessary regarding the initial purpose of hollow wall construction, which is seen earlier and 
with more prevalence than cavity wall construction. Many early builders seemed to equate warmth or thermal 
insulation with dryness, although they are not exactly the same thing. In 1850, Andrew Jackson Downing stated that 
leaving a hollow space between brick fill and weather-boarding results in a “dry, warm, and substantial house.” He 
lists among the advantages of hollow walls “the prevention of dampness, which always strikes through a solid wall.” 
The majority of 19th century sources describe prevention of dampness in buildings as an immediate concern, and 
increased thermal insulation as an added benefit. An Encyclopaedia of Cottage, Farm, and Villa Architecture noted 
that hollow walls provided dryness and were less easily penetrable by exterior temperatures. A popular method 
known as Dearn’s Hollows Walls also claimed that “the hollows in the walls will prove an antidote to damp.” Robert 
C. Burn’s The New Guide to Masonry, Bricklaying and Plastering and George Powell’s Foundations and 
Foundation Walls identify dampness as the primary reason why hollow walls are recommended for construction. 
Powell states, “... [hollow walls] make a dry and damp-proof structure,” and that it is general practice to set grooved, 
fire-proof blocks against the inside of exterior walls in order to leave an air space at walls “exposed on the exterior 
to weather and where there is a tendency for moisture to drive through.” It is unclear if early builders believed warm 
spaces encouraged dryness at walls, or if by keeping the walls dry, they could create warm spaces. See Andrew 
Jackson Downing, Architecture of Country Houses: Including Designs for Cottages, Farm-Houses, and Villas, with 
Remarks on Interiors, Furniture, and The Best Modes of Warming and Ventilating (New York: D. Appleton & Co., 
1850), 54, 58; Loudon, Cottage, Farm, and Villa Architecture, 14, 172-173; Burn, The New Guide to Masonry, 147; 
Powell, Foundations and Foundation Walls, 83-84.



2.2 The Rain Screen Principle

A number of early damp-proofing and water-proofing techniques were intended to prevent any 

and all water from entering the building envelope. This would prove next to impossible to 

achieve. A wall system with surfaces and joints impervious to water is difficult to create. 

Moreover, these elements would need to remain perfectly impervious to water for an indefinite 

period of time, despite the tendency of materials to degrade and comprehensive systems to 

decrease in water-tightness over time. The acceptance and recognition that water will inevitably 

penetrate a building’s exterior is the first step towards a successful solution to maintaining dry 

walls.

To leak into a building, water requires an opening and a pressure differential, which provides the 

force required to move the water through the opening. The characteristics that comprise a wall’s 

ability to effectively provide a controlled interior environment also create a large pressure 

differential, which makes it susceptible to water penetration. Wind and air currents that exist 

outside of the building can create higher pressure at the exterior. Because of the tendency of air 

and water to move from areas of higher pressure to lower pressure, these conditions effectively 

push lingering moisture through the wall towards the interior of a building. A 1962 publication 

by the Norwegian Building Research Institute stated, “The only practical solution [to preventing 

water leakage] is to design the exterior rain-proof finishing so open that no super-pressure can be 

created over the joints or seams in the finishing. This effect is achieved by providing an air space 

behind the exterior finishing, but with connection to the outside air. The surges of air pressure 

created by the gusts of wind will then be equalized on both sides of the exterior finishing.”30 
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RS-1-04 (Chicago: Architectural Aluminum Manufacturers Association, 2004), 4.
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Figure 2.4: Images (A) through (D) depict movement of moisture at typical wall systems with 
differential air pressure. Image (D) illustrates a complete wall system constructed with the rain 
screen principle. Surface joints are left open, and pressure is equalized at the exterior and the 
air space. The inner wall, tightly sealed, is protected from the majority of rain because of the 

rain screen and pressure equalization.



The rain screen principle, identified in approximately 1960, refers to this type of wall system 

whereby pressure equalization occurs at both sides of the exterior wythe, or the “screen,” which 

purposefully is not tightly sealed in order to connect outside air to the cavity space between the 

two walls (See Figure 2.4).31 The air space behind the facing ensures that air pressure is equal to 

or higher than that of the outdoor air pressure at all times (See Figure 2.4-C). The Architectural 

Aluminum Manufacturers Association (AAMA) notes that this is not simply a ventilated space.32 

Water can more freely penetrate the cavity, but the wall is so designed that water can also escape 

more freely as well. Sufficient openings in the wall guarantee a free flow of air, preventing 

pressure buildup on only one side of the wall. Thus, the wall is made water-resistant specifically 

by eliminating the pressure differential between inboard and outboard surfaces of the exterior 

wythe. This also eliminates the dependence on joints at the facing to keep out both air and water. 

The inner wythe, which contains properly sealed joints that can then be protected from the 

majority of inclement weather and kept dry, provides the structural load-bearing capacity of the 

wall while the exterior wythe acts as the skin (See Figure 2.4-D).

The rain screen principle relies on equalization of pressure, not direct drainage, to prevent water 

penetration to interior spaces. Thus, it should be noted that a wall system which applies the rain 

screen principle is different than one which employs drainage for moisture control. However, a 

properly constructed cavity wall “if adequately vented and properly flashed at its base” 

effectively forms a rain screen and allows water to drain out at the base of the wall if pressure 

within the cavity is equalized with that of the exterior atmosphere.33 AAMA notes that minor 
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31 A 1996 specification by the Architectural Aluminum Manufacturers Association (AAMA) notes that the rain 
screen concept used to prevent water intrusion was recognized approximately 35 years prior to the publication, 
although the physical principles upon which it is based are fundamental. Historical use of these principles in 
construction was most likely used instinctively rather than scientifically. See The Rain Screen Principle and 
Pressure-Equalized Wall Design, AAMA, 6.

32 This contradicts earlier theories, prevalent during the 19th and early 20th centuries, which stated that providing 
means for increased ventilation could overcome the dampness problem in walls.

33 The Rain Screen Principle and Pressure-Equalized Wall Design, AAMA, 8.



leakage may occur through the rain screen. Thus, it is imperative that the air space always be 

drained to the outside.34 By creating a relatively contained pressure-equalized atmosphere within 

the wall, any water that does find its way past the rain screen will be released outwards from the 

building and prevented from seeping into the building through the sealed inner wythe.

2.3 Moisture Problems Associated with Cavity Walls

Although the rain screen principle had not yet been articulated or developed during the late 19th 

century, some basic concepts of the rain screen were seen in the construction of the cavity wall. 

By providing an exterior skin, cavity walls were more effective than solid and other hollow wall 

types in preventing water intrusion, particularly from wind-driven rain; but their construction did 

not guarantee dry building interiors. Water that penetrated the outer wythe was often not drained 

quickly enough, or at all. Lingering moisture within the cavity space could easily find its way to 

the inner wall via surface absorption and capillary action, while stagnant air encapsulated within 

the wall cavity did little to promote evaporation or drying. 

In fact, builders now had to contend with additional complexities within the wall system, such as 

cold-bridging created by wall connections, as well as moisture accumulation and condensation 

within the cavity. Cold-bridging describes a condition where heat flows through a material 

“bridge” that is the path of least resistance in a layer of insulation. In the case of a cavity wall, 

heat flows through metal or brick header connections, which bond the interior and exterior 

wythes for increased stability and distribution of lateral load. Historically, these connections 

presented a significant concern for the transmission of dampness to interior walls. Due to 
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temperature differentials, condensation occurred when areas adjacent to metal or brick ties 

reached dew point conditions and resulted in unsightly patches of damp at interior finishes.35 

In contrast to relatively large cold-bridges formed by brick headers, metal ties were small in 

section, cheaper to utilize, and due to their lack of porosity, presented less potential for moisture 

to penetrate; thus, they were recommended over brick or stone for bonding purposes. Cold-

bridging concerns were also exacerbated by the tendency of mortar to fall into the wall cavity 

and lodge on top of the ties. Formation of a mortar bridge could potentially draw moisture from 

the outer wall and along the connection, via capillary action, towards the inner wall.

Additionally, the effectiveness of the cavity wall at insulating the building created an increased 

temperature differential between the interior and exterior spaces, causing condensation to occur 

directly inside the cavity. Furthermore, the cavity space was completely inaccessible to builders, 

owners, and inhabitants and rendered future problems, such as vermin or mold growth, difficult 

to remedy.

While cavity wall construction also provided improvements in material economy and insulation, 

the issue of removing moisture from within the cavity severely limited the benefits created by its 

construction. As a result, cavity walls experienced a significant decline in use by the turn of the 
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and 20th centuries in the discussion of cold-bridging and in various attempts to prevent moisture from traveling 
along bonding ties. See Advanced Building Construction, 62; Gratwick, Dampness in Buildings, 252; Jaggard and 
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20th century and did not gain popularity in America again until after 1930.36 Along the way, 

significant technical developments such as large scale public works projects and engineered 

cladding materials in the fields of architecture and engineering would provide the tools necessary 

for a revival of the cavity wall in a technologically superior form. 
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Reardon, Principles of Brick Engineering, 1.



CHAPTER 3.

The Evolution of the Weep-Hole
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3.1 A Discourse on Dampness: Ventilation versus Drainage

Construction of the cavity wall was a tremendous step along the path of progress towards 

creating a water-resistant wall. It helped to alleviate the problems of cold, damp interiors 

associated with solid wall construction by minimizing the possibility of direct penetration of 

dampness.37 Many builders continued to devote efforts towards finding the most effective 

construction of the cavity wall. Numerous variations in design and construction to reduce 

dampness were tried. Still, water often collected in the cavity itself, requiring further 

remediation. Initially, methods to address the moisture problem included alterations to the cavity 

wall that incorporated means of ventilation and evaporation, instead of direct drainage. 

