
Improving Virtual Appliance Management through Virtual Layered File Systems
Shaya Potter Jason Nieh

Computer Science Department
Columbia University

{spotter, nieh}@cs.columbia.edu
Columbia Univeristy Technical Report CUCS-008-09, January 2009

Abstract
Managing many computers is difficult. Recent virtual-
ization trends exacerbate this problem by making it easy
to create and deploy multiple virtual appliances per phys-
ical machine, each of which can be configured with dif-
ferent applications and utilities. This results in a huge
scaling problem for large organizations as management
overhead grows linearly with the number of appliances.

To address this problem, we present Strata, a system
that introduces the Virtual Layered File System (VLFS)
and integrates it with virtual appliances to simplify sys-
tem management. Unlike a traditional file system, which
is a monolithic entity, a VLFS is a collection of indi-
vidual software layers composed together to provide the
traditional file system view. Individual layers are main-
tained in a central repository and shared across all VLFSs
that use them. Layer changes and upgrades only need to
be done once in the repository and are then automatically
propagated to all VLFSs, resulting in management over-
head independent of the number of virtual appliances.
We have implemented a Strata Linux prototype without
any application or operating system kernel changes. Us-
ing this prototype, we demonstrate how Strata enables
fast system provisioning, simplifies system maintenance
and upgrades, speeds system recovery from security ex-
ploits, and incurs only modest performance overhead.

1 Introduction

The rise of virtualization has resulted in the growing
adoption and use of virtual appliances (VAs). VAs are
pre-built software bundles run inside virtual machines
(VMs). For example, one VM might be tailored to be a
web server VA, another might be tailored to be a desk-
top computing VA. Since VAs are often tailored to a
specific application, these configurations can be smaller
and simpler, potentially resulting in reduced resource re-
quirements and more secure deployments. Because of its
greater simplicity, an individual VA may often be easier
to manage than a general-purpose machine.

VAs simplify application deployment. Once an appli-
cation is installed in a VA, it can be easily copied and de-
ployed by end users with minimal hassle since both the
software and its configuration have already been setup
in the VA. Furthermore, a new VA can be easily created
by just cloning an existing VA that already contains a
base installation of the necessary software, then modify-
ing it by adding or removing applications and changing

the system configuration. There is no need to set up the
common components again from scratch.

The utility of VAs and the ease with which they can be
created and deployed is fueling their rapid proliferation
in the enterprise. As VAs are cloned and modified, creat-
ing an ever increasing sprawl of different configurations,
organizations which once had a few hardware machines
to manage now find themselves juggling many more VAs
with diverse system configurations and software instal-
lations. VAs are increasingly networked, which only
complicates the management problem, given the myriad
of viruses and other attacks commonplace today. Secu-
rity problems can wreak havoc on an organization’s vir-
tual computing infrastructure. While software patches
are released for these threats, the need to constantly de-
ploy patches and upgrade software creates a management
nightmare as the number of VAs in the enterprise contin-
ues to rise. Many VAs may be turned off, suspended,
or not even actively managed, making patch deployment
before a security problem hits even more difficult. Al-
though the management of any one VA may not be diffi-
cult, the need to manage many different VAs results in a
huge scaling problem for large organizations as manage-
ment overhead grows linearly with the number of VAs
that need to be maintained.

Many approaches have tried to address these prob-
lems, including traditional package management sys-
tems [7, 16], using copy-on-write disks [10], and new
VM storage formats [13, 3]. Unfortunately, these ap-
proaches suffer from various drawbacks that limit their
utility and effectiveness in practice. They either incur
management overheads that grow with the number of
VAs, or require all VAs to have the same configuration,
eliminating the key benefits of VAs. The fundamental
problem with previous approaches is that they are based
on the concept of a monolithic file system or block de-
vice. These file systems and block devices address their
data at the block layer. They have no direct concept
of what the file system contains or how it is modified.
However, managing VAs is essentially done by making
changes to the file system. As a result, any upgrade or
maintenance operation needs to be done to each VA inde-
pendently, even when they need the same maintenance.

To address this management problem, we present
Strata, a system that decomposes monolithic file systems
into collections of files that can be shared across different
VAs and centrally maintained to simplify system man-

1

agement. These collection of files are dynamically com-
posed back together in each VA to provide the traditional
file system view applications expect. This is done by
providing a file system that addresses its contents by file
location.

Strata is built around three architectural components:
layers, layer repositories, and virtual layered file sys-
tems. A layer is a file hierarchy of related files that are
typically changed or upgraded as a unit, such as a soft-
ware package or application. A layer may require other
layers to function correctly in the same manner that ap-
plications often require various system libraries to run.
Strata associates dependency information with each layer
that defines relationships among distinct layers.

A layer repository is used to centrally store layers.
Layers are updated and maintained in the layer reposi-
tory. For example, if a new version of an application be-
comes available, a new layer is added to the repository.
If a patch for an application is issued, the corresponding
layer is patched by creating a new layer with the patch.
Different versions of the same application may be avail-
able through different layers in the layer repository. The
layer repository is typically stored in a shared storage in-
frastructure accessible by the VAs.

A VLFS is the file system for a VA. Unlike a tradi-
tional file system that is a monolithic entity, it is a col-
lection of individual layers dynamically composed to-
gether into a single file system view. Each VA has its
own VLFS, which typically consists of a private read-
write layer and a set of read-only layers shared through
the layer repository. The private read-write layer is used
for all file system modifications private to the VA, such
as modifying user data. The shared read-only layers al-
low VAs with very different system configurations and
applications to still share common layers that represent
common software components used across VAs. Layer
changes to shared layers only need to be done once in
the repository and are then automatically propagated to
all VLFSs, resulting in management overhead indepen-
dent of the number of VAs.

By dynamically building a VLFS out of discrete lay-
ers, Strata introduces file system composition as the
package management semantic to provide a number of
management benefits. First, Strata enables faster and
easier ways to provision VAs. All an administrator needs
to do to provision a VA is select the applications and tools
of interest from the layer repository. The VA’s VLFS au-
tomatically composes the selected layers together with
a read-write layer and incorporates any additional layers
needed to resolve any necessary dependencies. The VA
is then immediately ready to use. Since layers are stored
in the shared layer repository, provisioning VAs is very
fast as no data has to be copied into place. As the layer
repository allows easy identification of the applications

and tools of interest, and the VLFS resolves dependen-
cies on other layers automatically, provisioning VAs is
relatively easy. Since VAs are simply defined by the sets
of layers associated with them,, Strata also enables a new
way to build VAs by compositing existing VAs together.

Second, Strata simplifies upgrades and maintenance of
VAs. If a layer contains a bug that has to be fixed, all an
administrator has to do is create a replacement layer that
contains the bug fix and inform the provisioned VA to in-
corporate the layer into the VLFS’s namespace view. Un-
like traditional VAs that have to reboot themselves when
an upgrade occurs, Strata enables online upgrades. New
layers are dynamically incorporated into a VLFS on the
fly, much like a traditionally managed machine incorpo-
rates updated packages.

Finally, Strata enables easier recovery of VAs in the
presence of security exploits. A VLFS enables systems
to distinguish between the deployed system’s initial state
and changes that are made to it over time as modifica-
tions to the file system from the VA are performed in its
private read-write layer. If a VA is compromised and an
attacker attempts to install new malware or modify exist-
ing applications, these changes will be separated from
the deployed system’s initial state and isolated to the
read-write layer. Such changes can then be more easily
identified and removed to return the VA to a clean state.

We have implemented a Strata Linux prototype with-
out any application or operating system kernel changes.
We show that layers can be implemented by simply com-
bining traditional package management with file system
unioning in a novel way to provide powerful new func-
tionality. We have used our prototype with VMware ESX
virtualization infrastructure to create and manipulate a
variety of desktop and server VAs to demonstrate its util-
ity for system provisioning, system maintenance and up-
grades, and system recovery. Our experimental results
show that Strata can provision VAs in only a few sec-
onds, can upgrade a farm of fifty VAs with several differ-
ent configurations in less than two minutes, and has scal-
able storage requirements and modest file system perfor-
mance overhead.

