Cenozoic geochronology

WILLIAM A. BERGGREN Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
and Department of Geology, Brown University, Providence, Rhode Island 02912
DENNIS V. KENT Lamont-Doherty Geological Observatory and Department of Geological Sciences, Columbia University, Palisades, New York

10964
JOHN J. FLYNN*
10964

Lamont-Doherty Geological Observatory and Department of Geological Sciences, Columbia University, Palisades, New York

JOHN A. VAN COUVERING American Museum of Natural History, New York, New York 10024

ABSTRACT

We present a revised Cenozoic geochronology based upon a best-
fit to selected high-temperature radiometric dates on a number of
identified magnetic polarity chrons (within the Late Cretaceous, Pa-
leogene, and Neogene) which minimizes apparent accelerations in sea-
floor spreading. An assessment of >200 first-order correlations of
calcareous plankton biostratigraphic datum events to magnetic polar-
ity stratigraphy yields an improved correlation of the standard
magnetostratigraphic, standard biostratigraphic (zonal) and chrono-
stratigraphic boundaries, as well as improved resolution in marine-
continental stratigraphic correlations. The time scale presented here
has been accepted by the Committee on Geochronology as the
standard time scale for the Cenozoic for the Decade of North
American Geology (DNAG).

INTRODUCTION

In the more than 20 yr since Funnell (1964) prepared the first rela-
tively precise Cenozoic time scale on the basis of an assessment of biostrati-
graphically controlled radiometric dates, a series of attempts has been
made to further refine Cenozoic geochronology and to integrate this
chronology with the magnetostratigraphic and sea-floor spreading record
of reversals of geomagnetic polarity (for example, Berggren, 1969, 1972;
Opdyke and others, 1974; Theyer and Hammond, 1974; Tarling and
Mitchell, 1976).

Several types of general approaches in the construction of a Cenozoic
geochronology can be recognized. An emphasis on radiometric dates to
determine numerical ages of geologic subdivision boundaries can be re-
ferred to as radiochronology; a good recent example of such an approach
can be found in Odin and others (1982). Fossils are, however, more
abundant than are datable horizons in Phanerozoic sediments. Biochro-
nology is the organization of geologic time according to the irreversible
process of biotic evolution and provides an ordinal framework which can
measure all but the youngest Phanerozoic time with greater resolution, if
with less accuracy, than can radiochronology. The Paleogene time scale of
Hardenbol and Berggren (1978) emphasizes this approach. Finally, mag-
netochronology is based on the characteristic binary sequence of normal
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and reversed polarity of the geomagnetic field. It is also ordinal in nature,
has a time resolution comparable to biochronology, but is applicable,
globally, in a variety of recording media, thus offering a framework in
which to relate events on land and in the oceans. The paleomagnetic signal
is iterative (that is, it is not unique), and thus a derived chronology is
possible only after calibration with a numeric scale based on radiometric
dates. Classic examples of magnetochronology are the radiometrically
dated reversal time scale for 0-4 Ma (Cox and others, 1963; McDougall
and Tarling, 1963; Cox, 1969; Dalrymple, 1972) and the 0-80-Ma geo-
magnetic polarity time scale deduced from sea-floor spreading magnetic
anomalies by extrapolation (Heirtzler and others, 1968).

Recent advances in magnetobiostratigraphic studies, particularly on
exposed marine deposits in the Mediterranean region (Lowrie and others,
1982), epicontinental deposits in northwest Europe (Townsend, 1982;
Aubry, 1983), and deep-sea sediments recovered by the DSDP hydraulic
piston core (Poore and others, 1982, 1983) have resulted in direct correla-
tion between plankton biostratigraphy and magnetic polarity stratigraphy
for the entire Cenozoic. The geochronology of this era thus requires a full
integration of biochronologic, magnetochronologic, and radiochronologic
approaches in the construction of an internally consistent time scale; the
time scales of Ryan and others (1974) for the Neogene and Lowrie and
Alvarez (1981) for the Paleogene illustrate such an integrated methodol-
ogy. We summarize here a magnetobiochronology for the Cenozoic that
incorporates available magnetobiostratigraphic correlations for both ma-
rine and nonmarine sections, as well as much needed age-calibration data
in the middle Cenozoic from radiometrically dated polarity stratigraphy.

