Home

Tropical Oceanic Causes of Interannual to Multidecadal Precipitation Variability in Southeast South America over the Past Century

Richard Seager; Naomi H. Naik; Walter E. Baethgen; Andrew W. Robertson; Yochanan Kushnir; Jennifer A. Nakamura; Stephanie Denisse Jurburg

Title:
Tropical Oceanic Causes of Interannual to Multidecadal Precipitation Variability in Southeast South America over the Past Century
Author(s):
Seager, Richard
Naik, Naomi H.
Baethgen, Walter E.
Robertson, Andrew W.
Kushnir, Yochanan
Nakamura, Jennifer A.
Jurburg, Stephanie Denisse
Date:
Type:
Articles
Department:
Lamont-Doherty Earth Observatory
Volume:
23
Permanent URL:
Book/Journal Title:
Journal of Climate
Abstract:
Observations, atmosphere models forced by historical SSTs, and idealized simulations are used to determine the causes and mechanisms of interannual to multidecadal precipitation anomalies over southeast South America (SESA) since 1901. About 40% of SESA precipitation variability over this period can be accounted for by global SST forcing. Both the tropical Pacific and Atlantic Oceans share the driving of SESA precipitation, with the latter contributing the most on multidecadal time scales and explaining a wetting trend from the early midcentury until the end of the last century. Cold tropical Atlantic SST anomalies are shown to drive wet conditions in SESA. The dynamics that link SESA precipitation to tropical Atlantic SST anomalies are explored. Cold tropical Atlantic SST anomalies force equatorward-flowing upper-tropospheric flow to the southeast of the tropical heating anomaly, and the vorticity advection by this flow is balanced by vortex stretching and ascent, which drives the increased precipitation. The 1930s Pampas Dust Bowl drought occurred, via this mechanism, in response to warm tropical Atlantic SST anomalies. The atmospheric response to cold tropical Pacific SSTs also contributed. The tropical Atlantic SST anomalies linked to SESA precipitation are the tropical components of the Atlantic multidecadal oscillation. There is little evidence that the large trends over past decades are related to anthropogenic radiative forcing, although models project that this will cause a modest wetting of the climate of SESA. As such, and if the Atlantic multidecadal oscillation has shifted toward a warm phase, it should not be assumed that the long-term wetting trend in SESA will continue. Any reversal to a drier climate more typical of earlier decades would have clear consequences for regional agriculture and water resources.
Subject(s):
Environmental science
Publisher DOI:
http://dx.doi.org/10.1175/2010JCLI3578.1
Item views:
182
Metadata:
View

In Partnership with the Center for Digital Research and Scholarship at Columbia University Libraries/Information Services.