2 Related Work

The most common way to provision and maintain ma-
chines today is using the package management system
built into the operating system. On Linux, this would
generally be Debian’s Package Manager (dpkg) [7] or
the Red Hat Package Manager (rpm) [16]. Package man-
agers perform a number of operations when packages are
installed or removed from the file system: (1) they deter-
mine if a specific package can be installed into or re-
moved from the file system, (2) they unpack a package’s
contents into the file system on installation and delete
them on removal, and (3) they use configuration scripts to

2

configure the system its being installed into or removed
from appropriately.

Package managers suffer from a number of flaws for
managing VAs. They are not space or time efficient, as
each provisioned VA needs an independent copy of the
package’s files and requires time-consuming copying of
many megabytes or gigabytes into each VA’s file system.
These inefficiencies affect both provisioning and updat-
ing of a system. Provisioning takes a significant amount
of time as it involves downloading, extracting and in-
stalling a large number of packages, as well as requiring
a significant amount of space. Even for existing VAs, if
an update has to be applied to all of them, such as to fix a
critical security hole in a common system library, a sig-
nificant time is spent in aggregate installing the update
into every individual VA. Finally, package management
systems work in the context of a running system to mod-
ify the file system directly. These standard tools often
do not work outside the context of a running system, for
example for a VA that is suspended or turned off.

For local scenarios, the size and time efficiencies of
provisioning a VA can be improved by utilizing copy-
on-write (COW) disks, such as QEMU’s QCOW2 [10]
format. A VA can then be provisioned quickly as very
little data has to be written to disk immediately due to
the COW property. However, once provisioned, each
COW copy is now fully independent from the original
and is equivalent to a regular copy and therefore suffers
from all the same maintenance problem as a regular VA.
Even if the original disk image is updated, the changes
would be incompatible with the cloned COW images.
This is because COW disks operate at the block level.
As files get modified, they will use different blocks on
their underlying device. Therefore, its very likely that
the original and cloned COW image will be addressing
the same blocks for different pieces of data. For simi-
lar reasons, COW disks do not help with VA creation as
multiple COW disks cannot be combined together into a
single disk image.

Both the Collective [3] and Ventana [13] attempt to
solve the VA maintenance problem by building upon
COW concepts. The Collective uses shared virtual disks
to improve the ability of system administrators to man-
age large number of virtual machine instances, while
Ventana works at the file system layer. Both systems
work by providing virtual machines with two file sys-
tems, a system file system that is shared in a COW
manner and a private user file system to contain data
that persists past an upgrade. Both systems enable VAs to
be provisioned quickly by just performing a COW copy
of each VA’s system file system. However, they suffer
from the fact that they manage this file system at either
the block device or monolithic file system level, provid-
ing users with just a single file system. While ideally an

administrator could supply a single homogeneous shared
image for all users, in practice, users want access to many
heterogeneous images that need to be maintained inde-
pendently and therefore increase the work of the admin-
istrator. Similarly, for end user provisioned VAs, while
they both enable the VAs to maintain a separate disk from
the shared system disk that will persist beyond upgrades,
they both suffer the same problems as traditional VAs
due to the monolithic nature of the system disk. Any
changes to the system disk will be lost on upgrade and it
cannot be upgraded online due to it being fully replaced.

Mirage [15] attempts to improve the disk image sprawl
problem by introducing a new storage format, the Mirage
Index Format (MIF), to enumerate what files belong to a
package. Instead of having a single package that con-
tains the files that belong to it, Mirage has a single store
that contains all files belonging to all packages. The files
that belong to a package are then indexed into the shared
storage medium by a manifest file that determines which
files in the shared store belong to the package. Users cre-
ate a virtual disk by specifying which packages should
be installed, and the manifest files determines which files
should be installed into the file system, and those files are
copied into place. The Mirage format provides signifi-
cant benefits in certain specific areas. It improves the ef-
ficiency of the back end storage, as many files that would
otherwise be duplicated are no longer duplicated. Simi-
larly, it enables an administrator to easily determine what
programs are in a disk images. However, it does not help
with the actual image sprawl in regards to machine main-
tenance, as each machine reconstituted by Mirage still
has a fully independent file system, as each image has its
own personal copy. While each provisioned machine can
be tracked, they are now independent entities and suffer
from the same problems as a traditional VAs.

Stork [2] improves on package management for
container-based systems by enabling containers to hard
link to an underlying shared file system so that files are
only stored once across all containers. By design, it can-
not help with managing independent machines, virtual
machines, or VAs.

Union file systems [12, 19] provide the ability to com-
pose multiple different file system namespaces into a sin-
gle namespace view. While file system unioning does not
help directly with VA management, Strata builds upon
and leverages this mechanism to provide a solution that
enables efficient provisioning and management of VAs.

3 Strata Basics

Figure 1 shows Strata’s three architectural components,
layers, layer repositories and virtual layer file systems.
A layer is a distinct self-contained set of files that corre-
spond to a specific set of functionality. Strata classifies
layers into three categories: software layers that contain

3

Figure 1: How Layers, Repositories and VLFSs Fit Together

self contained applications and system libraries, config-
uration layers that contain configuration file changes for
a specific VA, and private layers that enable each provi-
sioned VA to be independent. Layers can be mixed and
matched, and may depend on other layers. For example,
a single application or system library is not a fully in-
dependent entity. They will depend on the presence of
other layers, such as those that provide needed shared
libraries. Strata enables layers to enumerate their depen-
dencies on other layers. This dependency scheme en-
ables a complete fully consistent file system to be auto-
matically provisioned by selecting the main features one
desires within the file system.

Layers are provided through layer repositories. As
Figure 1 shows, a layer repository is a file system share
that contains a set of layers made available to VAs. When
an update to a layer is available, the old layer is not over-
written. Instead, a new version of the layer is created
and placed within the repository, making it available to
Strata’s users. Administrators can also remove layers
from the repository, for instance due to known security
holes, to prevent them from being used. Layer reposito-
ries are generally stored on centrally managed file sys-
tems, such as a SAN or NFS, but they can also be pro-
vided by protocols such as FTP and HTTP and mirrored
locally. One can use layers from multiple layer reposito-
ries to form a VLFS, as long as the layers are compatible
with each other. This enables layers to be provided in a
distributed manner. Layers provided by different main-
tainers can have the same layer names, causing a con-
flict. However, this is no different though than what ex-
ists in traditional package management systems as pack-
ages with the same package name, but different function-
ality, can be provided by different package repositories.

As Figure 1 shows, a VLFS is a collection of layers
from layer repositories that are composed into a single
file system namespace. The layers that make up a par-

ticular VLFS are defined by the VLFS’s layer definition
file, which enumerates all the layers that will be com-
posed together into a single VLFS instance. To provision
a VLFS, an administrator selects a set of software layers
that provide the desired functionality and lists those lay-
ers in the VLFS’s layer definition file.

Within a VLFS, layers are stacked on on top of an-
other and composed into a single file system view. An
implication of this composition mechanism is that layers
on top can obscure files on layers below them, only al-
lowing the contents of the file instance contained within
the higher level to be used. This means that files in the
private or configuration layers can obscure files in lower
layers, such as when one makes a change to a default
version of a configuration file located within a software
layer. Software layers, on the other hand, will never ob-
scure files located in a lower layer due to Strata not al-
lowing software layers that contain the same file to be
composed together.

4 Strata Usage Model

Strata’s usage model is centered around the usage of lay-
ers to quickly create VLFSs for VAs as shown in Fig-
ure 1. Strata enables an administrator to compose to-
gether layers to form template VAs. These template VAs
can be used to form other template appliances that extend
their functionality, as well as to provide the VA that end
users will provision and use.