TABLE 1. LATE CRETACEOUS AND CENOZOIC AGE-CALIBRATION DATA
FOR MAGNETIC REVERSAL SEQUENCE

Calibration level Age (Ma) Reference
Gauss/Gilbert (Anomaly 2A) 340 Mankinen and Dalrymple, 1979
Younger end of Anomaly 5 8.87 Evans, 1970; Harrison and others, 1979
Younger end of Anomaly 12 324 Prothero and others, 1982
Younger end of Anomaly 13 346 Prothero and others, 1982
Younger end of Anomaly 21 495 Flynn, 1981
Santonian/Campanian boundary 84.0 Lowrie and Alvarez, 1977;

(younger end of Anomaly 34) Obradovich and Cobban, 1975

Note: see Berggren and others (1985a, 1985b) for additional details.
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GEOMAGNETIC POLARITY TIME SCALE

The geomagnetic reversal time scale is based on the radiometrically
dated magnetic polarity data set on lavas for 0 to 4 Ma (Mankinen and
Dalrymple, 1979) and extended in time by age calibration of the polarity
sequence inferred from marine magnetic anomalies. The polarity sequence
compiled by LaBrecque and others (1977) is taken as representative of the
sea-floor spreading record for the Late Cretaceous and Cenozoic. (Al-
though Cenozoic chronology is our central interest here, the apparent
continuity of the raarine magnetic anomaly record requires that the ridge-
crest sequence be considered in its entirety in the development of a revised
magnetochronology to avoid the introduction of discontinuities.) In order
to satisfy six selectzd high-temperature, age-calibration tie-points (Table 1)
and to minimize apparent accelerations in sea-floor-spreading history, we
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consider this polarity sequence as three linear segments on a calitration
age versus apparent age (related to distance) plot (Fig. 1). An initial
segment is defined by the origin, a 3.40-Ma radiometric age for the Gauss/
Gilbert boundary and an 8.87-Ma age for the younger boundary of
Anomaly 5, yielding an extrapolated age of 10.42 Ma for the older bound-
ary of Anomaly 5. Available radiometric age estimates for magnetozones
in land sections correlated to the younger boundaries of Anomalies 12, 13,
and 21 (32.4, 34.6, and 49.5 Ma, respectively) are used to extend the
chronology by a linear best fit anchored to the estimated age for the older
boundary of Anomaly 5; an estimated age of 56.14 Ma for the older
boundary of Anomaly 24 is extrapolated from this segment. Interpolation
between this estimated age for anomaly 24 and a radiometric age of 84 Ma
for Anomaly 34 (based on correlation of the magnetozone equivalent with
the Campanian/Santonian boundary) completes the reversal chronology

Figure 1. Revised age calibration of marine
magnetic reversal sequence from LaBrecque and
others, 1977 (LKC77). Solid lines are three lin-
ear, apparent age-calibration age segments (I, II,
and I1II) which satisfy calibration tie-points indi-
cated by solid circles (Table 1). The twc open
circles with X’s at Anomalies So and 240 aire the
inferred inflection points whose ages are derived
by extrapolation from linear segments I :ind II,
respectively. Shown for comparison by dotted
lines are the geomagnetic reversal time scales of
Heirtzler and others (1968) (HDHPL68 with
Anomaly 2A set to 3.40 Ma to conform with
current estimate) and LaBrecque and others,
1977 (LKC77 in original form and modified
[MD79] to account for new K-Ar constants as
calculated by Mankinen and Dalrymple, 1979).
Anomaly numbers are indicated below bar graph
of geomagnetic reversal sequence (filled for
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CENOZOIC GEOCHRONOLOGY

to the younger end of the Cretaceous Long Normal Polarity Interval,
corresponding to the oceanic Cretaceous Quiet Zones.