A retrospective look at The Ten Books on Architecture, written during the first century B.C., 

shows that the idea of using ventilation to promote dry building walls was not a new concept 

unique to 19th century development of the cavity wall. Vitruvius writes, “But if a wall is in a 

state of dampness all over, construct a second thin wall a little way from it on the inside, at a 

distance suited to circumstances, and in the space between these two walls run a channel, at a 

lower level than that of the apartment, with vents to the open air. Similarly, when the wall is 

brought up to the top, leave airholes [sic] there. For if the moisture has no means of getting out 

by vents at the bottom and at the top, it will not fail to spread all over the new wall.”38 Thus, an 

extra layer of weather protection was created, and as Vitruvius suggests, a space between the two 

wythes would theoretically allow air to circulate within and subsequently, help dry the wall.

In 1886, American Architect and Building News references this exact passage from Vitruvius 

while noting, “It is strange that, with all our boasted progress in engineering and practical 
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19th century construction methods, stones were laid level to create two parallel walls, with additional stones laid at 
intervals across the unfilled cavity space and run through the entire wall thickness for bonding. See Vitruvius, The 
Ten Books on Architecture, trans. Morris Hicky Morgan (New York: Dover Publications, Inc., 1960), 51-53.

38 Vitruvius, The Ten Books on Architecture, 209.



architecture, we are really little better off than the Romans were in the construction of basement 

walls that shall resist moisture.”39 The article also bemoans, “How few builders of such walls 

take care to make the cavity extend below the level of the floor, or to see that openings are 

left.”40 With the exception of a few scattered references such as Palladio, who likewise built 

upon the works of Vitruvius and declared, “It is very commendable in great fabricks [sic], to 

make some cavities in the thickness of the wall from the foundation to the roof, because they 

give vent to the winds and vapours, and cause them to do less damage to the building,” it appears 

that the height of development in brick cavity wall construction occurred after 1880.41

Although Vitruvius included air-holes in the wall for evaporative purposes, it is unclear if he also 

intended to prescribe direct drainage of the wall through these features. However, this early 

documented example of cavity wall construction expresses important ideas that pertain to later 

development of the concept of wall drainage at the building envelope. Firstly, a vertically and 

horizontally continuous cavity separating the inner wall and outer wall is shown as necessary to 

prevent the transfer of moisture to the interior of a building. Secondly, he introduces the practice 

of implementing voids through the base of the wall to help promote and direct water movement 

outwards from the building.

At least as early as 1834, the early 19th century saw the reintroduction of channels perforating 

cavity walls that were specifically intended to relieve dampness. One purpose of including these 

channels was to ventilate damp basement areas and to keep timber floor joists dry.42 It is clear 

from texts and manuals of this time period that in order to remediate dampness at the basement,
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40 Ibid.

41 Andrea Palladio, The Four Books of Architecture (London: Isaac Ware, 1738; reprint, New York: Dover 
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42 See Haglock, “Concrete Block Walls Act as Ventilators,” The National Builder, 2; Loudon, The Architectural 
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Other Moist Soils,” by William J. Short, 233; Gratwick, Dampness in Buildings, 182.



builders utilized these channels with the intent to ventilate and evaporate damp air, not to drain 

any moisture that had accumulated, within the wall space. These through-wall channels were 

placed at intervals along the wall and connected a hollow air space within the wall to air at 

interior building spaces. One early building design by surveyor William J. Short in the 1834 

Architectural and Magazine Journal illustrates a hollow channel in the center of a solid wall, 

located just below a damp-proof course of “cheap stone or slate” (See Figure 3.1).43 In order to 

ventilate the cellar space, Short proposes that “at various intervals... small openings 

communicating between this channel and the interior of the building should be made; so that a 

current of air from the exterior may be driven through the channel and openings under the floors, 

in order to sufficiently ventilate the same.”44 Without calling for additional openings at the outer 

wythe and with only a small channel in a solid wall, it is unlikely that Short’s method for 

ventilation, and thus evaporation, was effective. 

Figure 3.1: A diagram of an early ventilated cellar space exhibiting openings (b) at the 
interior wythe that connect to a channel (a) within a solid wall.
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Later adaptations of the through-wall channel commonly utilized “air-bricks” at intervals along 

the base of the inner wythe and the top of the exterior wythe (See Figure 3.2). An air-brick, as 

defined in A Dictionary of Architecture and Building in 1905, is a hollow or pierced brick 

or piece of hard material, about the size of a brick, that is built into a wall with ordinary bricks to 

allow the passage of air.45 It seems that builders thought dampness could be drawn out from the 

basement, into and up through the wall cavity by convection, finally exiting through air-bricks at 

Figure 3.2: Air-bricks are utilized at the base of the interior wythe and the top of the exterior wythe 
to ventilate a damp cellar space. Although this particular image depicts the use of air-bricks in 

concrete block walls, it illustrates the popular idea that the use of air-bricks could promote 
ventilation through the wall if configured in the manner illustrated.
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the top of the exterior wall.46 In theory, this system could promote the health of inhabitants by 

expelling adulterated air, which could otherwise spread insidiously throughout the rooms of the 

house. It is unclear if this was scientifically proven at the time, but the proliferation of similar 

thought published in contemporary building literature indicates its popular acceptance.47

One thing is clear, however; drainage is not addressed in construction of these particular wall 

systems. In fact, the placement of interstitial wall channels at the base of interior wythes directly 

contrasts the fact that weep-holes must necessarily be placed along the exterior wythe in order to 

function properly. A look at the terminology used in early building literature supports this theory. 

Terms such as “air-brick” and “venting” imply an evaporative function at the cavity wall, 

whereas the term “weep-hole” (which does not readily appear in envelope construction until after 

1910 in window systems and 1920 in wall cladding systems) inherently implies a primary 

function of drainage. Common sense dictates that draining water from within the wall should be 

directed outwards, instead of towards an interior space that builders hoped to keep dry. However, 

variations of this ventilation system continued to be used into the beginning of the 20th century.48

Following the turn of the century, a distinct shift in the application of air-bricks occurred. Instead 

of connecting space within the cavity to interior spaces, air-bricks were placed at the base of the 

outer leaf, thereby connecting the hollow space to exterior fresh air. Still, based on descriptions 

of such configurations, application of air-bricks through the exterior wall was intended for the 

purpose of ventilation, not drainage. An article published in 1908 by The National Builder 
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describes “customary” practices of hollow wall building and notes, “The bottom course of the 

outer wall is not less than one course below the damp-proof course of the inner wall, and has air 

bricks in it at intervals of 4 ft. to 6 ft., to allow a constant upward current of air to dry out any 

moisture; similar air-bricks are put at the top if the hollow space is covered.”49 Similarly, 

Cassell’s Building Construction, published five years after The National Builder article, 

maintains that it is “absolutely essential to have air-bricks or ventilating grids in the outer face of 

a cavity wall. They should be placed about 6 ft. or 8 ft. apart in the lowest course of the face-

work wall, that is, at the bottom of the cavity... [and] similar air-bricks must be placed at the top 

of the cavity to allow of [sic] continuous ventilation” (See Figure 3.3).50
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Figure 3.3: An air-brick is utilized at the base of brick face-work, intended for the 
purpose of ventilation.



Based on a survey of literature pertaining to wall construction, there appear to be four general 

configurations of through-wall channels used in cavity wall construction, with varying results of 

effectiveness in keeping building walls dry. 

1) Voids only at the base of the interior wythe.

2) Voids at multiple locations at the interior wythe.

3) Voids at the base of the interior wythe and top of the exterior wythe.

4) Voids at the base of the exterior wythe and top of the exterior wythe.

A clear distinction emerges between through-wall channels used for ventilation and those used 

for drainage. Perforations at the inner wythe were routinely used to increase ventilation of the 

cavity itself or within individual rooms of a building. In certain cases, these voids in the wall 

fabric were used in combination with voids at the exterior wythe. On the other hand, perforations 

used for drainage are located only at the base of the exterior wall. Outlets incorporated into the 

envelope to promote air circulation cannot be considered true weep-holes, although they may 

inadvertently act as such given the right conditions. Air-bricks installed at the base of the exterior 

wall, although primarily intended for the purpose of ventilation, also provided outlets for water 

to potentially exit the wall. This seemingly small change from incorporating air-bricks at the base 

of the inner wythe instead to the base of the outer wythe in brick wall construction may have 

unintentionally provided a blueprint for a more effective and direct means of draining damp 

walls.
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3.2 Engineering Developments in Drainage During the Late 19th Century

Evidence of building methods specifically intended to provide drainage of the building envelope 

are quite scarce prior to the 20th century. However, wall drainage was commonly employed in 

engineering projects such as dams, revetments, and retaining walls. The means to address the 

extreme soil and hydrostatic pressure conditions present in large-scale, sub-grade construction 

necessitated advanced technical research and understanding in the field of civil engineering. 

Thus, related terms “weeper,” “weeping-hole,” “weeps,” and “weep-hole” originate from civil 

engineering and are seen in British literature beginning in the 1870s and 1880s. By the 1890s, 

references to weep-holes used for drainage of retaining walls was common in engineering 

journals and literature. 

Weep-holes were open spaces incorporated at certain pre-determined intervals along the wall that  

provided a simple and efficient means of drainage. At 9 inches high by 2 inches wide, the early 

weep-holes described by Selim Hobart Peabody and Charles Francis Richardson in The 

International Cyclopedia in 1899 were much larger than their modern day cavity wall 

counterparts and were recommended at a distance of every 36 square feet of wall.51 An 

engineering publication from 1898 titled Railway Construction notes, “Suitable arrangements 

must be made to take away the drainage water which will collect at the back of the walls, and 

weeping holes or outlets must be left in the lower part of the walls to convey the water into the 

water-tables on the line.”52 Also in 1898, The International Cyclopedia: A Compendium of 

Human Knowledge noted that if water was allowed to remain behind the retaining wall, it 

increased pressure build-up on the wall by turning the earth into a semi-fluid state.53 Wet soil fill 
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behind this barrier could create significant hydrostatic pressures, which would subsequently 

weaken the strength and stability of the wall. Thus, early weep-holes helped to release and 

balance the pressure of moisture build-up at sub-grade and retaining walls. 

