Home

Electrical anisotropy of gas hydrate-bearing sand reservoirs in the Gulf of Mexico

Ann E. Cook; Barbara I. Anderson; John Rasmus; Keli Sun; Qiming Li; Timothy S. Collett; David S. Goldberg

Title:
Electrical anisotropy of gas hydrate-bearing sand reservoirs in the Gulf of Mexico
Author(s):
Cook, Ann E.
Anderson, Barbara I.
Rasmus, John
Sun, Keli
Li, Qiming
Collett, Timothy S.
Goldberg, David S.
Date:
Type:
Articles
Department:
Lamont-Doherty Earth Observatory
Volume:
34
Permanent URL:
Book/Journal Title:
Marine and Petroleum Geology
Abstract:
We present new results and interpretations of the electrical anisotropy and reservoir architecture in gas hydrate-bearing sands using logging data collected during the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II. We focus specifically on sand reservoirs in Hole Alaminos Canyon 21 A (AC21-A), Hole Green Canyon 955 H (GC955-H) and Hole Walker Ridge 313 H (WR313-H). Using a new logging-while-drilling directional resistivity tool and a one-dimensional inversion developed by Schlumberger, we resolve the resistivity of the current flowing parallel to the bedding, R‖ and the resistivity of the current flowing perpendicular to the bedding, R⊥. We find the sand reservoir in Hole AC21-A to be relatively isotropic, with R‖ and R⊥ values close to 2 Ω m. In contrast, the gas hydrate-bearing sand reservoirs in Holes GC955-H and WR313-H are highly anisotropic. In these reservoirs, R‖ is between 2 and 30 Ω m, and R⊥ is generally an order of magnitude higher. Using Schlumberger’s WebMI models, we were able to replicate multiple resistivity measurements and determine the formation resistivity the gas hydrate-bearing sand reservoir in Hole WR313-H. The results showed that gas hydrate saturations within a single reservoir unit are highly variable. For example, the sand units in Hole WR313-H contain thin layers (on the order of 10–100 cm) with varying gas hydrate saturations between 15 and 95%. Our combined modeling results clearly indicate that the gas hydrate-bearing sand reservoirs in Holes GC955-H and WR313-H are highly anisotropic due to varying saturations of gas hydrate forming in thin layers within larger sand units.
Subject(s):
Marine geology
Petroleum geology
Publisher DOI:
http://dx.doi.org/10.1016/j.marpetgeo.2011.09.003
Item views:
260
Metadata:
text | xml

In Partnership with the Center for Digital Research and Scholarship at Columbia University Libraries/Information Services | Terms of Use