Ages for magnetic polarity intervals (Table 2) are calculated accord-
ing to the linear regression equations of these three time segments. Relative
precision of the reversal sequence depends on the spatial resolution of the
magnetic anomaly data and the assumption that sea-floor spreading oc-
curred on some ridge system at a constant rate over tens of millions of
years. The accuracy of the reversal chronology ultimately depends on the
radiometric age data set used for calibration and the method of interpola-
tion. Remarkably, the first extended magnetochronology proposed by
Heirtzler and others (1968), which was based on a simple extrapolation
from Anomaly 2A for a South Atlantic profile, gives age estimates for
magnetochrons that are within 10% of the absolute age estimates summar-
ized here. This agreement indicates that the constant spreading-rate as-
sumption applied to selected areas of the world ocean is a very good
first-order approximation in the derivation of a geomagnetic reversal
chronology.

COMPARISON TO BIOCHRONOLOGY

Cenozoic chronology and chronostratigraphy is drawn directly from
Berggren and others (1985a, 1985b). Integrated biostratigraphy and mag-
netostratigraphy in some European Paleogene and Neogene stratotype
sections and an assessment of ~200 Cenozoic and Late Cretaceous cal-
careous plankton datum events directly correlated with magnetic polarity
stratigraphy in deep-sea sediment cores and land sections provide im-
proved identification of the boundaries and durations of chronostrati-
graphic units in terms of planktonic biostratigraphy and magnetic polarity
chrons.

Our assessment of published radiometric dates suggests the following
best biochronologic age estimates for Cenozoic Epoch boundaries: Plio-
cene/Pleistocene: <2 Ma; Miocene/Pliocene: ~5 Ma; Oligocene/Mio-
cene: ~23.5 Ma; Eocene/Oligocene: ~37 Ma; Paleocene/Eocene: ~56.5
Ma; Cretaceous/Tertiary: ~66 Ma. The radiometric data on which these
age estimates are based, especially in the Paleogene, are biased toward
those obtained from high-temperature minerals; age estimates based on
radiometric dates from glauconites tend to be younger, particularly in the
Paleogene (for example, Odin and others, 1982).

Our biochronological age estimates show good agreement with the
revised magnetochronologic age estimates. The largest discrepancy is at the
Paleocene/Eocene boundary for which an assessment of biostratigraphi-
cally controlled radiometric dates on high-temperature minerals suggests
an age of 56.5 Ma, which is ~ 1 m.y. younger than the biostratigraphically
controlled magnetochronologic age estimate of 57.8 Ma. Respective bio-
chronological and magnetochronological age estimates for the Eocene/
Oligocene boundary (37 Ma and 36.6 Ma) differ in the opposite sense
by 0.4 m.y.; those for the Oligocene/Miocene boundary (23.5 Ma and
23.7 Ma) are in substantial agreement. A magnetochronologic age esti-
mate of 66.4 Ma for the Cretaceous/Tertiary boundary also agrees well
with the estimate of 66.5 Ma obtained from dates (recalculated to ICC
constants) in Obradovich and Cobban (1975). For subdivision of the
Neogene, age estimates are typically already based on magnetochronologic
criteria (for example, Ryan and others, 1974), and a comparison of bio-
chronologies and magnetochronologies is therefore not very meaningful.
Available biostratigraphically or magnetostratigraphically controlled
radiometric dates are very consistent with our magnetochronologic age
estimates, however, being without systematic deviation (Berggren and
others, 1985b).