In cold climates, major concerns about water penetrating masonry structures were heightened 

because of the potential for moisture remaining in the masonry to freeze. Upon freezing, the 

moisture would expand within the pores of the material, frequently causing it to crack or burst. 

A means of removing excess moisture that typically collected at the reverse side of the wall 

structure and at foundations was required. 

The International Library of Technology, published in 1905, described the need for soil drainage 

at the back of a retaining wall at a sloped site, in one instance, to prevent “any surface water 

from running down the slope of the surcharge [embankment] and thence down the back of the 

wall, causing a change in the nature of the filling and probably damaging the masonry by 

freezing.”54 Because of this issue, weep-holes, typically formed of terra-cotta, lead, or copper 

pipe, were used for drainage at the retaining wall. It was recommended that builders place these 

“weepers” at intervals of one for each 5 to 6 yards of surface area. Additional open drains 

running along the length of the wall were placed at the rear side of retaining walls in order to 

help promote drainage directly to weep-holes.55 

Weep-holes were also recommended in the repair of the Chanda Fort, a fortified wall that 

measures approximately six miles in circumference and surrounds the city of Chanda, helping to 

hold back seasonal flood waters from the Erai River. The British Superintendent reported in an 

archaeological survey conducted in India from 1914-1915 that the Chanda Fort, constructed 

during the middle of the 15th century and “still of great utility to the municipality” even after 

 Chiu - 44 

54 International Library of Technology (Scranton: International Textbook Company, 1905), 30.

55 Ibid., 30-31.



five centuries, was in need of minor conservation repairs at the time.56 He describes the wall as 

follows:

The walls have been constructed in two parts — (i) the outer part, on which the 
battlements stand, which is built of rubble-in-mud with dressed stone in mortar on the 
outside and coursed stone-in-mud on the inside, and (ii) the rampart wall, built against the 
former; it is also constructed of rubble-in-mud with dressed stone on the inside and 
random stone paving on the top. Water gets in between these two walls... and either 
causes the mud to swell or has to force its way outwards and thus splits the face of the 
wall and causes collapse [emphasis added]. Had the walls been provided with weep-holes 
to permit of the water finding its way out, very little damage from this cause would have 
occurred [emphasis added]. The bastions have collapsed for the same reason, water 
having got in through cracks in the floor or where the paving has come away from the 
wall. To preserve the wall properly this percolation of water must be stopped... All cracks 
must be filled, missing paving replaced, and where walls appear weak, weep-holes 
provided.57

Despite the recommended use of weep-holes for repair of a double-wall-type system to 

counteract the cyclical expansion and contraction of fill between inner and outer walls, this 

description is not meant to imply that the walls at Chanda Fort are early cavity walls. This 

description is simply used as one of many examples of the benefits gained from and necessity of 

functional drainage in a variety of different wall types.

Wall drains were also utilized during construction of New York City’s underground rail tunnels 

during the late 19th century. As documented in 1874 by Scientific American Magazine, masonry 

tunnels comprising four tracks within three parallel passageways were built in phases along the
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west side of Manhattan, from 49th Street to 133rd Street. Six-foot thick walls were constructed 

beginning at three feet below railroad grade. These walls rose approximately 15 to 20 feet high 

and tapered in thickness as the wall extended upwards until reaching street grade. Depending on 

existing topography, the face of retaining walls at open cut sections would transition to the 

interior face of masonry tunnels, where ground headway increased and the railway continued 

completely below grade (See Figure 3.4). Some sub-grade passageways were finished with stone 

facings, others lined with brick masonry. Both types used holes at the wall base for drainage.58

During construction of an open cut section from 49th to 79th Streets, drain openings measuring 4 

inches by 6 inches were set into the base of masonry retaining walls at 50 foot intervals.59 

Similar construction was undertaken at 116th to 133rd Streets.60 Increased headway due to a high 

ridge between 66th to 71st Streets necessitated modified construction of the tunnels. Brick arches 
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59 Ibid.
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Figure 3.4: Red lines indicate general configuration of wall drains constructed at the base of walls 
and spandrel arches in masonry tunnels of the New York City underground railway.



resting on stone abutments were constructed, with rubble masonry fill at spandrels. Clay pipe 

drains, measuring six inches in diameter, ran through the thickness of the arch at its base and 

were placed every 50 feet to properly drain rubble fill.61

Significant construction efforts and money were invested in building transportation infrastructure 

during the late 19th century. Within these subterranean transportation tunnels, weep-holes helped 

to balance hydrostatic pressure by allowing moisture to drain from the soil backfill towards the 

interior of the tunnel. Although seemingly unrelated to the cavity wall, retaining wall 

construction and technical advancements during the late 19th century promoted an understanding 

of the necessity of drainage in order to prevent structural damage to walls. The transfer of ideas 

from engineering to architecture foreshadows the increasingly scientific movement towards 

materials testing and a more comprehensive understanding of building systems performance that 

would support later development in the field of architecture particularly during the beginning and 

middle of the 20th century. This progression occurred gradually, as water penetration was only 

addressed for individual envelope components for many years.

3.3 Weep-Holes and Condensation Gutters in Window Construction

The use of weep-holes in building envelope construction first appears during the 19th century in 

windows, particularly in the construction of casement windows in order to remove excess water 

that resulted from condensation and rain penetration. In 1880, The Architectural Magazine 

published a review of architect C.W. Trendall’s 1833 book Examples for Interior Finishings, in 

which Trendall illustrates in two plates, “Another French casement window, with the parts of the 

full size, showing the meeting styles, hanging styles, window frame, meeting bar, [and] metal bar 
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to insert in the window sill, perforated with holes for the escape of rain water, & c. [sic]”62 The 

reviewer’s indication that “there is nothing new or remarkable in [this book]” suggests that the 

use of drainage holes in window construction was relatively common knowledge by the late 19th 

century.63 Several additional sources also indicate that some principles of water drainage at the 

envelope were understood and employed more readily in window construction prior to the 

application of weep-holes in cavity wall construction.

Rivington’s Notes on Building Construction, published in 1875, describes the use of drainage 

holes in French doors. The author states, “When a casement window extends down to the floor it 

becomes in fact a glass door, and is often made to open inwards; in such a case it is very difficult 

to keep water from entering between the foot of the door and the sill... Any wet that may 

penetrate between [the throated weather board and the metal water bar fixed in the oak sill] is 

caught in the groove formed in the sill at the back of the water bar, and conveyed away through a 

hole bored in the oak sill as dotted” (See Figure 3.5).64 Channels that ran behind the frame, along 

the sides of the sash, likewise helped to direct excess water to the grooved sill formation, where 

it was then directed outwards from the building.65 
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Similarly, the 1921 publication of Architecture features an article on window trim titled 

“Construction of the Small House” by H. Vandervoort Walsh. This article helps to crystallize an 

idea pertinent to water drainage at the envelope that would later be applied not only to cavity 

walls, but to all manners of modern wall and window construction. Discussing casement 

windows, Walsh states, “...The difficulty of weathering can be overcome to a large extent by not 

attempting to keep out the rain but lead it down and around the sides, draining it off at the sill. 

This is accomplished by cutting a 1/4-inch half-round groove around the sides and in the sill to 

act as a canal for collecting the water which has seeped in. A few 1/4-inch round weep holes 

from the groove in this sill outward will drain this collection of water off.”66 
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Weep-Hole

Figure 3.5: A drainage hole conveys water that collects in the water bar away 
from the base of the French door and the building.



As mentioned in Chapter 2, many earlier efforts in keeping a building dry focused on preventing 

moisture altogether which, as seen by the number of construction remedies and vigorous 

attempts over several centuries, proved next to impossible. Understanding and addressing 

moisture as an inevitability in casement window construction subsequently allowed builders to 

formulate an effective method of removing collected moisture from the assembly.

Construction of casement windows illustrated yet another concept in envelope construction that 

had not yet been fully realized in wall construction by the early 20th century. Rivington’s Notes 

on Building Construction states, “In exposed places [French or casement windows] should be 

made to open outwards, as then the wind pressing upon them from the outside only makes them 

close more tightly.”67 This statement indicates a recognition of the differential pressures that exist 

between indoor and outdoor environments. As described in the rain screen principle in Chapter 2, 

the same force that causes wind to close a window more tightly in this instance must be 

countered in some manner to prevent water from also being driven into vulnerable joints at 

windows and walls. Weep-holes not only provide an outlet for the release of water but, in 

combination with other means used to prevent pressure build-up at enclosed spaces, can help 

balance atmospheric pressure differential between these spaces, depending on the relative sizes 

of the weep-hole and cavity. Although there does not appear to be any 19th century scientific 

literature in regards to proving how this principle worked in window construction, and ideas may 

have been driven by instinct or experience and handed down through traditional building 

practices, the use of weep-holes in windows is a concept and a method of addressing water 

penetration in one building sector that may have helped influence its later use in terra cotta 

cladding and cavity walls.
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Although weep-holes already appear to be in general existence during the last quarter of the 19th 

century, a leading American manufacturer of windows, Henry Hope & Sons, claims to have 

popularized their use in 1894 with the introduction of condensation gutters with weep-holes in 

their manufactured windows.68 By the early decades of the 20th century, the terminology used to 

describe drainage holes in a number of different architectural and engineering applications 

(although not yet in construction of the cavity wall) and the term “weep-hole” appears to be 

relatively commonplace and the use of weep-holes continued to appear in literature regarding the 

construction of casement windows and increasingly, skylights. An advertisement for metal 
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gutters in 1894, they were “copied so largely [by others] as to have become almost a standard feature in casement 
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favor of a wide, shallow channel at the interior sill that would allow condensation to evaporate freely or be wiped up 
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that in actuality, the weep holes “only serve as inlet holes for rain and wind during cold and stormy weather.” 
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Figure 3.6: A 1908 advertisement for metal skylights manufactured by 
The Canton Steel Roofing Company touts the benefit of using weep-holes.