4.1 Creating Layers and Repositories

Layers are first created and stored in layer repositories.
Layer creation is similar to the creation of packages in
a traditional package management system, where one
builds the software, installs it into a private directory and
is able to turn that directory into a package archive, or
in Strata’s case, a layer. For instance, to create a layer
that contains the MySQL SQL server, the layer main-
tainer would download the source archive for MySQL,
extract it and build it normally. However, instead of in-
stalling it into the system’s root directory, one installs it
into a virtual root directory that becomes the file system
component of this new layer. The layer maintainer then
defines the layer’s meta data, including the layer’s name,
mysql-server in this case, and an appropriate ver-
sion number to uniquely identify this layer. Finally, the
entire directory structure of the layer is copied into a file
system share that provides a layer repository, making the
layer available to users of that repository.

4.2 Creating Appliance Templates

Given a layer repository, an administrator can then create
template VAs. Creating a template VA involves (1) cre-
ating the template VA with an identifiable name and the
VLFS it will use, (2) determining what repositories are
available to it, (3) selecting a set of layers that provide

4

the functionality desired.
For example, to create a template VA that provides a

MySQL SQL server, an administrator creates an appli-
ance/VLFS named sql-server and select the layers
needed for a fully functional MySQL server file system,
most importantly, the mysql-server layer. Strata com-
poses these layers together into the VLFS in a read-only
manner together with a read-write private layer, making
the VLFS usable within a VM. The administrator boots
the VM and make the appropriate configuration changes
to the template VA, storing them within the VLFS’s pri-
vate layer. Finally, the private layer belonging to the tem-
plate appliance’s VLFS is frozen and becomes the tem-
plate’s configuration layer. As another example, to create
an Apache web server appliance, an adminstrator cre-
ates an appliance/VLFS named web-server, and se-
lects the layers required for an Apache web server, most
importantly, the layer containing the Apache program.

Strata extends this template model by allowing multi-
ple template VAs to be composed together into a single
new template. For example, an administrator can create
a new template VA/VLFS, sql+web-server, com-
posed of the MySQL and Apache template VAs. The
resulting VLFS has the combined set of software layers
from both templates, both of their configuration layers,
as well as a new configuration layer to contain configu-
ration state that integrates the two services together, for
a total of three configuration layers.

4.3 Provisioning Appliances Instances

Given template VAs, VAs can be efficiently and quickly
provisioned and deployed by end users by cloning the
available templates. Provisioning a VA involves (1) cre-
ating a virtual machine container with a network adapter
and an empty virtual disk, (2) using the network adapter’s
unique MAC address as the machine’s identifier for iden-
tifying the VLFS created for this machine, (3) forming
the VLFS by referencing the already existing respective
template VLFS, combining the template’s read-only soft-
ware and configuration layers with a read-write private
layer provided by the VM’s virtual disk.

4.4 Updating Appliances

Appliances often need to be upgraded to fix security
holes in existing software and to add new functionality
provided by updated software. Strata upgrades provi-
sioned VAs efficiently using a simple two step process.
First, an updated layer is installed into a shared layer
repository. Second, the updated layer is incorporated into
each provisioned appliance/VLFS.

When an update is installed in a layer repository, all
template VAs using that layer in that repository are au-
tomatically updated. If the administrator of a template
does not desire to upgrade the layer, she can place a hold

on it, locking it at its current version.
When a template is updated, all provisioned VAs based

on that template will incorporate the update as well. VAs
do not have to be powered on to be updated. Since they
compose their file system fresh each time they boot, pro-
visioned VAs will compose together whatever updates
have been applied to their templates automatically, never
leaving the file system in a vulnerable state. Further-
more, running VAs can be upgraded atomically, as Strata
can add and remote a layer in a single operation. This
is unlike a traditional package management system that
when upgrading a package first uninstalls it, before rein-
stalling the newer version. The traditional method leaves
the file system in an inconsistent state for a short period
of time due to the possibility of files needed for pro-
gram execution, such as shared libraries, being unavail-
able when a program tries to execute due to it not being
copied back into place yet.

4.5 Improving Security

Strata makes it much easier to deal with security compro-
mises to the VAs. By dividing a file system into layers,
and storing all file system modifications inside the pri-
vate layer, Strata isolates what changes have been made
to the file system from its default configuration. The way
to make a compromise persistent is to modify the file
system, but Strata makes any file system modifications,
be they changing system files or adding a new program
to act as a back-door, readily visible in the private layer.
This allows Strata to not rely on tools like Tripwire [9] to
determine if files have been modified from their default
state. This reduces management load due to not requir-
ing any external databases be kept in sync with the file
system state as it changes. This segregation of modified
file system state also enables quick recovery from a com-
promised system. By simply replacing the VA’s private
layer with a fresh private layer, the compromised system
is immediately fixed by returning it to its default, freshly
provisioned state.

5 VLFS Abstraction

Strata introduces the concept of a virtual layered file
system in place of traditional monolithic file systems.
Strata’s VLFS enables file systems to be created by com-
posing layers together into a single file system names-
pace view. Strata’s enables these layers to be shared by
multiple VLFS’s in a read-only manner or remain read-
write and private to a single VLFS.

Every VLFS is defined by a layer definition file (LDF)
that specifies what software layers should be composed
together. An LDF is a simple text file that lists the layers
and their respective repositories. The syntax of layer lists
in the LDF repository/layer version, and can
be proceeded by an optional modifier command. When

5

an administrator wants to add or remove software from
the file system, instead of modifying the file system di-
rectly, the LDF is modified by adding or removing the
appropriate layers.

Figure 2 contains an example LDF for a MySQL SQL
server template appliance. The LDF lists each individual
layer included within the VLFS along with its respective
repository. Each layer also has a number indicating the
version of the layer that will be composed into the file
system. If an updated layer is made available, the LDF is
updated to include the new layer version in place of the
old one. If the administrator of the VLFS does not desire
that a layer be updated, she can hold a layer at a specific
version, with the = syntax element. This is demonstrated
by the mailx layer in Figure 2 which is being held at
the version listed in the LDF.

Strata’s enables an administrator to only explicitly se-
lect the few layers corresponding to the exact functional-
ity desired within the file system, while other layers that
need to be part of the file system are implicitly selected
by the layers’ dependencies as described in Section 5.2.
Figure 2 shows how Strata distinguishes between explic-
itly and implicitly selected layers. Explicitly selected
layers are listed first and separated from the implicitly
selected layers by a blank line. In this case, the MySQL
server only has one explicit layer, mysql-server, while
it has 21 implicitly selected layers. These include utili-
ties, such as Perl and TCP Wrappers (tcpd), as well as li-
braries such as OpenSSL (libssl). It also includes a layer
providing a shared base common to all VLFSs. Strata
distinguishes explicit layers from implicit layers to en-
able future reconfigurations to remove one implicit layer
in favor of another one if dependencies need to change.

When an end user provisions an appliance by cloning a
template, an LDF is created for the provisioned VA. Fig-
ure 3 shows an example introducing another syntax ele-
ment, @, that instructs Strata to reference another VLFS’s
LDF as the basis for this VLFS. This enables Strata to
clone the referenced VLFS by including its layers within
the new VLFS. In this case, as a user just wants to de-
ploy the SQL server template, this VLFS LDF only has
to include the single @ line. In general, a VLFS can ref-
erence more than one VLFS template presuming layer
dependencies allow all the layers to coexist.