Biochronologic age estimates used as calibration tie-points in the
geomagnetic reversal time scale of Lowrie and Alvarez (1981) agree rea-
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TABLE 2. REVISED GEOMAGNETIC POLARITY TIME SCALE FOR CENOZOIC AND
LATE CRETACEOUS TIME

Normal polarity Anomaly Normal polarity Anomaly
interval (Ma) interval (Ma)
0.00-0.73 1 24.04-24.21 6C
0.91-0.98 25.50-25.60 7
1.66-1.88 2 25.67-25.97 7
247-2.92 2A 26.38-26.56 TA
2.99-3.08 2A 26.86-26.93 8
3.18-3.40 2A 27.01-27.74 8
3.88-3.97 3 28.15-28.74 9
4.10-4.24 3 28.80-29.21 9
4.40-447 3 29.73-30.03 10
4.57-4.77 3 30.09-30.33 10
5.35-5.53 3A 31.23-31.58 11
5.68-5.89 3A 31.64-32.06 11
6.37-6.50 32.46-32.90 12
6.70-6.78 4 35.29-3547 13
6.85-7.28 4 35.54-35.87 13
7.35-741 4 37.24-37.46 15
7.90-8.21 4A 37.48-37.68 15
8.41-8.50 4A 38.10-38.34 16
8.71-8.80 38.50-38.79 16
8.92-10.42 5 38.83-39.24 16
10.54-10.59 39.53-40.43 17
11.03-11.09 40.50-40.70 17
11,55-11.73 5A 40.77-41.11 17
11.86-12.12 5A 41.29-41.73 18
12.46-12.49 41.80-42.23 18
12.58-12.62 42.30-42.73 18
12.83-13.01 5AA 43.60-44.06 19
13.20-13.46 5AB 44.66-46.17 20
13.69-14.08 SAC 48.75-50.34 21
14.20-14.66 5AD 51.95-52.62 22
14.87-14.96 5B 53.88-54.03 23
15.13-15.27 5B 54.09-54.70 23
16.22-16.52 5C 55.14-55.37 24
16.56-16.73 5C 55.66-56.14 24
16.80-16.98 5C 58.64-59.24 25
17.57-17.90 5D 60.21-60.75 26
18.12-18.14 5D 63.03-63.54 27
18.56-19.09 SE 64.29-65.12 28
19.35-20.45 6 65.50-66.17 29
20.88-21.16 6A 66.74-68.42 30
21.38-21.71 6A 68.52-69.40 31
21.90-22.06 6AA 71.37-71.65 32
22.25-2235 6AA 7191-73.55 32
2257-22.97 6B 73.96-74.01
23.27-23.44 6C 74.30-80.17 33
23.55-23.79 6C 84.00-118.00 34
TABLE 3. BOUNDARY AGE ESTIMATES AND DURATIONS FOR
INFORMAL SUBDIVISIONS OF THE CENOZOIC
Epoch Time Duration Remarks
(Ma) (m.y)
Pleistocene 1.6-0 16
Pliocene 53- 16 37
Late 34- 16 18
Early 53- 34 19
Miocene 237- 53 18.4
Late 104- 53 51
Middle 16.5-104 6.1
Early 23.7-165 72
Ogligocene 36.6-23.7 129
Late 30.6-23.7 6.3
Early 36.6-30.0 66
Eocene 57.8-36.6 21.2 Note major change in duration
Late 40.0-36.6 34 of Eocene (~21 m.y.) at the
Middle 52.0-40.0 120 expense of the Paleocene
Early 57.8-520 58 {~9 m.y.). Indeed, the Eocene is
the longest of the Cenozoic
Epochs.
Paleocene 66.4-57.8 8.6
Late 62.3-57.8 45
Early 66.4-62.3 4.1

Note: criteria for the recognition of these and other subdivisions and their correlation to the magnetic reversal sequence
are discussed fully in Berggren and others (1985a, 1985b).
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Figure 2. Comparison of various biochronological estimates of Paleogene epoch and intra-epoch boundaries within
magnetochronological framework provided by correlation to revised geomagnetic polarity time scale. Solid circles: this
paper. Open circles: from Odin and Curry (1981). Squares: recalculated from Hardenbol and Berggren (1978) by Ness and
others (1980) and used for calibration of geomagnetic reversal sequence by Lowrie and Alvarez (1981). Open triangle: from
Owens and Sohl (1973). Anomaly numbers are indicated below bar graph of geomagnetic reversal sequence (filled for

normal, open for reversed polarity).

sonably well with the biochronology and magnetochronology presented
here, with the exception of the early Eocene (Fig. 2). This difference (2 to 3
m.y.), however, may be more apparent than real, because the age estimates
from Hardenbol and Berggren (1978) used by Lowrie and Alvarez via
Ness and others (1980) for the Paleogene are now superceded by those of
Berggren and others (1985a).