skylights placed in Carpentry and Building magazine was accompanied by a brief description 

stating, “[The skylights] are so constructed that all condensation is carried to the curb and 

discharged through weep-holes on to the roof without soaking between laps. The peculiar 

construction of the curb on our skylights renders counterflashing unnecessary” (See Figure 

3.6).69 While the lack of roof counterflashing may have proven detrimental in the long term, the 

weep-hole concept in this advertisement echoes the language seen in similar skylight and 

window advertisements in Sweet’s Catalogue and other magazines from this period (See Figure 

3.7).70

Today, the construction of many modern curtain wall buildings, in which glazing forms the 

majority of envelope material, lends itself to our perspective of windows as a crucial component 

that requires extensive detailing and attention as a wall material. However, during the 19th and 

early 20th centuries, the transfer of ideas between window and wall construction and related 

attempts to release moisture that had collected within spaces in the constructed assembly systems 

still had yet to occur. 
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edition of the catalogue that identified the drainage components specifically as “weep-holes” in a detail drawing. 
Vaile & Young also provided an illustrated advertisement showing outlets at the condensation gutter bars, although 
no explanation is provided. In a departure from the other manufacturers, the New York Bridge and Iron Company, 
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Consistent use of weep-holes in skylight construction is not seen at this time, and advertisements show various 
combinations of condensation gutters with or without weep-holes identified as such. See Sweet's Catalogue of 
Building Construction (New York: The Architectural Record Company, 1911), 512, 514-515, 519, 524-526.



3.4 Building Wall Drainage Prior to the 20th Century

Presumably because drainage was not used as a primary method of removing water from a wall, 

the term weep-hole was not used in relation to cavity or hollow-block wall construction during 

the 19th century. Rare references to related drainage components, termed “drain bricks,” were 

vaguely described indicating negative space or vacuities within the wall.71 Towards the end of 

the 19th century, a relatively rare call for drainage of the cavity wall is seen, by providing voids 

at the exterior wall base. In 1896, an excerpt titled “Horizontal Damp-Proof Coursing” stated, 
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Weep-Hole

Figure 3.7: A condensation gutter with weep-hole, shown in a 1911 Sweet’s 
Catalogue advertisement for “Vaile & Young’s Patent Metallic Skylight.”



“In hollow walls, to prevent wet which comes into the hollow space, through the outer portion of 

the wall, from finding its way along the top of the damp-proof course to the interior of the wall, a 

cement fillet may be run along the angle at the bottom of the hollow space between the top of the 

damp-proof course and the inner portion of the wall, and an exit should be afforded - in any case 

temporarily - for the water at various points by leaving openings in the brickwork. If these are 

left permanently they should be protected by gratings.”72 The cement fillet acted as early wall-

base flashing, directing water on the face of the inner wythe through to the exterior of the 

envelope. Construction of these temporary drainage voids would have helped to relieve 

dampness only during construction or the early phase of a building’s life cycle. If these channels 

were filled soon after, long term mitigation of dampness and wall drainage would be less easily 

achieved. 

The specific form of this particular example of incorporating voids through the building wall 

matrix is not recorded in any further detail. Open spaces through the wall, which would have 

been large enough to require protective gratings, may have consisted of air bricks or gaps within 

the mortar. Installation of gratings would have helped to protect vermin from entering the cavity, 

while allowing unhindered passage of water exiting through wall channels.73 The general lack of 

information on wall drainage from contemporary sources also suggests that weep-holes in cavity 

wall construction were either rarely used or very poorly documented in literature. Thus, a great 

deal of this research depends on interpreting the somewhat vague and scattered pieces of 

information on the concept of cavity wall drainage during the 19th and early 20th centuries.  
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The aforementioned description of voids in the building envelope, employed in combination with 

the cement fillet, diverges from other contemporary references by making no mention of 

evaporation and ventilation through the proposed channel. The through-wall voids, as described 

in Advanced Building Construction, appear to be stand-alone drainage elements at the exterior 

wall base. The latter description of open interstices covered by protective gratings at the cavity 

wall base is one of the earliest known descriptions of a weep-hole precedent in cavity walls.

3.5 Drainage of Terra Cotta Cladding

The rise of steel frame construction and growth of the terra cotta industry towards the end of the 

19th century and early 20th century paralleled the temporary decline of cavity wall construction. 

The ability of terra cotta to withstand fire and to take an infinite number of finishes and amount 

of ornamentation contributed to its popularity as a high-performing, cost-efficient, and 

lightweight cladding material for large scale steel frame buildings. Terra cotta was molded into 

relatively thin forms, requiring webbing at the back of individual units in order to provide 

structural stability to the forms. This method of manufacturing produced significantly lighter-

weight forms and at the same time created hollow spaces within the terra cotta units. These 

hollow spaces were packed with concrete or masonry backfill during construction of the 

building, or left partially hollow. Alkalinity of the concrete provided corrosion protection for 

encased metal anchors that were commonly used to attach terra cotta units to the building. In 

some cases, only the metal anchors were encased in concrete and the front portion of the terra 

cotta unit was left hollow for economic reasons and to reduce overhanging load at projecting 

roof elements.74

 Chiu - 55 

74 Herbert M. Greene Architects, Ralph H. Cameron, and Edward W. T. Lorey. “Atlantic Terra Cotta in 
Combination,” Atlantic Terra Cotta 6, no. 8 (January 1924), Sheet No. 1.



Standardization was not formalized within the terra cotta industry during the early 20th century. 

With the exception of work conducted by the in-house engineering standards branch of the 

Atlantic Terra Cotta Company, very little scientific research on terra cotta materials, construction 

methods, or performance once installed in the field was conducted during the years prior to 

World War II. Thus, architects and builders relied heavily on methods of trial and error.75 

Various problems related to moisture intrusion were observed in terra cotta. Water penetration 

through mortar joints, porous clay units, and leaking roof elements often occurred behind the 

face of terra cotta units. In many instances, repetitive wetting over a period of time resulted in 

insidious damage to the cladding system and metal anchor support systems. In general, the 

gradual deterioration of terra cotta components was hidden from view, often making it difficult to 

identify, and patterns continue to be uniquely dependent on variations in manufacture, original 

installation, component parts, and attempted repairs.76

Glazed architectural terra cotta was perceived as an impervious, “weatherproof” surface and 

initially, architects and builders designed these systems without flashing, drips, or weep-holes.77 

Moisture intrusion was often attributed to faulty mortar joints, which were observed to “crack 

and disintegrate to some extent under the action of the elements.”78 Water migrated past joints 

and surfaces and collected in the wall area behind the face of terra cotta units, typically in open 

pores of concrete back-fill or any areas that were left unfilled by builders. By the early 1920s, it 
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was apparent that many of these buildings were not water-tight, despite original intentions, and 

that more attention to flashing, exposed architectural features, and joints was needed. 

Conducted by the Atlantic Terra Cotta Company, an examination of buildings constructed from 

approximately 1880 to 1920 revealed a number of saturated terra cotta cornices and parapets, as 

well as cracked and deteriorated mortar.79 An article titled “Keeping Buildings Dry” in the 

monthly Atlantic Terra Cotta series observed, “At first glance, ... it should not be very difficult to 

make [cornices, parapets, and balconies] water-tight, but the present condition of a great many of 

these features proves that for one reason or another, water-tight joints are not being obtained.”80 

Lack of moisture control often resulted in aesthetic deterioration of the facade, damage to 

interior plaster ceilings and walls, and rapid corrosion of steel members anchoring architectural 

terra cotta ornament, which created significant safety concerns.81

These early observations of terra cotta deterioration stimulated discussion within the industry to 

determine the source of, and possible solutions to, water-related deterioration. By the early 

1920s, the question of whether or not to fill terra cotta units was a significant concern that 

remained up for debate. Although there is a lack of information on contemporary thought 

regarding water infiltration through the integral masonry backup of terra cotta cladding, it is 

possible that, by completely filling the void, builders thought there would be no opportunity for 

moisture to permeate the building. Others, however, believed that moisture penetrating the 

cladding system could easily saturate fill, causing it to expand and burst through the face of the 

terra cotta unit due to cyclical freeze/thaw action.82 
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1914 1927

Figures 3.8 (left) & 3.9 (right): A standard construction detail for a “Heavy Bracketed 
Cornice with Ornamented Cheneau Showing Method of Support and Anchorage,” published 
by the National Terra Cotta Society, shows complete masonry backfill at terra cotta units in 

the original 1914 drawing. A revised drawing of the same detail was published in 1927, 
illustrating partial fill and hollow voids (highlighted in red) behind terra cotta units, as well 

as weep-holes (highlighted in blue) indicated in the drawing as “W. H.”

Image blocked due to copyright



A review of published terra cotta literature reveals that prior to 1920, terra cotta cladding was 

typically back-filled with concrete. Many of the buildings constructed in this manner and 

examined by Atlantic Terra Cotta exhibited deterioration.83 Between 1920-1930, an increasing 

number of terra cotta details illustrated partial masonry fill backup with voids left immediately 

behind cladding, particularly at cornice and parapet locations (See Figures 3.8 and 3.9).84  

Atlantic Terra Cotta’s article “Keeping Buildings Dry” observed that “damage... is caused by the 

freezing of water that collects in pockets and open spaces in the interior of walls and structural 

features. The expansion of ice repeated through a number of cycles may finally rupture the 

masonry.”85  

Growing awareness that buildings were inherently not water-tight represents a tremendous 

conceptual breakthrough in the development of wall construction and the ability of 20th century 

architects and builders to understand building performance. With this new recognition that water 

penetration was inevitable, architects began illustrating provisions for terra cotta drainage in 

construction details.