5.1 Layers

Strata’s layers are composed of three components: meta-
data files, the layer’s file system, and configuration
scripts. The metadata files define the information that
describes the layer. This includes its name, version and
dependency information. This information is impor-
tant to ensure that a VLFS is composed correctly. The
metadata file contains all the metadata that is speci-
fied for the layer. Figure 4 shows an example metadata

main/mysql-server 5.0.51a-3

main/base 1
main/libdb4.2 4.2.52-18
main/apt-utils 0.5.28.6
main/liblocale-gettext-perl 1.01-17
main/libtext-charwidth-perl 0.04-1
main/libtext-iconv-perl 1.2-3
main/libtext-wrapi18n-perl 0.06-1
main/debconf 1.4.30.13
main/tcpd 7.6-8
main/libgdbm3 1.8.3-2
main/perl 5.8.4-8
main/psmisc 21.5-1
main/libssl0.9.7 0.9.7e-3
main/liblockfile1 1.06
main/adduser 3.63
main/libreadline4 4.3-11
main/libnet-daemon-perl 0.38-1
main/libplrpc-perl 0.2017-1
main/libdbi-perl 1.46-6
main/ssmtp 2.61-2
=main/mailx 3a8.1.2-0.20040524cvs-4

Figure 2: Layer Definition for MySQL server

@main/sql-server

Figure 3: Layer Definition for Provisioned Appliance

file. Figure 5 shows the full metadata syntax. The meta-
data file has a single field per line with two elements, the
field type and the field contents. In general, the metadata
file’s syntax is Field Type: value, where value
can be a single entry or a comma separated list of values.

The layer’s file system is a self-contained set of files
providing a specific set of functionality. The files are
the individual items in the layer that are composed into
a larger VLFS. There are no restrictions on the type of
files. They can be regular files, symbolic links, hard links
or device nodes. A layer can be viewed as a directory
stored on the shared file system that contains the same
file and directory structure that would be created if the
individual items were installed into a traditional file sys-
tem. On a traditional UNIX system, the directory struc-
ture would typically contain directories such as /usr,
/bin and /etc. Symbolic links work as expected be-
tween layers since they work on path names, but a limi-
tation is that hard links cannot exist between layers.

The layer’s configuration scripts are run when a layer
is added or removed from a VLFS to enable proper inte-
gration of the layer within the VLFS. While many layers
are just a collection of files, other layers need to be inte-
grated into the system as a whole. For example, a layer
that provides mp3 file playing capability would want to
register itself with the system’s MIME database to enable
programs contained within the layer to be launched au-
tomatically when a user wants to play an mp3 file. Simi-

6

Layer: mysql-server
Version: 5.0.51a-3
Depends: ..., perl (>= 5.6),

tcpd (>= 7.6-4),...

Figure 4: Metadata for MySQL-Server Layer
Layer: Layer Name
Version: Version of Layer Unit
Conflicts: layer1 (opt. constraint), ...
Depends: layer1 (...),

layer2 (...) | layer3, ...
Pre-Depends: layer1 (...), ...
Provides: virtual_layer, ...

Figure 5: Metadata Specification

larly, if the layer were removed, it should remove the pro-
grams contained within itself from the MIME database.

Strata supports four types of configuration scripts, pre-
remove, post-remove, pre-install and post-install. When
they exist in a layer, the appropriate script is run before
or after a layer is added or removed. For example, a
pre-remove script can be used to shutdown a daemon,
before it actually removed, while a post-remove script
can be used to clean up file system droppings that layer
leaves in the private layer. Similarly, a pre-install script
can make sure the file system is in a manner the layer
expects, while the post-install script can start daemons
that are included in the layer. The configuration scripts
can be written in any scripting language. The layer just
has to include the proper dependencies to ensure that the
scripting infrastructure is composed into the file system
to enable the scripts to run.

Layers are stored on disk, as a directory tree that is
named by the layer’s name and its version. For in-
stance, version 5.0.51a of the MySQL server, with a
strata layer version of 3 would be stored under the direc-
tory mysql-server 5.0.51a-3. Within this direc-
tory, Strata defines a metadata file, a filesystem
directory and a scripts directory that correspond to
the layer’s three components.

5.2 Dependencies

A key Strata metadata element is its enumeration of the
dependencies that exist between layers. Strata’s depen-
dency scheme is heavily influenced by the dependency
scheme in Linux distributions such as Debian and Red
Hat. In Strata, every layer composed into Strata’s VLFS
is termed a layer unit. Every layer unit is defined by its
name and its version. Two layer units that have the same
name, but different layer versions are different units of
the same layer; a layer refers to the set of layer units of a
particular name. Every layer unit in Strata has a set of de-
pendency constraints placed within its metadata. There
are four types of dependency constraints: dependency,
pre-dependency, conflict, and provide.

Dependency and Pre-Dependency: Dependency and

pre-dependency constraints are similar in that they re-
quire another layer unit to be integrated at the same time
as the layer unit that specifies them. They differ only in
the order the layer’s configuration scripts are executed
to integrate them into the VLFS. A regular dependency
does not dictate order of integration. A pre-dependency
dictates that the dependency has to be integrated before
the dependent layer. Figure 4 shows that the MySQL
layer depends on TCP Wrappers, (tcpd), as it dynam-
ically links against the shared library libwrap.so.0
which is provided by TCP Wrappers. MySQL cannot
run without the presence of this shared library, so the
layer units that contain MySQL must depend on the pres-
ence of a layer unit containing an appropriate version of
the shared library. These dependencies constraints can
also be versioned to further restrict which layer units sat-
isfy the constraint. For instance, shared libraries can add
functionality that breaks their application binary inter-
face (ABI), breaking any applications that depend on that
ABI. Since MySQL is compiled against version 0.7.6
of the libwrap library, the dependency constraint is ver-
sioned to ensure that a compatible version of the library
is integrated at the same time.

Conflict: Conflict constraints indicate that layer units
cannot be integrated into the same VLFS. There are mul-
tiple reasons this can occur, but it is generally because
they depend on exclusive access to the same operating
system resource. This can be a TCP port in the case of
an Internet daemon, or two layer units that contain the
same file pathnames and therefore would obscure each
other. For this reason, Strata defines that two layer units
of the same layer are by definition in conflict as they will
contain some of the same files.

An example of this constraint occurs when the ABI
of a shared library changes without any source code
changes. This is generally due to an ABI change in the
tool chain that builds the shared library. Since the ABI
has changed, the new version can no longer satisfy any
of the previous dependencies. Therefore, a new layer
has to be created with a different name. This ensures that
the library with the new ABI is never used to satisfy an
old dependency on the original layer. Since the new layer
will contain the same files as the old layer, it will have to
conflict with the older layer to ensure that they are not
integrated into the same file system.

Provide: Provide constraints introduce virtual layers.
While a regular layer provides a specific set of files, a
virtual layer is an indication that a layer provides a par-
ticularly piece of general functionality. Layer units that
depend on a certain piece of general functionality being
present can depend on a specific virtual layer name in the
normal manner, while those layer units that provide that
general functionality will explicitly specify that they pro-
vide this functionality. For example, many layer units,

7

such as those that provide web-mail or content manage-
ment software, depend on the presence of a web server,
but do not care which one. Instead of depending on a
particular web server, they depend on the virtual layer
name httpd. Similarly, layer units that contain a web
server, such as Apache or Boa, are defined to provide the
httpd virtual layer name and therefore satisfy those de-
pendencies. Unlike regular layer units, virtual layers are
not versioned.

Example: Figure 2 shows how dependencies can af-
fect a VLFS in practice. This VLFS has only one ex-
plicit layer, mysql-server, but 21 implicitly selected lay-
ers. The mysql-server layer itself has a number of di-
rect dependencies including, Perl, TCP Wrappers and
the mailx command. These dependencies in turn depend
on the Berkeley DB library and the GNU dbm library
amongst others. Due to its dependency mechanism, by
just specifying a single layer, Strata is able to automati-
cally resolve all the other layers needed to create a com-
plete file system.