Systematic ard significant departures from our preferred age esti-

mates are evident in the chronology for the Paleogene, based mairly on
K-Ar dates on glauconites from northwest Europe (Odin and others,
1982). Numerical differences range up to ~7 m.y. (in the early Eocene),
the glauconite ages being invariably younger than are our age estitnates,
which preferentially include K-Ar dates on igneous rocks (Fig. 2). The
specific cause of this difference in age estimates remains to be resolved, but
because glauconite is not widely regarded as a very reliable chronometer
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RADIOLARIAN ZONES

16 Thyrsocyrtis bromia
A Cryptoprora ornata
blCalocyclas bondyca
A Carpocanistrum azyx

17 Podocyrtis goetheana

18 Podocyrtis chalara

19 Podocyrtis mitra

20 Podocyrti's ampla

2. Thyrsocyrtis tnacantha

22. Theocampe
mongolfieri

23. Theocotyle
cryplocephala

24 Phormocyrtis
25. Buryella clinata
26.Bekoma bidariensis

PLANKTON ZONES

1. Bemggren (1969)
Blow (1979)

2 Bolli (1957, 1966)
Premols - Silva
& Bolli (1973)
Staninforth et al
(1975)

3. Bukry (1973,1975)
Okada & Bukry (1980)

& Martini (1970,1971)

5. Rredel & Sanfilippo
(1978)

6. Costa 8 Downie
(1979)

7 Costa & Downie
(1976)
Bujak (1979)
Bujok etal (1980)
Chateauneuf & Gruas-
Cavagnetto (1978)

Figure 4. Eocene geochronology (explanation as in Fig. 3).

-

(for example, Obradovich and Cobban, 1975), the systematically younger
glauconite dates are strongly suspected to be anomalous (Berggren and
others, 1985a).

It is clear that incorporation of our preferred biochronological age
estimates for Cenozoic boundaries as calibration data would result in a
magnetochronology that is virtually the same as the one we derived from a
more restricted age data set (Table 1) which is less directly dependent on
biochronology. The high internal consistency of this integrated magneto-
biochronology supports the use of the age-calibrated magnetic reversal
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sequence as a vernier (analogous to the use of age-calibrated stratigraphic
thickness) to obtain precise age estimates for various boundaries, in ac-
cordance with magnetobiostratigraphic correlations. In effect, the
philosophy and approach of the Ryan and others time scale (1974) is
extended to the Paleogene. Numerical ages in the Cenozoic geologic time
scale shown in Figures 3-6 are therefore based on the revised magneto-
chronology summarized above. Numerical age estimates for Cenozoic
Epoch boundaries (and their informal subdivisions) are shown in Table 3.

DISCUSSION

Features of interest in this revised Cenozoic time scale include the
following.

1. The fact that Paleogene-stage stratotypes are unconformity-
bounded and related to eustatic sea-level changes makes precise biostrati-
graphic recognition of the boundaries difficult. A comparison of the
magnetobiostratigraphic record across some of these unconformity-
bounded boundaries suggests that, as a first estimate, the eustatic sea-level
cycle (regression-transgression) was on the order of 1-3 m.y. If the concept
that “base defines stage” is rigorously maintained, it may prove more
efficacious to redefine the base of the Cenozoic stages within the normal
marine cycles, allowing easier biostratigraphic recognition and correlation.
This would have the effect of making the boundaries younger than cur-
rently determined by most stratigraphers, including the boundary positions
shown here (Figs. 3-6). Alternatively, new stratotype sections could be
sought in continuous deep-water (bathyal) marine sequences.