One such detail is provided of a stepped roof and pedestals at the Scottish Rite Cathedral in San 

Antonio, Texas. Designed by Herbert M. Greene Company Architects, the detail illustrates a 

“modern, open type of construction, [which] is far superior to the old method.”86 Construction 

details show a typical section through the terra cotta roof, with hollow units jointed together 

along the profile of the stepped roof (See Figure 3.10). Along the beds of terra cotta roof slabs, 
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drainage channels were implemented so as “to facilitate easy flow of moisture” on top of the 

recommended waterproofing membrane and towards a copper-flashed gutter with a drainage 

outlet intended to remove potential water seepage that was expected to occur through mortar 

joints.87 A note on the detail drawing states, “The voids in the terra cotta are left unfilled,” in 
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Figure 3.10: Drainage channels facilitate moisture drainage over the top of waterproofing 
towards a copper gutter and drainage outlet at the Scottish Rite Cathedral in San Antonio, Texas. 

Detailed by the Atlantic Terra Cotta Company (1924).



order to promote drainage.88 Construction of the altar pedestals also appears unfilled in contrast 

to previously built solid forms, which the company noted typically resulted in heavily saturated 

masonry.89
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Figure 3.11: Typical section detail of a terra cotta cornice, Atlantic Terra Cotta 
Company (1924). Weep-holes (highlighted in blue) are specified at the base of 

overhanging, unfilled terra-cotta cornice units.



Supplemental construction drawings of a terra cotta cornice at the Scottish Rite Cathedral do not 

show any provisions for drainage in the January 1924 publication. However, details for a typical 

cornice in the February issue, and all subsequent issues thereafter, illustrate weep-holes at the 

base of terra cotta units, which are recommended to remain hollow except where required for 

protection of anchors (See Figure 3.11).  

An advertisement produced by the Atlantic Terra Cotta Company, one of the day’s leading 

manufacturers of terra cotta, indicates that their inclusion of weep-holes in cladding drainage 

stems from contemporary archaeological excavations conducted on an ancient Mesopotamian 

structure, which reveals the early use of weep-holes in brick structures. 

By introducing weep-holes in Atlantic Terra Cotta Construction we follow a practice that 
has stood a test of sixty centuries. Recent excavations in Mesopotamia conducted by the 
Museum of the University of Pennsylvania have cleared a great brick tower erected 6000 
years ago, known to be similar in appearance, size and construction to the Tower of 
Babel... We quote his report in part: “The quality of the brick and of bricklaying is 
astonishingly good and much of the wall face is as clean and new looking as when built. 
The surface is relieved by shallow buttresses; a further variety is afforded by the 
numerous ‘weeper holes’ running through the thickness of the burnt brick wall for a 
drainage of the filling, which without this precaution would have swelled with the 
infiltration of the winter rains and burst the casing.”90 

Looking to this ancient precedent and observation of conditions at existing structures that 

utilized terra cotta at the facade, the company recommended that although encasement of metal 

components in concrete was required to prevent corrosion, voids in terra cotta units should 

generally be left unfilled to minimize damage from water. Noting that fill often became 

saturated, which increased the potential for rupturing cladding in freezing conditions, the 

company specified that “the Terra Cotta [sic] should be provided with weep-holes to promote 

drainage and ventilation.”91 This convergence of drainage and ventilation represents somewhat 
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of a contradiction in understanding the true function of weep-holes, but indicates the progression 

of thought from ventilation to drainage as a primary means of addressing dampness in walls that 

was beginning to materialize as a result of ongoing technical examinations of terra cotta.

Throughout the mid-1920s, new details that incorporated weep-holes, flashing, and soft joints 

appeared in published literature. Weep-holes were often recommended in conjunction with a 

waterproofing membrane, to provide additional protection against leaks beyond the contractor’s 

control. “In the event of slight leakage, the water cannot penetrate beyond the membrane, and 
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Figure 3.12: A detail titled “Dome Construction with Moulded Ribs” shows weep-holes indicated 
with the notation“W.H.” at the topmost section of the dome. Individual terra cotta units are unfilled.
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finds its way out through the nearest weep-hole. Thus, saturation is prevented.”92 These changes 

were recorded in Good Practice in Construction by author Philip Knobloch, whose 1927 book 

showed weep-holes at cornice detailing. This detail was modified from the original publication 

just four years earlier where weep-holes were not included. The revised 1927 edition of Standard 

Construction published by the National Terra Cotta Society did likewise, including weep-holes in 

a domed roof construction and a specification that stated “Projecting courses, cornices and heavy 

ornamental detail may have washes, drips and weep-holes, where shown on the approved shop 

drawings” (See Figure 3.12).93 The Atlantic Terra Cotta Company acknowledged that 

refinements such as weep-holes, drip mouldings, and protection of metal were likely to result in 

increased cost of manufacturing and drafting, but noted that the fundamental importance of 

including these water-shedding features should become standard industry practice.94 

Although terra cotta continued to be manufactured through the middle of the 20th century, the 

popularity of the industry began to decline towards the end of the 1920s and early 1930s as 

machine-made ceramic veneer, a cost-effective and aesthetically popular material, was 

introduced.95 Regardless, the prevalence of early engineering efforts in terra cotta cladding 

systems would have a profound impact on the way the construction industry began to examine 

wall performance and building design in a more scientific and more holistic manner. The 

pioneering efforts from terra cotta manufacturers in the field of wall drainage would later 

transcend not only terra cotta cladding as the merits of cavity wall construction led to their 

renewed popularity and use in high-rise buildings during the 1930s and 1940s, but also in the 
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multitude of different wall systems which were to follow during the remainder of the 20th 

century.

3.6 Development of Weep-Holes in Cavity Wall Construction

It remains unclear exactly how use of the weep-hole transitioned from terra cotta cladding to the 

cavity wall during the first half of the 20th century. The use of weep-holes in terra cotta cladding, 

commonly employed by 1930, appears to precede their popular use in cavity wall construction 

by approximately a decade. By the early 1940s, a general awareness among builders regarding 

the necessity for wall drainage had developed, along with the recognition that a completely 

water-tight building was difficult, if not impossible, to achieve. The confluence of a number of 

factors appear to have aided the development of this realization and the subsequent use of weep-

holes in cavity wall construction. First, terra cotta as an industry was so prevalent in its heyday 

that it is entirely probable that contemporary ideas and techniques from this particular system 

were effectively transferred into masonry construction as well (i.e. the cavity wall) and became 

part of standardized thinking within the construction industry. The presence of inherent hollow 

spaces in both envelope systems, as well as similar concerns about corrosion of metal 

components within the wall and the difficulty of obtaining tight mortar joints may have 

contributed to the translation of weep-hole use in brick cavity walls. 

Weep-holes were commonly recommended, if not already commonly utilized, in cavity walls by 

the time the second edition of Ramsey and Sleeper’s Architectural Graphic Standards was 

published in 1941. The book illustrates open voids incorporated into the base of load-bearing and 

panel brick cavity wall construction. This is a marked change from the original 1932 publication, 
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in which only very basic methods for solid and hollow brick wall construction were illustrated.96 

Open vertical joints that functioned as weep-holes were recommended in multiple other sources 

as well, although use of the term “weep-hole” appears inconsistent, having not yet become part 

of the standardized lexicon within the industry. In 1942, Mulligan’s Handbook of Brick Masonry 

Construction stated, “In a cavity wall with an exterior section only the thickness of one brick 

(3-3/4 in.), it is expected that in very wet weather water will penetrate through the brick and 

trickle down the inner face. Some means should be provided to conduct this water to the outside 

of the wall... Open vertical joints will provide a means of egress for moisture collected on the 

damp-proof course.”97 Evolving concepts for drainage of the continuous cavity space appear 

similar to early ideas employed for wall drainage at discontinuous cavity spaces in terra cotta 

cladding, and contemporary architects and builders may have drawn upon this earlier building 

wall precedent.

Secondly, condensation became a significant concern among architects and building owners 

during the 1930s. Although people were already familiar with the idea of condensation, L.V. 

Teesdale, a senior engineer at the Forest Products Laboratory observed in 1937, “only recently 

has it become a general problem, particularly in the better class of construction.”98 Teesdale 

attributed rising concerns about condensation to recent design changes intended to improve the 

thermal comfort of occupants, and building efforts to decrease heat loss and wind infiltration.99 

These improvements included the use of insulation and weather stripping in cavity and brick 
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veneered walls, resulting in overall tighter construction.100 Thus, wall drainage became an even 

more pressing issue as temperature differentials were exacerbated in newly constructed wall 

systems. It is possible that with increased potential for condensation in walls, builders began to 

look towards their counterparts in the window industry, which had earlier found a means to 

address the same basic issue.

Finally, the fundamental recognition that water would most likely enter the wall provided the 

impetus for further scientific research and technical development of wall construction. The 

principle that the way in which a wall functions relies on performance of the building as a whole, 

instead of individual component parts, likely prompted architects and builders to treat the 

detailing of design and construction from a new perspective that involved a holistic view of the 

structure. It appears that this was on the mind of several building-conscious individuals, as the 

popularity of weep-holes used in cavity walls can be seen in the array of construction patents 

filed on the subject of wall drainage, beginning in the late 1930s. 

A flurry of sometimes conflicting and convoluted theories of wall drainage emerge from these 

proposals. Patented weep-hole systems from 1938 to the present day suggest integration of 

drainage channels into a variety of cavity wall, solid brick wall, brick veneer wall with stud 

framing, and solid wall configurations of brick facing and concrete masonry unit back-up. 