Returning to Figure 4, this example defines a subset
of the layers that the mysql-server layer requires to be
composed into the same VLFS to enable MySQL to run
correctly. More generally, Figure 5 shows the complete
syntax for the dependency metadata. Provides is the sim-
plest, with only a comma separated list of virtual layer
names. Conflicts add an optional version constraint to
each layer that is conflicted with to limit the layer units
that are actually in conflict. Finally, Depends and Pre-
Depends add a boolean OR of multiple layers in their de-
pendency constraints to enable multiple layers to satisfy
the dependency.

Resolving Dependencies: To simplify VLFS provi-
sioning by enabling an administrator to only select the
explicit layers desired within the VLFS, Strata must
automatically resolve dependencies to determine which
other layers need to be implicitly included as well. To
enable dependency resolution, Strata first provides a
database of all the available layer units’ metadata as well
as the locations of where to reach them. The collection
of layer units can be viewed as three sets: the set of layer
units themselves, the set of dependency relations for each
individual layer unit, and finally the set of conflict rela-
tions (C) that define which layer units cannot be inte-
grated into the same file system. This collection can be
viewed as directed dependency graph connecting layer
units to the layer units they depend on.

A layer unit can be integrated into the VLFS when two
principles hold. First, a set of layer units (I), that ful-
fills total closure of all the dependencies; namely, every
layer unit in the set has every dependency filled. Sec-
ond, I × I ∩C = ∅ must hold, meaning that none of the
layer units in I can conflict with each other. Determin-
ing when these principles hold is a problem that has been

shown to be polynomial time reducible to 3-SAT [4, 17],
and therefore could be very difficult to solve in the naive
manner as 3-SAT is NP Complete. Due to the specialized
nature of the problem, an optimized Davis-Putnam SAT
solver [5] can be used to solve this efficiently [4].

However, even when a layer unit can be integrated into
the VLFS, many times there will be many sets of im-
plicitly selected layer units that allow this. Therefore,
Strata has to evaluate which of those sets is the “best”.
Since Linux distributions already face this problem, tools
have been developed to address it, such as Apt [1] and
Smart [11]. To leverage Smart, Strata adopts the same
metadata database format that Debian uses for packages
for its own layers. When Smart is used with a regular
Linux distribution, administrators can request it to install
or remove packages and it will determine if the operation
can succeed and what are the best set of packages to add
or remove to achieve that goal. In Strata, when an ad-
ministrator requests that a layer be added to or removed
from a template appliance, Smart also evaluates if the op-
eration can succeed and what are the best set of layers to
add or remove. However, instead of acting directly on
the contents of the file system, Strata only has to update
the template’s VLFS’s definition file with the updated set
of layers that should be composed into the file system.

5.3 Layer Creation

Strata allows layers to be created in two ways. First,
Strata enables .deb packages used by Debian derived
distributions and the .rpm packages used by RedHat de-
rived distributions to be converted into layers that Strata
users can then use. Strata converts packages into layers
in a two stage process. First, Strata extracts the relevant
metadata from the package, including its name and ver-
sion. Second, Strata extracts the package’s file contents
into a private directory that will be the layer’s file sys-
tem components. When using converted packages, Strata
leverages the underlying distribution’s tools to run the
configuration scripts belonging to the newly created lay-
ers correctly. Instead of using the distribution’s tools to
unpack the software package and then configure, Strata
composes the layers together, and uses the distribution’s
tools as if the packages they expect to configure have
already been unpacked. While Strata is able to convert
packages from different Linux distributions, it cannot
mix and match them as they are generally ABI incom-
patible with one another.

More commonly, Strata leverages existing packaging
methodologies to simplify the creation of layers from
scratch. In a traditional system, when administrators in-
stalls a set of files, they copy it into the correct places in
the file system, treating the root of the file system tree as
their starting point. For instance, an administrator might
run make install to install a piece of software she

8

compiled on the local machine. Much like in package
management systems, in Strata, the process of layer cre-
ation is instead a three step process. First, instead of
copying the files into the root of the local file system,
the layer creator installs the files into its own specific di-
rectory tree. Namely, the layer creator creates a blank di-
rectory to hold a newly created file system tree that will
be created by having the make install copy the files
into a tree rooted at that directory, instead of the actual
file system root.

Second, the layer maintainer has to extract programs
that integrate the files into the underlying file system and
create scripts that can run when the layer is added and
removed from the file system. Examples of this include
integrating with Gnome’s GConf configuration system,
the creation of encryption keys, or the creation of new
local users and groups for new services that are being
added. This leverages skills that package maintainers, in
a traditional package management world, need to have as
their packages need to be integrated into a traditional file
system in a similar manner.

Finally, the layer maintainer needs to setup the meta-
data correctly. Some elements of the metadata, such as
the name of the layer and its version, are simple to set.
On the other hand, dependency information can be much
harder. However, as package management tools have
had to address this issue, Strata is able to leverage the
tools that they have built. These tools help the layer cre-
ator classify dependencies into two distinct types. The
first type is something that can be derived from the ex-
ecutable, while the second is something that has to be
known by the maintainer. An example of the latter is
a web-mail software layer would need a web server to
operate correctly. Based on files in a layer, its difficult
to determine that a web server is required. Therefore,
the layer creator would have to explicitly list this as a
dependency. In practice, every layer that provides basic
web server functionality, would contain a provide depen-
dency for the web server virtual layer. Every layer that
then needs a basic web server would then be able to de-
pend on this virtual layer name.

On the other hand, many important dependencies can
be inferred and Strata can leverage the same tools used to
solve this for package management [6]. Consider depen-
dencies due to the executables in the layer dynamically
linking against shared libraries. Every executable con-
tains a list of shared libraries that it dynamically links
against at run time. While Strata can enumerate this list,
many of the shared libraries that it links against might
require that a specific version of the library be included
depending on what version the executable was built with.
To infer this information correctly, Strata has each layer
that contains shared libraries include a shared-libs
file that defines what layer dependencies should exist

for programs that are built against it. This enables a
layer creator to take an existing Strata system, create a
layer within it, and automatically enumerate all the re-
quired shared library dependencies of the new layer. If a
shared library is unable to be resolved, the maintainer
of the layer unit will have to handle that dependency
manually. In general, this is due to the layer unit con-
taining the shared library not including an appropriate
shared-lib file and is considered a bug.

This last problem illustrates how dependency enumer-
ation can be difficult. While we can create and lever-
age tools to automate certain tasks and make the life of a
layer maintainer easier, it still requires problem domain
specific knowledge. For instance, many other types of
dependencies or conflicts can not be determined auto-
matically and it requires experienced layer maintainers
to define them appropriately. In our previous example,
a layer providing a web-mail software package will be
worthless without a web server. Similarly, a layer that
includes Python or Perl scripts will require the presence
of an appropriate version of the Python or Perl inter-
preters. A specific version of the scripting language may
be needed, which cannot be easily determined without
extensive parsing of the program for specific language
features. While problem domain knowledge is required
to setup layer dependency metadata correctly, in practice,
the large majority of dependency entries (and for many
layers, all of their entries) are related to required dynam-
ically linked libraries and can be automated.

5.4 Layer Repositories

Strata provides for two types of layer repositories, lo-
cal and remote. Local layer repositories are provided
by locally accessible file system shares and contain layer
units that can be composed into the VLFS. As each in-
dividual layer unit is stored as its own directory, a local
layer repository contains a set of directories, each corre-
sponding to a layer unit. A local layer repository’s con-
tents are enumerated via a database file that provides a
flat representation of the metadata of all the layer units
present in the repository. The database file is used for
providing a list of what layers can be installed, as well
as providing dependency information to enable depen-
dency resolution. Local layer repositories can be stored
locally within the machine, but more commonly would
be stored on a distributed file system such as NFS or on a
SAN. By storing the shared layer repository on NFS or a
SAN, Strata enables layers to be shared securely among
appliances of different users. Even if the machine host-
ing the VLFS is compromised, the read-only layers will
stay secure as NFS or the SAN will enforce the read-only
semantic independently of the VLFS.