2. The Cretaceous/Tertiary boundary is biostratigraphically linked
in marine sequences with a level within Chron C29R (chron terminology
for the Paleogene after LaBrecque and others, 1983). In terrestrial se-
quences, this boundary has been linked with a level within Chron C28N or
Chron C28R; however, the interpretation of the latter data is somewhat
ambiguous, and we await further studies to clarify whether the two
boundaries are, in fact, of different ages or, as we suspect, actually coeval
(within Chron C29R).

3. The type Danian is biostratigraphically linked with the Chron
C28 and younger half of Chron C29 interval and may extend into the
older half of the Chron C27 interval. There is a substantial stratigraphic
gap between the top of the Danian s.s. (within Chron C27) or top of the
Danian s.I. (= Montian s.s.) (= younger end of Chron C27) and the base of
the Thanetian (= mid-Chron C26N), an interval of ~3 and 2 m.y., respec-
tively. The Thanetian thus would appear to be inappropriate as a time-
stratigraphic unit for the entire post-Danian, pre-Ypresian Paleocene.
Recent biostratigraphic studies suggest that the Selandian is a more ap-
propriate unit for this stratigraphic interval (see Berggren and others,
1985a). Alternatively, the Selandian stage could be subdivided into a
lower (as yet unnamed) substage and an upper (Thanetian) substage.

4. The lower (early) Eocene has undergone substantial revision in
this study. Biostratigraphic studies show that the Ypresian/Lutetian
boundary is biostratigraphically linked with a level at, or slightly younger
than, the NP13/NP14 boundary which is associated with the older end of
Chron C22N, whereas the First Appearance Datum (FAD) of Hantken-
ina, nominate taxon of Zone P10, and which has commonly been used by
planktonic foraminiferal biostratigraphers to denote the base of the Lute-
tian, is associated with the youngest part of Chron C22N (see Berggren
and others, 1985a). The temporal difference between these two biostrati-
graphic levels is on the order of 1 m.y. The eustatic sea-level fall (and
corresponding unconformity which is seen between the Ypresian and
Lutetian stages and at correlative levels in various sections) occurs within
Zones NP13 and P9, and the regressive-transgressive cycle associated with
this event is probably, to a first approximation, on the order of 2-3 m.y. in
the northwest European stratotype sections (Aubry, 1983). Revised age
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estimates for the early Eocene are 52.0-57.8 Ma (compare with previous
estimates of 49-53.5 Ma; Hardenbol and Berggren, 1978). The age esti-
mate on the early/middle Eocene boundary (52 Ma) is consistent with the
recent assignment of radiometrically dated levels (~49 Ma) near the
Bridgerian-Uintan “land-mammal age” boundary which has been corre-
lated to the reversed polarity interval of Chron C20R (Berggren and others,
1985a).

5. The precise correlation of the middle/late Eocene boundary with
the magnetic polarity stratigraphic scale remains somewhat equivocal.
Common biostratigraphic criteria include the FAD Porticulasphaera
semiinvoluta (top Chron C18), Last Appearance Datum (LAD) Morozo-
vella-Acarinina group (mid-Chron C17), FAD Chiasmolithus oamaruen-
sis and/or LAD Chiasmolithus grandis (= later part of Chron C18 or later
part of Chron C17). We have chosen to place the middle/late Eocene
boundary in the later part of Chron C17 with an estimated age of 40.0 Ma.