Proposed methods of forming weep-holes were varied — lubricated rubber tubing removed from 

the mortar prior to completely setting; string which was expected to wick water out of the cavity 

and, upon disintegration, leave voids at joints; and pre-fabricated components that could be 
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inserted in the mortar joint at appropriate, pre-determined intervals.101 The lack of cohesion 

between patented systems indicates some level of confusion surrounding the concept of building 

wall drainage during the middle of the century. Yet, each system provides an invaluable glimpse 

into contemporary thought on the subject.
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Figure 3.13: A cavity wall assembly with airspace (3), patented by Paul Wood in 1938, 
incorporates methods of ventilation and drainage with vents (5) connecting interior spaces 

within the building.
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Figure 3.14: Detail of Wood’s 1938 patented cavity wall assembly. Grooved brick headers (H) tie the 
double wythe wall across the cavity air space (3) and are designed to direct water down through the 

cavity towards the stepped concrete shoulder (7, 8). The inclined shelf is intended to facilitate drainage 
away from the wall, through weep holes (9) at the base of brick facing. Interior air is connected through 

vents (4) at the basement space and near the ceiling of individual rooms (seen at 5 in Figure 3.12).
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In 1938, Paul A. Wood of Roanoke, Virginia submitted one of the earliest patented wall drainage 

system that incorporated weep-holes. This patent describes a hollow wall masonry system 

incorporating both drainage and evaporation intended to render a building “damp-proof or water-

proof while at the same time obtaining air conditioning and insulating effects through adequate 

ventilation” (See Figures 3.13 & 3.14).102 The interior wythe of the proposed cavity wall is 

equipped with vents at the top of the foundation wall (labeled 4) and ventilators (labeled 5) 

located near the ceiling of each room. Enclosed foundation spaces and inhabitable room spaces 

are connected through the horizontally and vertically continuous 2” cavity (labeled 3), which the 

inventor claims will provide automatic air conditioning by way of convection currents. 

Wood proposes other damp-proofing methods at sub-grade walls including an air space that 

“[serves] as a drain for water and which communicates with a plurality of separate relatively 

narrow flues in the wall of the building,” as well as flashing and drain openings intended to 

deflect water from the walls to render them damp-proof from the effects of wind-driven rain.103 

As illustrated in Figure 3.14, the stepped concrete shoulder (labeled 8) at the top of the footing 

forms a lower shelf (labeled 7) seen at the base of the hollow wall. This inclined shelf performs 

as inherent flashing and directs water “which may make its way through the completed outer 

wall section outwardly of the building through suitable weep-holes (labeled 9) formed beneath 

the lower face of the first course of brick on the outer wall section.”104 Special header tiles 

(labeled H), specified for tying the wythes together, provide grooved surfaces that promote 

drainage throughout the wall space and direct water to the concrete shoulder and weep-holes 

below.
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Relying on patents alone certainly does not provide an accurate reflection of the continuing 

evolution of the weep-hole during the mid and late 20th century. Instead, patents reflect an aspect 

of contemporary thought, though the extent to which these innovations were used is unknown 

through patent research alone. Efforts to understand issues of dampness continued well into the 

middle of the 20th century, with renewed focus on wall drainage in addition to ventilation of the 

cavity. Although one cannot assume that all individuals who filed patents relating to building 

construction were necessarily practicing builders, it is reasonable to suspect that they were 

relatively familiar with building construction. Many were appropriately versed in architectural 

terms, materials, and contemporary construction problems. 

By the end of World War II, the concept of wall drainage appears to be common within various 

fields of the building industry. However, patents and literature progressing towards the middle of 

the century exhibit a certain amount of confusion in understanding proper and effective use of 

weep-holes. The concept of controlling moisture migration through the wall was still largely tied 

to ideas involving evaporation and ventilation, creating misunderstandings about how moisture 

could be eliminated from the wall. Trends in technology and materials continued to change at the 

same time, presumably making it difficult to keep up with understanding how these systems and 

concepts effectively worked.

The prevalence of wall drainage systems implemented in brick cavity wall systems is unknown. 

Nor do we know if they were installed, what regions they were used in, how frequently they 

were installed, or the long term effects of their construction. It is difficult to accurately assess the 

popularity or effectiveness of their use, but conducting surveys and additional building research 

may help to determine when and/or where cavity wall drainage was implemented. Case studies 

with access to interior wall cavities would be further necessary to complete the picture of wall 

drainage systems and their effectiveness around the United States. The feasibility of such a study 
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may be a prohibitive undertaking for any present day individual or group, especially considering 

that many of these very early cavity wall design concepts may only have been constructed on 

individual vernacular or residential buildings, if at all, making access and identification 

extremely difficult. 

Based on information provided in literature from roughly 1900 to 1950, the plethora of wall 

systems designed to remove moisture from the wall indicates some lack of early success, and it 

would be fair to speculate that many of these early drainage systems did not work effectively to 

rid the wall cavity of moisture. However, these seemingly simple voids in the wall membrane are 

significant not only because they illustrate the transition from ventilation to drainage as the 

primary means of addressing moisture intrusion, but because they help to keep cavity wall 

systems dry and aid in our ability to understand performance of the building system as a whole. 

The trajectory of the use of weep-hole comprises only a small part of overall efforts to 

comprehend and improve moisture control in building construction. As noted, wall assembly 

systems have changed dramatically over the course of the 20th century, including developments 

in brick veneer, thin-shell masonry cladding methods, and glass curtain wall systems, just to 

name a few. Although materials and methods have changed, weep-holes continue to be used as a 

part of all of these systems. Charting the overall course of weep-hole development in these other 

systems throughout the remainder of the 20th century still has yet to be explored. 
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The effects of dampness on buildings and inhabitants are wide-ranging, and addressing 

symptoms in each case is made more complex by the difficulties in identifying the cause of 

moisture, which may originate from multiple sources. Such complexities are reflected in the 

plethora of sanitary engineering literature from 1870 to 1900. Popular opinion of medical 

professionals and the public held that disease stemmed from unsanitary ground level conditions 

that could travel and permeate the air within a confined building space. As a result, primary 

efforts were directed towards increasing ventilation within the home and within exterior walls. 

Driven by the need to create healthy living environments, builders engaged in a lengthy trial and 

error process to create dry interior spaces by mitigating and preventing moisture migration 

through the envelope during the late 19th and early 20th centuries. 

During this period, weep-holes developed in separate building components. First, large scale 

municipal engineering works necessitated construction of retaining walls for public works 

projects that involved building dams, water supply systems, and transportation infrastructure 

beginning in 1870. Weep-holes integrated at the base of sub-grade and retaining walls helped to 

relieve hydrostatic pressure within the soil that could critically damage structural stability of the 

wall.

Secondly, weep-holes were frequently used in casement window and skylight construction, 

particularly after the turn of the 20th century. At the building envelope, the acknowledgment that 

water penetration was inevitable and efforts to direct water away from the building first appears 

within glazing systems. Incorporated into the design of the framework, condensation gutters and 

outlets allowed collected water to drain outwards of the window or skylight system. Additionally, 

builders recognized the existence of differential pressures between indoor and outdoor spaces, 

and used this condition advantageously by constructing outwardly-opening casement windows in 

order to minimize water penetration at these components.
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Thirdly, widespread use and increased development of terra cotta cladding led to a more 

informed understanding of building wall performance during the early 20th century. Recognition 

that terra cotta did not provide a water-tight surface, despite its perception as an impervious 

glazed surface, and concerns about saturated masonry fill compelled architects and engineers to 

address water penetration of integral terra cotta cladding. Beginning after 1920, leading 

companies such as the Atlantic Terra Cotta Company and the National Terra Cotta Society 

depicted weep-holes in standard construction details as one means to address widespread 

deterioration of joints, steel anchor supports, and exterior wall cladding, and damage to interior 

finishes by providing drainage of partially-filled or unfilled terra cotta units.

Following the decline in popularity of terra cotta, weep-holes used in cavity walls began to 

appear in standard brick construction manuals after 1940. Although through-wall channels have 

been used in masonry walls for several centuries, perforations within the cavity wall fabric were 

typically used for wall ventilation instead of drainage prior to 1940. Wall drainage as a means of 

maintaining a dry wall is a relatively recent 20th century concept. Based on patents filed from 

1938 to the present day, builders continued to experiment with wall drainage in both solid wall 

and cavity wall systems for some time. Modern developments in construction include increased 

use of weep-holes at brick cavity walls, drainage of envelope components, and advanced 

scientific understanding of the rain screen principle, which developed after 1950. 

Weep-holes are only a small part of the overall effort to comprehend and improve building 

performance. Through construction of the cavity wall, many early builders initially desired to 

create a completely dry wall and early efforts focused on trying to increase ventilation within the 

wall. Driven by advancements in materials engineering and scientific testing, a progressive 

understanding that building envelopes were not water-tight led to the recognition that water 

needed to be removed from the wall by means other than ventilation. By the middle of the 20th 
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century, the necessity for wall drainage was clear. This understanding informed builders that, 

contrary to instinct, providing open joints at the exterior wythe could in fact lessen water 

penetration at dry interior spaces and better enable the wall to shed any water that breached the 

protective outer wythe. 

Implementation of water drainage systems in walls was a complex endeavor during the early 

20th century and remains so today. While advancements in construction technology continue to 

be made, moisture intrusion through the envelope remains a problem. Cross-pollination of 

related ideas that has occurred throughout history in separate building elements stresses the need 

for continued communication across a variety of different architectural, engineering, and 

construction disciplines. With continued research, understanding the transition from ventilation 

and evaporation of the wall to the evolution of wall drainage can serve as a foundation for 

ongoing and future technical dialogue, one that reflects the delicate balance of material 

condition, thermal insulation, and future building performance. With this understanding comes a 

hope for improved maintenance practices for the increased longevity and protection of a wide 

range of our collective historic built fabric.
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RECOMMENDATIONS FOR FURTHER RESEARCH

It is the author’s hope that this thesis may provide a foundation for additional research on the 

subject of building wall drainage and weep-holes. Areas for further study may include, but is 

certainly not limited to, the following:

• Development of weep-holes used in masonry civil engineering for public works projects.