Remote layer repositories are similar to local layer
repositories, but are not accessible as file system shares.

9

Instead, they are provided over the Internet, by proto-
cols such as FTP and HTTP, and are able to be mirrored
into a local layer repository. Instead of having to mir-
ror the entire remote repository, Strata enables an on de-
mand mirroring to occur, where all the layers provided
by the remote repository are accessible to the VAs, but
have to be mirrored to the local mirror before they can
be composed into a VLFS. This enables administrators
to only store the layers that they need to use, while main-
taining access to all the layers and their updates that the
repository provides. Administrators can also specify fil-
ters on what layers should be made available to prevent
end users from provisioning with layers that violate ad-
ministration policy. In general, administrator will use
these remote layer repositories to provide the majority
of the layers, much like administrators would use a pub-
licly managed package repository from a regular Linux
distribution.

Layer repositories enable Strata to operate within an
enterprise environment, by handling three distinct, yet
related issues. First, Strata has to ensure that not all end
users have access to every layer available within the en-
terprise. For instance, administrators might want to re-
strict certain layers to certain end users due to licensing
or security issues. Second, as enterprises get larger, they
gain more levels of administration. Strata must support
the creation of an enterprise-wide policy, while also en-
abling small organizations within the enterprise to pro-
vide more localized administration. Finally, larger enter-
prises will support multiple different operating systems,
and will therefore not be able to rely on a single repos-
itory of layers due to inherent incompatibilities between
operating systems.

By enabling a VLFS to make use of multiple reposi-
tories, Strata solves these three problems. First, multi-
ple repositories enable administrators to compartmental-
ize layers according to the needs of their end users. By
only providing end users with access to the repositories
they need to use, they restrict their end users from using
the other layers. Second, by enabling sub-organizations
to setup their own repositories, Strata enables a sub-
organization’s administrator to provide the layers that
end users need, without requiring intervention of the ad-
ministrators of the global repositories. Finally, multiple
repositories enable Strata to support multiple distinct op-
erating systems, as each distinct operating system can
have its own set of layer repositories.

6 VLFS Implementation

To support the creation of a VLFS, Strata has to solve
a number of file system related problems. First, Strata
has to support the ability to combine numerous distinct
file system layers into a single static view. This is equiv-
alent to installing software into a shared read-only file

system. Second, as users expect to be able to interact
with the VLFS as a normal file system, such as by cre-
ating and modifying files, Strata has to enable VLFSs to
be fully modifiable. Relatedly, the third problem Strata
has to solve is that end users should also be able to delete
files that exist on the read-only layer. However, end users
should also be able to recover the deleted files by rein-
stalling or upgrading the layer that contains the deleted.
This is equivalent to deleting a file from a traditional
monolithic file system, but reinstalling the package that
contains the file to recover it. Finally, Strata has to sup-
port the ability to dynamically add and remove layers
without taking the file system offline. This is equivalent
to installing, removing or upgrading a software package
that can be done while a monolithic file system is online.

To solve these problems, Strata leverages and expands
upon unioning file systems. Unioning file systems enable
Strata to solve the first problem as they allow the system
to join multiple distinct directories into a single directory
view. These directories are unioned by layering directo-
ries on top of one another. For example, when two di-
rectories are unioned together, one directory containing
the file foo and the other containing the file bar, the
unioned directory view would contain both files foo and
bar. To provide a consistent semantic, most union file
systems only allow one layer, namely the topmost to have
files added to it. At the same time, if a file that already
existed is modified, the unioning file system change the
underlying file directly, in whatever layer of the union it
existed previously.

To solve the second problem, union file system can be
extended [19] to enable them to assign properties to the
layers, defining some layers to be read only, while others
can be read-write. This results in a model that borrows
from copy-on-write (COW) file systems, where a modi-
fying a file on a lower read-only layer will cause it to be
copied to the topmost writable layer in a COW fashion.
For instance, in the above example, a writable layer con-
taining foo can be layered on top of a read only layer
containing bar. If, in the course of usage, file bar get
modified it will be copied up to the top most layer before
the modification occurs. However, since the entire file
has to be copied, performance can suffer if this operation
has to occur often on large files. This enables VLFS to
include a private read-write layer in addition to the set
of shared read-only layers that make up the bulk of the
file system. When a file is created or modified, it is writ-
ten to the private read-write layer enabling VLFSs to be
differentiated through file system changes.

This layering model also provides a semantic that di-
rectory entries located at higher layers in the stack ob-
scure the equivalent directory entries at lower levels.
Continuing the example, both layers now contain the file
bar, but only the top most layer’s version of the file

10

is visible. To provide a consistent semantic, if a file is
deleted, a white-out mark is also created on the top most
layer to ensure that files existing on a lower layer are not
revealed. Now, if the file bar were deleted, it would not
allow the bar on the lower layer to be revealed. The
white-out mechanism enables obscuring files on the read
only lower layers, by just creating the white-out file on
the topmost layer.

However, this creates the third problem where a file
deleted from a read-only share will never be able to reap-
pear. Unlike a traditional file system, where deleted sys-
tem file can be recovered by simply reinstalling the pack-
age that provided that file, in Strata, white-outs that ex-
ist in the private layer will persist and continue to ob-
scure the file even if the layer is replaced. To solve
this problem, Strata provides a VLFS with additional pri-
vate writable layers associated to each shared read-only
layer in the VLFS. Instead of containing file data, such
as the top-most private writable layer, these layers just
contain white-out marks that will obscure files contained
within their associated read-only layer. This enables a
user to delete a file located in a shared read-only layer,
but to only have the deletion persist for the lifetime of
that layer’s usage. When a layer is replaced, due to rein-
stalling or upgrading the layer, an empty white-out layer
will be associated with the replacement, thereby remov-
ing any preexisting white-out. Similarly, Strata has to
handle the case where a file belonging to a shared read-
only layer was modified and therefore copied up to the
VLFS’s private read-write layer. Strata provides a revert
command that enables the owner of a file that has been
modified to revert the file’s state to its original pristine
state. While a regular VLFS unlink operation would re-
move the modified file from the private layer and create
a white-out mark to obscure the original file, revert only
removes the copy in the private layer thereby revealing
the original copy below it.

The final problem Strata has to solve is to enable a
VLFS to be managed while being used. In a traditional
monolithic file system, an administrator can remove a
package containing files in use, as deleting a file does
not remove its contents from the file system until the
file is no longer in use. However, if a layer is removed
from a union, the data is effectively removed as well as
unions only operate on file system namespaces and not
on the date the underlying files contain. If an administra-
tor wanted to modify the VLFS by removing a layer due
to deletion or upgrade maintenance, one would be forced
to perform the maintenance off-line due to not being able
to remove layers that are in use.

To solve this problem, Strata emulates what the
unlink operation does on a single files and applies it
to layer removal. Unlink operates in two steps. It first
deletes the file name from the file system’s namespace,

while only freeing up the space taken up by the file’s
contents when its no longer in use. Traditional pack-
age management systems rely on this semantic to enable
them to upgrade packages, even if files are in use, by un-
linking and then recreating them instead of directly over-
writing the files. Strata applies this same semantic to lay-
ers. When a layer is removed from a VLFS, Strata marks
the layer as unlinked, removing it from the file system
namespace. While this layer is no longer part of the file
system namespace and therefore can not be used by any
operations that work on the file system namespace, such
as open, it remains part of the VLFS enabling data op-
erations, such as read and write, to continue to work
correctly for files that were previously opened.