6. The recent integration of high-temperature K-Ar dates and mag-
netic polarity stratigraphy on latest Eocene—early Oligocene land-mammal
ages in North America (Prothero and others, 1982, 1983) has placed new
constraints on age estimates of the Eocene/Oligocene boundary and on
magnetochrons C12 and C13. Chron C12 is associated with three K-Ar
biotite dates of 32.4 Ma, 33.5 Ma, and 34.6 Ma in stratigraphic superposi-
tion. These dates support an age estimate of the Eocene/Oligocene bound-
ary (correlated to Chron C13R) of ~36-37 Ma (Berggren and others,
1985a). The Eocene/Oligocene boundary is biostratigraphically linked
(LAD Globorotalia cerroazulensis-cocoaensis group, LAD Hantkenina,
slightly above the LAD of rosette-shaped discoasters, D. saipanensis,
D. barbadiensis), having a level approximately midway between the
limits of Chron C13, with an estimated age of 36.6 Ma. This age estimate
is consistent with several (predominantly glauconitic) dates of ~37 Ma,
biostratigraphically associated with the boundary in the Gulf Coast and in
northwest Europe. It is inconsistent with other (predominantly glauco-
nitic) dates from northwest Europe and from fission-track dates on mikro-
tektites from the North American strewn field(s). We view these latter
dates as anomalously young. Alternatively, the dates on the strewn fields
may be reliable, and the problem may rather be one of correlation to the
Eocene/Oligocene boundary.

7. The Oligocene is best served by a two-fold time-stratigraphic
subdivision: Rupelian (lower) and Chattian (upper). The boundary be-
tween these two stages is biostratigraphically linked with the LAD of
Chiloguembelina and the NP23/NP24 boundary, which are associated
with Chron C10 with an estimated age of 30 Ma. Previous correlations
which linked the Rupelian/Chattian boundary (Chron C10) with the
LAD of Pseudohastigerina (midway between the limits of Chron C13,
~34 Ma) are incorrect (Hardenbol and Berggren, 1978).

8. Numerous biostratigraphic criteria have been suggested to deter-
mine the position of the Oligocene/Miocene boundary. We have chosen
the FAD of Globorotalia kugleri and the LAD of Reticulofenestra bisecta
(associated with mid-C6CN) as definitive criteria. The resulting magneto-
chronologic age estimate (23.7 Ma) is in close agreement with recent
assessments of published radiometric dates which suggest an age of 23-24
Ma for the Oligocene/Miocene boundary. The genus Globigerinoides ap-
pears sporadically as early as Chron C7 (~26 Ma) but attains numerical
prominence in deep-sea faunas only in the latest Oligocene (in the reversed
interval, just older than Chron C6CN; according to previous Neogene
magnetostratigraphic chron terminology of Theyer and Hammond, 1974;
Opdyke and others, 1974). It thus retains its usefulness as a guide to the
approximate position of the Oligocene/Miocene boundary.

9. Although the age estimates of the upper and lower boundaries of
the Paleogene made here do not differ significantly from those made
earlier, major differences are seen within the Eocene. The Eocene (~21
m.y.) has expanded chronologically at the expense of the Paleocene (~9
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m.y.) and is, in fact, the longest of the Cenozoic epochs. Indeed, the
middle Eocene (Lutetian and Bartonian; late Chron C22 to approximately
the Chron C17/C18 boundary) is ~11-12 m.y. long, longer than the
entire Paleocene.

10. The FAD of Orbulina occurs in Anomaly 5B correlative (Chron
CSBN), with an estimated magnetochronologic age estimate of 15.2 Ma,
in precise agreement with a recent assessment of radiometric dates that
places the same numerical value on this datum level.

11. The “Hipparion datum,” which defines the base of the Vallesian
Land Mammal Age, has been dated at 12.5 Ma and is therefore correlated
to mid-Serravallian (= Chron C5AR). Magnetostratigraphic studies in the
Siwaliks of Pakistan show, however, that the first hipparions in the Indian
subcontinent were associated with the early part of Chron C5SN, which
was previously estimated to be ~9.5 Ma (Barry and others, 1982; Tauxe
and Opdyke, 1982). Our revision, which would bring this level to ~10
Ma, does not resolve the inconsistency, but recent reviews of the morphol-
ogy of hipparions show that two “datum events” are involved. Collateral
descendants of North American Cormohipparion arrived first at ~12.5 Ma
in temperate Eurasia and North Africa (“primigenium” or “facial-fossa
Type 1” group), and a second lineage entered India at 10 Ma.