• Development of weep-holes used in window systems.

• The use of weep-holes in wall systems after 1930. Areas of study may include cast stone, stone 

veneer, brick veneer, cavity walls, curtain walls, and exterior insulated finished systems, 

among others.

• Growth of the insulation industry and related development of moisture control practices during 

the late 1930s and early 1940s.

• Development of weep-hole forms, i.e., voids in mortar, voids formed by removal of string, 

manufactured weep-hole products.

•  A technical evaluation of freeze-thaw expansion and contraction conditions at saturated 

masonry fill.

• A technical conservation investigation on the effectiveness of weep-holes.
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APPENDIX A
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TIMELINE OF KEY WEEP-HOLE-RELATED EVENTS

A general timeline of information pertaining to the evolution of wall drainage is provided here, to 

help situate the reader’s understanding of weep-holes within broader contextual events during the  

19th and first half of the 20th centuries.

1st Century B.C. 

Vitruvius writes The Ten Books on Architecture and proposes the cavity wall as a solution to 

dampness. In his text, he introduces the cavity wall to address primary building concerns of 

structural stability and protection of interior finishes. First, by removing rubble fill within the 

wall, builders could help prevent loss of mortar strength and wall deterioration by leaving the 

wall space hollow.105 Secondly, he advises builders to construct vents through the cavity wall in 

order to promote communication between fresh air and air within the cavity. “For if the moisture 

has no means of getting out by vents at the bottom and at the top, it will not fail to spread all over 

the new wall.”106 Ventilation, and thus evaporation, is viewed as a primary means by which to 

mitigate the presence of dampness.

1738

Palladio states, “It is very commendable in great fabricks [sic], to make some cavities in the 

thickness of the wall from the foundation to the roof, because they give vent to the winds and 
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vapours, and cause them to do less damage to the building.”107 No mention is made of wall 

drainage.

1821

One of the earliest known 19th century descriptions of a hollow wall is given in Hints on an 

Improved Method of Building, by Thomas Dearn. As noted in T. Ritchie’s “Notes on the History 

of Hollow Masonry Walls,” Dearn’s description of the cavity wall consists of two walls, each 

4-1/2” thick, with a 2” thick air space in between.108 

1830s

Conductor of The Architectural Magazine and author of An Encyclopaedia of Cottage, Farm, 

and Villa Architecture, J. C. Loudon publishes multiple methods of constructing walls of stock 

brick in configurations that form individual, hollow spaces. The general reasoning is, voids “will 

prove an antidote to damp” by allowing air circulation and ventilation.109 The primary intent of 

these methods is to address issues of rising damp at the foundation and at basement/cellar spaces.

1850s 

Domestic architecture continues to be the context for further development of the hollow-brick 

wall concept. The popularity of hollow-brick walls also results in several patented molds for 

creating fired clay units with voids.

Andrew Jackson Downing’s Architecture of Country Houses is published in 1850. Downing 

identifies the following four advantages of hollow brick wall construction: 1) Savings of brick 
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and mortar, 2) Prevention of dampness, 3) Savings of lathing and studding at interior walls, and 

4) Security from fire. He illustrates walls comprised of multiple individual hollow spaces (i.e., 

not a continuous cavity) and credits introduction of the hollow wall in America to his colleague 

Ithiel Town.110

1856 - 1874

Construction of an 82-mile long sewage system takes place in London. Headed by chief engineer 

Sir Joseph Bazalgette, the new system is devised to discharge sewage below the level of the 

Thames River, to prevent stagnant sewage from intermixing with the city’s drinking water, and to 

remove it from within city boundaries.111

1860s

In part stimulated by public health concerns and the desire to provide fresh water to citizens, 

municipalities throughout the world begin to invest in public works projects such as dams and 

drainage sewers, particularly during the latter half of the 19th century. Additionally, large scale 

railway transportation systems are constructed in major cities such as New York and London. 

These projects, which require significant amounts of excavation and construction of new 

infrastructure, necessitate the use of well-engineered retaining walls and revetments.

1870s

Sanitation becomes a major public health concern. The fields of architecture and medicine are 

intertwined, as doctors attempt to rationalize the spread of disease by addressing defects within 

the built environment. A paper presented at the Annual Meeting of the American Public Health 
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Association states, “after medicine, ‘as professions most concerned in the preservation of public 

health rank those of the Architect and Engineer.’”112

Architect Carl Pfeiffer further states that the “Science of Ventilation” and subsequently, 

sanitation, “is a question which affects not merely the personal comfort of individuals, but 

according to the opinion of the ablest pathologists, it influences the health and affects the 

duration of life.”113 Attempts to provide means for ventilation and evaporation, which are 

believed to be key components to promoting a healthy and dry building, are common in the 

construction of cavity walls. However, these attempts do not necessarily result in effective 

prevention of dampness.

1872-1873

In “Notes on Retaining Walls,” engineer J.H.E. Hart describes weepers as “rectangular holes 

about 2 inches wide, passing through the [retaining] wall from rear to front... so as to permit the 

escape of any water that might find its way to the back of the wall.”114 The terms weeper and 

weeping hole appear within additional literature on retaining walls, published by the Thomason 

Civil Engineering College at Roorkee, India.115 
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1880s

Various means of drainage are commonly applied in the construction of retaining walls. The 

terminology, which includes weepers, weeper holes, weeping holes, and weep-holes, appears to 

be commonly understood and utilized within engineering journals by the 1890s.

Professional “sanitary inspectors” and “building doctors” commonly attempt to diagnose 

problems in architecture and examine the work of builders and plumbers, in particular, to ensure 

construction of a healthy building.116 By raising consciousness about sanitation amongst the 

general population, the medical profession also stimulates public fear. 

During the last two decades of the 19th century, as the work of architects and builders begins to 

take shape as a profession, information contained within building construction manuals is 

presented in a more sophisticated manner in terms of structure of content and scientific support 

of material. However, construction manuals frequently allude (without scientific evidence) to 

adverse health effects that result from inhabiting damp structures. At this time, cavity walls and 

walls made of hollow-bricks are used extensively.117

1884

London hosts the International Health Exhibition (IHE). Full-size sectional models of “Sanitary 

and Insanitary Dwellings” are created for exhibition. Turnout at the IHE exceeds the anticipated 

attendance of 4 million visitors.118 Number of attendees and the exhibition itself are indicative of 

the extent to which public concern is focused on health and sanitation, particularly in cities.
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1890s

By the 1890s, metal wall ties, commonly used to bond inner and outer wythes, are preferred over 

brick headers because they help address the issue of cold-bridging. Ties are twisted in the middle 

to prevent moisture traveling along the bond from reaching the inner wythe, and direct moisture 

towards the base of the cavity.

1894

Window condensation gutters, presumably with “the so-called outlet holes which are necessary 

to complete the function of the lip or gutter,” are introduced by window manufacturer Henry 

Hope & Sons in New York.119 Over the course of the next 25 years, use of condensation gutters 

and weep-holes becomes relatively common in the manufacture of casement windows. By 1919, 

however, Henry Hope & Sons decides to abandon this system in favor of a sill channel at the 

interior of the room, claiming (incorrectly) that condensation “only occurs during the first few 

months of occupation of a new building” and that weep-holes “only serve as inlet holes for rain 

and wind during cold and stormy weather.”120

1900s

Methods of constructing cavity walls are still commonly described in construction manuals 

during the early 20th century, even though the Building Research Institute remarks in 1960 that, 

based on evidence from demolition projects, the use of cavity walls significantly declined from 

approximately 1900-1930.121 The use of hollow-brick and hollow-concrete walls is common, 
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while configurations such as Dearn’s and Loudon’s methods for hollow wall construction, seen 

almost a century earlier, also continue to be recommended for construction.122 

Construction diagrams illustrate the introduction of air bricks at the base of the exterior wythe, 

thereby connecting the cavity space to exterior fresh air with the purpose of increased ventilation 

of the wall. However, use of air-bricks is inconsistent as they are also placed in various other 

configurations within the exterior and interior wythes of the wall.

1910s

The 10th edition of A Treatise on Masonry Construction, by Ira O. Baker, directly states, “There 

is not even a remote approach to uniformity in the specifications for the brick-work of 

buildings.”123 This admission helps to explain the general sense of confusion regarding 

terminology (interchangeable use of the terms hollow wall, hollow-brick wall, and cavity wall, 

for instance), as well as the variety of construction methods used to mitigate dampness.

Windows that employ weep-holes are seen in various magazine advertisements, as well as 

Sweet’s Catalogue of Building Construction. Sometimes referred to as drip holes, port holes, or 

simply outlets, use of these drainage elements in combination with condensation gutters are 

primarily seen in casement windows and skylights. Variations in terminology and use indicate a 

general lack of standardization of this matter within the industry.124

 Chiu - 86 

122 T. Ritchie, “Notes on the History of Hollow Masonry Walls.” Bulletin of the Association for Preservation 
Technology 5, no. 4 (1973): 45.

123 Ira O. Baker, A Treatise on Masonry Construction, 10th ed. (New York: John Wiley and Sons, 1889), 178.

124 See Sweet's Catalogue of Building Construction (1911), 512-526; Sweet's Catalogue of Building Construction 
(New York: The Architectural Record Company, 1915), 570-595, 736-743, 972; Canton Art Metal Company, 
“Skylights,” 10.



1920s

Scientific studies on and closer examination of terra cotta, which is widely used as an exterior 

wall cladding material in North America, helps facilitate the realization that buildings are not 

water-tight. At this time, the practice of filling terra cotta units also changes, and builders begin 

to leave the voids in terra cotta unfilled in order to promote drainage, except where necessary to 

protect metal anchors.

