## Yunan Liu

- Title:
- Many-Server Queues with Time-Varying Arrivals, Customer Abandonment, and non-Exponential Distributions
- Author(s):
- Liu, Yunan
- Thesis Advisor(s):
- Whitt, Ward
- Date:
- 2011
- Type:
- Dissertations
- Department:
- Industrial Engineering and Operations Research
- Permanent URL:
- http://hdl.handle.net/10022/AC:P:10801
- Notes:
- Ph.D., Columbia University.
- Abstract:
- This thesis develops deterministic heavy-traffic fluid approximations for many-server stochastic queueing models. The queueing models, with many homogeneous servers working independently in parallel, are intended to model large-scale service systems such as call centers and health care systems. Such models also have been employed to study communication, computing and manufacturing systems. The heavy-traffic approximations yield relatively simple formulas for quantities describing system performance, such as the expected number of customers waiting in the queue. The new performance approximations are valuable because, in the generality considered, these complex systems are not amenable to exact mathematical analysis. Since the approximate performance measures can be computed quite rapidly, they usefully complement more cumbersome computer simulation. Thus these heavy-traffic approximations can be used to improve capacity planning and operational control. More specifically, the heavy-traffic approximations here are for large-scale service systems, having many servers and a high arrival rate. The main focus is on systems that have time-varying arrival rates and staffing functions. The system is considered under the assumption that there are alternating periods of overloading and underloading, which commonly occurs when service providers are unable to adjust the staffing frequently enough to economically meet demand at all times. The models also allow the realistic features of customer abandonment and non-exponential probability distributions for the service times and the times customers are willing to wait before abandoning. These features make the overall stochastic model non-Markovian and thus thus very difficult to analyze directly. This thesis provides effective algorithms to compute approximate performance descriptions for these complex systems. These algorithms are based on ordinary differential equations and fixed point equations associated with contraction operators. Simulation experiments are conducted to verify that the approximations are effective. This thesis consists of four pieces of work, each presented in one chapter. The first chapter (Chapter 2) develops the basic fluid approximation for a non-Markovian many-server queue with time-varying arrival rate and staffing. The second chapter (Chapter 3) extends the fluid approximation to systems with complex network structure and Markovian routing to other queues of customers after completing service from each queue. The extension to open networks of queues has important applications. For one example, in hospitals, patients usually move among different units such as emergency rooms, operating rooms, and intensive care units. For another example, in manufacturing systems, individual products visit different work stations one or more times. The open network fluid model has multiple queues each of which has a time-varying arrival rate and staffing function. The third chapter (Chapter 4) studies the large-time asymptotic dynamics of a single fluid queue. When the model parameters are constant, convergence to the steady state as time evolves is established. When the arrival rates are periodic functions, such as in service systems with daily or seasonal cycles, the existence of a periodic steady state and the convergence to that periodic steady state as time evolves are established. Conditions are provided under which this convergence is exponentially fast. The fourth chapter (Chapter 5) uses a fluid approximation to gain insight into nearly periodic behavior seen in overloaded stationary many-server queues with customer abandonment and nearly deterministic service times. Deterministic service times are of applied interest because computer-generated service times, such as automated messages, may well be deterministic, and computer-generated service is becoming more prevalent. With deterministic service times, if all the servers remain busy for a long interval of time, then the times customers enter service assumes a periodic behavior throughout that interval. In overloaded large-scale systems, these intervals tend to persist for a long time, producing nearly periodic behavior. To gain insight, a heavy-traffic limit theorem is established showing that the fluid model arises as the many-server heavy-traffic limit of a sequence of appropriately scaled queueing models, all having these deterministic service times. Simulation experiments confirm that the transient behavior of the limiting fluid model provides a useful description of the transient performance of the queueing system. However, unlike the asymptotic loss of memory results in the previous chapter for service times with densities, the stationary fluid model with deterministic service times does not approach steady state as time evolves independent of the initial conditions. Since the queueing model with deterministic service times approaches a proper steady state as time evolves, this model with deterministic service times provides an example where the limit interchange (limiting steady state as time evolves and heavy traffic as scale increases) is not valid.
- Subject(s):
- Operations research

- Item views:
- 423