12. In a recent paper on the magnetostratigraphy and K-Ar geochro-
nology of basalts in northwest Iceland, McDougall and others (1984)
reported an estimate of 11.1 Ma for the age of the older boundary of
marine magnetic Anomaly 5. The study of Tauxe and others (1984, in
press), however, on the magnetostratigraphy of the middle Miocene Ngor-
ora Formation in the East African Rift Valley of Kenya, combined with
K-Ar age dates on intraformational tuff beds, supports a much younger age
for this boundary, ~10 Ma. The age of 10.42 Ma which we derive for the
older boundary of Anomaly 5 by extrapolation of sea-floor spreading rates
therefore lies at about the average numerical value of these recent radio-
metrically derived estimates. As Tauxe and others (in press) concluded
from this disparity, isotopic ages can have errors far greater than quoted
analytical uncertainties, limiting temporal correlation using radiochronol-
ogy alone to a resolution of perhaps only 10% of the age. Much better
temporal resolution, if not accuracy, is obtained using a combination of
magnetochronology, biochronology, and radiochronology.

13. The Miocene part of the revised paleomagnetic time scale differs
significantly from previous versions. It has become apparent from recently
available magnetobiostratigraphic data that the correlation of Chron 9 =
Chron C5N (Theyer and Hammond, 1974; Ryan and others, 1974) can-
not be easily accommodated. The original correlation (Chron 11 = Chron
C5N,; Foster and Opdyke, 1970) is preferable. The magnetobiostratigraph-
ic arguments supporting this change are discussed in greater detail in
Berggren and others, 1985b). The realignment of calcareous plankton
zones (and corresponding correlations with siliceous plankton zones) to
magnetic anomaly correlatives results in an ~1.5- to 2-m.y. shift (toward
younger age estimates) over part of the middle and late Miocene interval.

14. The Pliocene-Pleistocene part of the revised Neogene paleomag-
netic time scale remains essentially unchanged from earlier versions. The
Miocene/Pliocene boundary and the Pliocene/Pleistocene boundary are
placed, respectively, in the basal part of the Gilbert Chron (5.3 Ma) and
just above the Olduvai Normal Subchron (1.6 Ma).

15. In view of our proposed realignment of the magnetostratigraphi-
cally defined chrons, with respect to the chrons derived from marine
magnetic anomaly identification in the Miocene, and the strong possibility
for confusion that this presents, we suggest that future magnetostratigraph-
ic correlations be made directly to the well-developed marine magnetic
anomaly expression of geomagnetic reversals. Accordingly, the chron ter-
minology for the early and middle Miocene shown in Figure 6 follows the
nomenclature of Cox (1982), with the addition of the prefix “C,” which is
then consistent with Paleogene chron terminology of LaBrecque and oth-
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Figure 6. Neogene geochronlogy (explanation as in Fig. 3).
-

ers (1983) already in use. The magnetostratigraphic chrons (including the
names for the four most recent chrons) are, however, indicated for mainly
historical reasons and to emphasize the proposed realignment of these
chrons in the late Miocene; magnetic anomaly chron subdivisions for the
late Miocene to Recent can be found in Cox (1982).

CONCLUSION

The Cenozoic magnetobiochronology presented here is consistent
with much of the available high-temperature K-Ar dates and some of the
low-temperature (glauconite) dates. Notable discrepancies with the latter
are noted in the early part of the Paleogene, particularly the Eocene. The
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revised geochronology presented here differs from other time scales in the
following respects.

1. The magnetochronologic framework is based exclusively on high-
temperature, K-Ar age-calibration points associated with magnetic polar-
ity intervals which can be correlated to the standard geomagnetic polarity
sequence derived from marine magnetic anomalies.

2. Direct, first-order correlations are made between calcareous
plankton biostratigraphic datum levels and magnetic stratigraphy for the
entire spectrum of the Cenozoic.
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