1921

At the Seventeenth Annual Convention of the American Concrete Institute, the Committee on 

Nomenclature denotes several proposed changes in definitions from a preceding report issued in 

1919. The weep-hole is defined as “A hole in a wall, floor or other structure made for the 

purpose of providing drainage.”125 (Italics denote change.)

1924

In their monthly series, Atlantic Terra Cotta publishes engineering findings and observations 

regarding deterioration of terra cotta in existing structures. The company recommends increased 

attention to and detailing of flashing and joints. Construction details show voids left unfilled 

during application, in order to encourage drainage across a waterproofing membrane. The 

designation “W.H.” is commonly seen in drawings, indicating a weep-hole in terra cotta units.
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1927

The National Terra Cotta Society publishes the second edition of Standard Construction, which 

now illustrates weep-holes in detail drawings. “Washes, drips and weep-holes” are included in a 

new standard specifications section for design and structure.

1930s

The popularity of terra cotta declines as machine-made ceramic veneer, a cost-effective and 

aesthetically popular material, is introduced.126 

1940s

With cavity walls “becoming more and more popular in [the United States],” Principles of Brick 

Engineering provides the following information regarding their construction: “The air space or 

cavity is provided with weep-holes, formed by omitting mortar from vertical exterior joints at the 

bottom of the air space to permit the escape of any moisture that might accumulate.”127 By this 

time, the cavity wall is primarily employed to provide insulation and to prevent moisture.

1941

In contrast to the original 1932 Architectural Graphic Standards by Ramsey and Sleeper, the 

revised edition of this influential and comprehensive resource contains an expanded section of 

cavity wall sections, depicting weep-holes at the base of cavity walls. Additionally, weep-holes 

are depicted in terra cotta units, used at soffits, copings, and balustrades, and above lintels. 
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GLOSSARY

The list of following terminology has been compiled from various sources in an effort to help 

clarify terms used in this thesis.

Absorption: Absorption is the reception of gas, vapor, or liquid into a material by molecular or 

chemical attraction.128

Air-Brick: A hollow and pierced brick or piece of hard material, about the size of a brick, built 

into a wall with ordinary bricks to allow the passage of air.129 A perforated brick built into a wall 

to allow air to enter a space.130

Air Drain: Air drains are cavities between the earth and the external, sub-grade walls of a 

building to prevent the penetration of damp through prolonged contact with the earth and to 

prevent transfer of moisture through capillary action. Air drains typically measure 9” thick or 

greater.131

Brick: A walling unit made of clay, sand and lime, or concrete, moulded into a rectangular shape 

while plastic, and capable of being picked up and laid with one hand.132
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Brick Veneer:  Brick facing material typically applied over wood framing and sheathing. It is 

non-load-bearing and is found principally in residential construction.133

Capillary Action: Capillary action is the ability of liquid to flow through the narrow tube-like 

spaces of a material, as a result of inter-molecular attractive forces and surface tension within the 

walls of the tube. It is stronger within narrower spaces, and may occur in opposition to gravity.134

Cavity Wall: A wall composed of two parts, where the inner and outer leaf are separated by a 

horizontally and vertically continuous space. The wythes are tied together with metal 

connections. The cavity wall provides improved thermal insulation and lessens the possibility of 

penetration by dampness.135

Cold-Bridging: Heat flows through a material “bridge” such as a metal or brick header 

connection that is the path of least resistance in a layer of insulation. Due to temperature 

differentials, condensation occurs when areas adjacent to metal or brick ties reach dew point 

conditions and result in unsightly patches of dampness at interior finishes.136

Condensation: When warm, moisture-laden air comes into contact with a cooler surface, the 

water vapor present in the air transforms into liquid. The amount of saturation is known as 

relative humidity, and the temperature at which fully saturated water vapor precipitates is known 

as the dew point.137 The term “condensation” describes this phenomenon, which often occurs 
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within cavity walls where the airspace forms a barrier between the cooler outside atmosphere and 

a warmer, more humid indoor atmosphere.

Damp-proof Coursing: Damp-proof coursing is the installation of a water barrier at the 

foundation level, designed to prevent or mitigate the spread of rising damp.

Foundation Areaway: See air-drain.

Header: A brick laid so that only its short face appears at the surface of the wall.138

Hollow Wall: A wall built in two thicknesses with a 2” to 3” thick continuous vertical, but not 

horizontal, cavity between the inner and outer shells of the wall for the purpose of saving 

material, thermal insulation, and prevention of dampness.139

Hollow-Block Wall: See hollow-brick wall. A hollow-block wall may also refer to a specially 

molded unit composed of cementitious material.

Hollow-Brick Wall: A wall constructed of specially molded fired-clay units that are perforated 

with open spaces. They are employed in wall construction for the purpose of constructing 

inherently thermal insulated and in theory, well-ventilated walls.

Rain Screen Principle: A theory governing the design of a building enclosure in such a way as to 

prevent water penetration due to rain by providing pressure equalization.140
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Retaining Wall: A wall built to retain a bank of earth: it is often battered, and sometimes battered 

and arched with concave arched walls behind the openings to resist the thrust of the earth behind. 

A revetment.141

Revetment: Retaining wall. Also any facing of stone on a construction not intended to be seen.142

Rising Damp: Rising damp refers to the upward movement of water through a material via 

capillary action.

Solid Wall: A brick wall, commonly used, that consists of a solid mass of brickwork with no 

hollow spaces in it. This type of wall is substantial, easy to construct, and economical.143

Veneered Wall: A wall with a facing fixed to a backing, but incapable itself of sustaining a 

load.144

Water-proofing: An impervious wall lining applied to prevent moisture from penetrating to the 

interior of the wall.

Weep-Hole:  A small drainage hole for water to escape.145 Voids formed by omitting mortar from 

vertical exterior joints at the bottom of the air space within a cavity wall in order to permit the 

escape of any moisture that might accumulate within.146

Wind-Driven Rain: Wind-driven rain is rain falling with a horizontal velocity onto the exterior 

surfaces of a building
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LIST OF IMAGE SOURCES

Chapter 2 Source

Figure 2.1 Downing, Andrew Jackson. Architecture of Country Houses: Including 
Designs for Cottages, Farm-Houses, and Villas, with Remarks on Interiors, 
Furniture, and The Best Modes of Warming and Ventilating. New York: D. 
Appleton & Co., 1850. Page 61.

Figure 2.2 Ramsey, Charles George, and Harold Reeve Sleeper. Architectural Standards 
for Architects, Engineers, Decorators, Builders and Draftsmen. New York: J. 
Wiley & Sons, Inc., 1932. Page 47.

Figure 2.3 Ramsey, Charles George, and Harold Reeve Sleeper. Architectural Standards 
for Architects, Engineers, Decorators, Builders and Draftsmen, 3rd ed. New 
York: J. Wiley & Sons, Inc., 1941. Page 10.

Figure 2.4 Author’s illustration.

Chapter 3

Figure 3.1 Loudon, J. C. The Architectural Magazine and Journal of Improvement in 
Architecture, Building, and Furnishing and in the Various Arts and Trades 
Connected Therewith. Vol. 1. “On A Method of Preventing Damp From 
Rising in the Walls of Buildings on Clay and Other Moist Soils,” by William 
J. Short. London: Longman, Rees, Orme, Brown, Green, and Longman, 
1834. Page 233.

Figure 3.2 Haglock, F. W. “Concrete Block Walls Act as Ventilators.” The National 
Builder 47, no. 4 (1908). Page 28.

Figure 3.3 Adams, Henry. Cassell’s Building Construction: Comprising Notes on 
Materials, Processes, Principles, and Practice. London: Cassell and 
Company, Limited, 1913. Page 42.

Figure 3.4 “The Underground Railway, New York City.” Scientific American Magazine 
31, no. 24 (December 12, 1874). Page 371.
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Chapter 3 Source

Figure 3.5 Notes on Building Construction: Arranged to Meet the Requirements of the 
Syllabus of the Science and Art Department of the Committee of Council on 
Education, South Kensington, Part 1. London: Rivingtons, 1875. Page 205.

Figure 3.6 Canton Steel Roofing Company. “Skylights.” Advertisement in Carpentry 
and Building 30, no. 2 (February 1908). Page 10.

Figure 3.7 Vaile & Young. “Skylights and Architectural Sheet-Metal Work.” Sweet's 
Catalogue of Building Construction. New York: The Architectural Record 
Company, 1911. Page 526.

Figure 3.8 “Heavy Bracketed Cornice with Ornamented Cheneau Showing Method of 
Support and Anchorage.” Architectural Terra Cotta: Standard Construction. 
New York: National Terra Cotta Society, 1914. Plate 24.

Figure 3.9 “Heavy Bracketed Cornice with Ornamented Cheneau Showing Method of 
Support and Anchorage.” Architectural Terra Cotta: Standard Construction. 
New York: National Terra Cotta Society, 1927. Plate 24.

Figure 3.10 Herbert M. Greene Architects, Ralph H. Cameron, and Edward W. T. Lorey. 
“Atlantic Terra Cotta in Combination,” Atlantic Terra Cotta 6, no. 8 (January 
1924). Plate LV.

Figure 3.11 Herbert M. Greene Architects, Ralph H. Cameron, and Edward W. T. Lorey. 
“Atlantic Terra Cotta in Combination,” Atlantic Terra Cotta 6, no. 8 (January 
1924). Plate LXII.

Figure 3.12 “Dome Construction with Moulded Ribs: Terra Cotta Covering Between and 
Skylight Curb.” Architectural Terra Cotta: Standard Construction, 2d ed. 
New York: National Terra Cotta Society, 1927. Plate 59.

Figure 3.13 Wood, Paul A. “Building Construction.” U.S. Patent 2,116,859. Filed May 
10, 1938. Issued September 6, 1938. Sheet 1.

Figure 3.14 Wood, Paul A. “Building Construction.” U.S. Patent 2,116,859. Filed May 
10, 1938. Issued September 6, 1938. Sheet 3.
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