7 Experimental Results

We have implemented Strata as a loadable kernel mod-
ule on the Linux 2.6 series kernel. Strata requires no
changes to the Linux kernel. We present some experi-
mental results using our Linux prototype on various VAs
to demonstrate its ability to reduce management costs
while incurring only modest performance overhead. Ex-
periments were conducted on VMware ESX 3.0 run-
ning on an IBM BladeCenter with 14 IBM HS20 eS-
erver blades with dual 3.06 GHz Intel Xeon CPUs, 2.5
GB RAM and a Q-Logic Fibre Channel 2312 host bust
adapter connected to an IBM ESS Shark SAN with 1 TB
of disk space. The blades were connected by a gigabit
Ethernet switch.

To measure management costs, we quantify the time it
takes for two common system administrative tasks, pro-
visioning VAs, and updating VAs. To measure overhead,
we quantify the storage costs for provisioning many
VAs and the performance overhead for running various
benchmarks using the VAs. We ran on experiments on
five VAs: an Apache web server, a MySQL SQL server,
a Samba file server, an SSH server providing remote
access, and a remote desktop server providing a com-
plete GNOME desktop environment. To provide a basis
for comparison, we provisioned these VAs using (1) the
normal VMware virtualization infrastructure and Debian
package management tools (plain), and (2) Strata. To
provide a conservative comparison with plain VAs and
to test larger numbers of plain VAs in parallel, we mini-
mized the disk usage of the VAs. The desktop VA used
a 2 GB virtual disk, and all the other VAs used a 1 GB
virtual disk.

7.1 Reducing Provisioning Times

Table 1 shows how long it takes to provision VAs us-
ing Strata versus traditional methods using VM cloning.
For provisioning a VA using Strata, Strata copies a de-
fault VMware VM with an empty sparse virtual disk and
provides it with a unique MAC address. It then creates a

11

Apache MySQL Samba SSH Desktop
Plain 184s 179s 183s 174s 355s
Strata 0.002s 0.002s 0.002s 0.002s 0.002s

Table 1: VA Provisioning Times

symbolic link on the shared file system from a file named
by the MAC address to the layer definition file that de-
fines the configuration of the VA. When the VA boots, it
accesses the file denoted by its MAC address and mount
the VLFS with the appropriate layers and continues exe-
cution from within it. For provisioning a plain VA using
VM cloning, VM cloning copies a template VM to create
an instance of the VA.

Our measurements for all five VAs show that tradi-
tional methods take much longer to provision VAs than
Strata. Provisioning plain VAs takes anywhere from 3 to
almost 6 minutes and is dominated by the cost of copy-
ing data to create a new instance of the VA. For larger
VAs, these provisioning times would only get worse. In
contrast, Strata provisions VAs in only a few millisec-
onds because a null VMware VM has essentially no data
to copy and layers do not need to be copied, so copying
overhead is essentially zero. Strata provides roughly five
orders of magnitude faster provisioning times than tradi-
tional methods, dramatically reducing the management
costs associated with provisioning VAs.

The high provisioning costs when using traditional
methods would also be incurred when creating new VAs
since a new appliance is often created by cloning another
appliance to serve as its base without the hassle of set-
ting those components the same way from scratch. In
contrast, Strata only has to create a new layer definition
file to create a new VA. Creating VAs from scratch us-
ing a local layer repository took only .4 s for the Apache,
MySQL, Samba, and SSH VAs, and 2.3 s for the Desktop
VA. Even if we do not account for the time for modifying
a VA to install new packages, Strata provides well over
two orders of magnitude faster creation times than using
traditional methods for creating VAs.

7.2 Reducing Update Times

Table 2 shows how long it takes to update VAs using
Strata versus traditional methods using package man-
agement. We provisioned ten VA instances of Apache,
MySQL, Samba, SSH, and Desktop for a total of 50 pro-
visioned VAs. Each VA was kept in a suspended state.
We then updated the VAs when a security patch was
made available for the tar package installed in all the VAs
to fix an important vulnerability [18]. For updating the
VAs using Strata, Strata simply updates the layer defini-
tion files of the VM templates, which it can do even when
the VAs are not active. When the VA is later resumed
during normal operation, it will automatically check to
see if the layer definition file got updated and update the

Plain Strata
VM Wake 14.66s NA
Network 43.72s NA
Update 10.22s 1.041s
Suspend 3.96s NA
Total 73.2s 1.041s

Table 2: VA Update Times

VLFS namespace view, an operation that is measured in
microseconds. For updating the plain VAs using normal
package management tools, each VA instance needs to be
resumed, get on the network, have an admin or script ssh
into the VA to apply the update and fetch and install the
update packages from a local Debian mirror, and finally
resuspend the VA.

Table 2 shows the total average time to update each VA
using traditional methods versus Strata. We decompose
the update time into the time to resume the VM, the time
to get access to the network, the time to actually perform
the update, and the time to resuspend the VA. The mea-
surements show that the cost of performing an update is
dominated by the management overhead of getting the
VAs ready to be updated and not the update itself, which
is itself dominated by the cost of getting an IP address
and becoming accessible on a busy network. The aver-
age time to update each plain VA is over 73 seconds. In
contrast, Strata does not need to resume the VAs to up-
date them and takes only a second to update each VA.
Strata provides over 70 times faster update times than
traditional package management when managing just a
modest number of VAs. Strata’s ability to improve up-
date times would only increase as the number of VAs
being managed increases.

7.3 Reducing Storage Costs

Figure 6 shows the total storage space required for differ-
ent numbers of VAs using plain VAs versus Strata. Using
plain VAs, we show the total storage space for 1 Desktop
VA, 5 VAs corresponding to an Apache, MySQL, Samba,
SSH, and Desktop VA, and 50 VAs corresponding to ten
instances of each of the five VAs. As expected, the total
storage space required grows linearly with the number
of VA instances. In contrast, the total storage space us-
ing Strata is almost entirely the space required for the
layer repository and is independent of the number of VA
instances. For one VA, the storage space required for a
single plain VA is less than the storage space required for
Strata since the layer repository used contains more lay-
ers than those used by any one of the VAs. In fact, to run
a single VA, the layer repository size could be trimmed
down to the same size as the traditional VA. However, for
larger numbers of VAs, Strata provides a substantial re-
duction in storage space required since many VAs share
layers and those VAs do not need to duplicate the storage
requirements for those layers. For 50 VAs, Strata reduces

12

1.0

10.0

100.0

1000.0

10000.0

100000.0

1 VM 5 VMs 50 VMs

S
iz

e
(M

B
)

Plain VM
Strata

Figure 6: Storage Overhead

the storage space required by an order of magnitude. Ta-
ble 3 shows that there is much duplication between vir-
tual machines that are provisioned statically, as the layer
repository of 405 distinct layers needed to build the dif-
ferent VLFSs for multiple distinct services, is basically
the same size as the largest service.

7.4 Virtualization Overhead

To measure the virtualization cost of Strata’s VLFS, we
used a range of micro benchmarks and real applica-
tion workloads to measure the performance of our Linux
Strata prototype and compared the results against vanilla
Linux systems within a virtual machine. The virtual ma-
chine’s local file system was formated with the Ext3 file
system, while it was provided read-only access to a SAN
partition formatted with Ext3 as well. We performed all
the benchmarks in every scenario described above.

To demonstrate the affect Strata’s VLFS has on system
performance, we performed a number of benchmarks.
Postmark [8], the first benchmark, is a synthetic test that
measures how the system would behave if used as a mail
server. Our postmark test operated on files between 512
and 10K bytes with an initial set of 20,000 and performed
200,000 transactions. Postmark is very intensive on a
few specific file system operations, such as lookup(),
create() and unlink() as it is constantly creating,
opening and removing files. Figure 7 shows that running
this benchmark within a traditional VA is significantly
faster than running it in with Strata. This is because
as Strata composes multiple file system namespaces to-
gether places significant overhead on namespace opera-
tions such as lookup().

Repo Apache MySQL Samba SSH Desktop
1.8GB 217MB 206MB 169MB 127MB 1.7GB
Layer 43 23 30 12 404
Shared 191MB 162MB 152MB 123MB 169MB
Unique 26MB 44MB 17MB 4MB 1.6GB

Table 3: Layer Repository vs. Static VAs

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

1600.0

1800.0

Apache MySQL Samba SSH Desktop

T
im

e
(s

)

Plain VM
Strata

Figure 7: Postmark Overhead

To demonstrate that postmark’s results are not indica-
tive of performance in real life scenarios, we ran two
application benchmarks to measure the overhead Strata
imposes in a desktop and server VA scenario. The
first benchmark was a multi-threaded build of the Linux
2.6.18.6 kernel with two concurrent jobs to use the two
CPUs allocated to the VM. In all scenarios, we added the
layers required to build a kernel to the layers needed to
provide the service, generally adding 8 additional layers
to each case. Figure 8 shows that while Strata imposes
a slight overhead on the kernel build compared to the
underlying file system it used, it is relatively negligible,
under 5% in the worst case.

The second benchmark placed a load on the Apache
web server and measured the amount of HTTP trans-
actions able to be completed per second. We imported
the database of a popular guitar tab search engine and
used the http load [14] benchmark to continuously
perform a set of 20 search queries on the database. We
measured how many were completed in a 60 s period.
For each case that did not already contain Apache, we
added the appropriate layers to the layer definition file to
make Apache available. Figure 9 shows that Strata im-
poses a negligible overhead of only 5%.

8 Conclusions and Future Work

Strata’s enables system administrators to improve the
way they manage the VAs under their control by intro-
ducing the virtual layered file system. The VLFS com-
bines traditional package management techniques with
unioning file systems in a novel way to provide power-
ful new functionality. By addressing its contents by file
location instead of block address, VLFSs enables Strata
to quickly and simply provision VAs, as no data needs
to be copied into place. It also provides improved man-
agement, as file system modifications are isolated and
upgrades can be stored centrally and applied atomically.
It also enables Strata to create new VLFSs and VAs by
composing together smaller base VLFSs and VAs that

13

0.0

100.0

200.0

300.0

400.0

500.0

600.0

Apache MySQL Samba SSH Desktop

T
im

e
(s

)
Plain VM

Strata

Figure 8: Kernel Build Overhead

0.0

5.0

10.0

15.0

20.0

Apache MySQL Samba SSH Desktop

F
et

ch
es

/s

Plain VM
Strata

Figure 9: Apache Overhead

provide core components. We have implemented Strata
on Linux without requiring any operating system ker-
nel changes, and have demonstrated how a VLFS can
be used in real life situations to improve the ability of
system administrators to perform their jobs. Strata sig-
nificantly reducing the amount of disk space required for
multiple VAs, allows them to be provisioned almost in-
stantaneously, and enables them to quickly updated no
matter how many are in use.

Strata raises a number of follow-up research questions
as it only explores the benefits of layers to provisioning
and maintaining a file system. First, as layers can be
used to branch a file system state into two distinct en-
tities, what benefits can that bring to the administration
and testing of systems? Second, dividing up multiple ap-
plications amongst multiple machines can keep the rest
of the applications’ data secure, if one is compromised.
However, having to use multiple machines to access in-
dividual applications is not a very usable environment.
Therefore, how can Strata be leveraged within a desk-
top environment to provide a more secure desktop, while
retaining the general desktop experience users expect.

References

[1] B. Byfield. An apt-get Primer. http://www.linux.
com/articles/40745, Dec 2004.

[2] J. Capps, S. Baker, J. Plichta, D. Nyugen, J. Hardies,
M. Borgard, J. Johnston, and J. H. Hartman. Stork: Pack-
age Management for Distributed VM Environments. In
21st Large Installation System Administration Conference,
Dallas, TX, Nov 2007.

[3] R. Chandra, N. Zeldovich, C. Sapuntzakis, and M. S. Lam.
The Collective: A Cache-Based System Management Ar-
chitecture. In 2nd conference on Symposium on Networked
Systems Design and Implementation, pages 259–272, Apr
2005.

[4] R. D. Cosmo, B. Durak, X. Leroy, F. Mancinelli, and
J. Vouillon. Maintaining Large Software Distributions:
New Challenges from the FOSS Era. EASST Newsletter,
12:7–20, 2006.

[5] M. Davis and H. Putnam. A Computing Procedure for
Quantification Theory. J. ACM, 7(3):201–215, 1960.

[6] Debian Project. DDP developers’ manuals. http://
www.debian.org/doc/devel-manuals.

[7] J. Fernandez-Sanguino. Debian gnu/linux faq - chapter 7
- the debian package management tools. http://www.
debian.org/doc/FAQ/ch-pkgtools.en.html.

[8] J. Katcher. PostMark: A New File System Benchmark.
Technical Report TR3022, Network Appliance, Inc., 2001.

[9] G. H. Kim and E. H. Spafford. Experiences with Tripwire:
Using Integrity Checkers for Intrusion Detection. In In
Systems Administration, Networking and Security Confer-
ence III. Usenix, 1994.

[10] M. McLoughlin. QCOW2 Image For-
mat. http://www.gnome.org/˜markmc/
qcow-image-format.htm, Sep 2008.

[11] G. Niemeyer. Smart PM. http://labix.org/
smart.

[12] J.-S. Pendry and M. K. McKusick. Union Mounts in
4.4BSD-lite. In USENIX 1995 Technical Conference,
1995.

[13] B. Pfaff, T. Garfinkel, and M. Rosenblum. Virtualization
Aware File Systems: Getting Beyond the Limitations of
Virtual Disks. In 3rd Symposium of Networked Systems
Design and Implementation, May 2006.

[14] J. Poskanzer. http://www.acme.com/software/
http_load/.

[15] D. Reimer, A. Thomas, G. Ammons, T. Mummert,
B. Alpern, and V. Bala. Opening Black Boxes: Using
Semantic Information to Combat Virtual Machine Image
Sprawl. In 2008 ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, Mar 2008.

[16] Rpm package manager. http://www.rpm.org/.
[17] A. Towns. Checking Installability is an NP-

Complete Problem. http://lists.debian.org/
debian-newmaint/2007/11/msg00023.html.

[18] F. Weimer. DSA-1438-1 tar – several vulnerabili-
ties. http://www.ua.debian.org/security/
2007/dsa-1438, Dec 2007.

[19] C. P. Wright, J. Dave, P. Gupta, H. Krishnan, D. P.
Quigley, E. Zadok, and M. N. Zubair. Versatility and unix
semantics in namespace unification. ACM Transactions on
Storage), 2(1):1–32, Feb 2006.

14

http://www.linux.com/articles/40745
http://www.linux.com/articles/40745
http://www.debian.org/doc/devel-manuals
http://www.debian.org/doc/devel-manuals
http://www.debian.org/doc/FAQ/ch-pkgtools.en.html
http://www.debian.org/doc/FAQ/ch-pkgtools.en.html
http://www.gnome.org/~markmc/qcow-image-format.htm
http://www.gnome.org/~markmc/qcow-image-format.htm
http://labix.org/smart
http://labix.org/smart
http://www.acme.com/software/http_load/
http://www.acme.com/software/http_load/
http://www.rpm.org/
http://lists.debian.org/debian-newmaint/2007/11/msg00023.html
http://lists.debian.org/debian-newmaint/2007/11/msg00023.html
http://www.ua.debian.org/security/2007/dsa-1438
http://www.ua.debian.org/security/2007/dsa-1438

	Introduction
	Related Work
	Strata Basics
	Strata Usage Model
	Creating Layers and Repositories
	Creating Appliance Templates
	Provisioning Appliances Instances
	Updating Appliances
	Improving Security

	VLFS Abstraction
	Layers
	Dependencies
	Layer Creation
	Layer Repositories

	VLFS Implementation
	Experimental Results
	Reducing Provisioning Times
	Reducing Update Times
	Reducing Storage Costs
	Virtualization Overhead

	Conclusions and Future Work

