Academic Commons Search Results
http://academiccommons.columbia.edu/catalog.rss?f%5Bdepartment_facet%5D%5B%5D=Operations+Research&q=&rows=500&sort=record_creation_date+desc
Academic Commons Search Resultsen-usFrom Continuous to Discrete: Studies on Continuity Corrections and Monte Carlo Simulation with Applications to Barrier Options and American Options
http://academiccommons.columbia.edu/catalog/ac:171186
Cao, Menghuihttp://dx.doi.org/10.7916/D8PG1PS1Fri, 28 Feb 2014 15:26:30 +0000This dissertation 1) shows continuity corrections for first passage probabilities of Brownian bridge and barrier joint probabilities, which are applied to the pricing of two-dimensional barrier and partial barrier options, and 2) introduces new variance reduction techniques and computational improvements to Monte Carlo methods for pricing American options.
The joint distribution of Brownian motion and its first passage time has found applications in many areas, including sequential analysis, pricing of barrier options, and credit risk modeling. There are, however, no simple closed-form solutions for these joint probabilities in a discrete-time setting. Chapter 2 shows that, discrete two-dimensional barrier and partial barrier joint probabilities can be approximated by their continuous-time probabilities with remarkable accuracy after shifting the barrier away from the underlying by a factor. We achieve this through a uniform continuity correction theorem on the first passage probabilities for Brownian bridge, extending relevant results in Siegmund (1985a). The continuity corrections are applied to the pricing of two-dimensional barrier and partial barrier options, extending the results in Broadie, Glasserman & Kou (1997) on one-dimensional barrier options. One interesting aspect is that for type B partial barrier options, the barrier correction cannot be applied throughout one pricing formula, but only to some barrier values and leaving the other unchanged, the direction of correction may also vary within one formula.
In Chapter 3 we introduce new variance reduction techniques and computational improvements to Monte Carlo methods for pricing American-style options. For simulation algorithms that compute lower bounds of American option values, we apply martingale control variates and introduce the local policy enhancement, which adopts a local simulation to improve the exercise policy. For duality-based upper bound methods, specifically the primal-dual simulation algorithm (Andersen and Broadie 2004), we have developed two improvements. One is sub-optimality checking, which saves unnecessary computation when it is sub-optimal to exercise the option along the sample path; the second is boundary distance grouping, which reduces computational time by skipping computation on selected sample paths based on the distance to the exercise boundary. Numerical results are given for single asset Bermudan options, moving window Asian options and Bermudan max options. In some examples the computational time is reduced by a factor of several hundred, while the confidence interval of the true option value is considerably tighter than before the improvements.Operations research, FinanceOperations Research, Industrial Engineering and Operations ResearchDissertationsApproximate dynamic programming for large scale systems
http://academiccommons.columbia.edu/catalog/ac:169790
Desai, Vijay V.Fri, 28 Jun 2013 10:51:16 +0000Sequential decision making under uncertainty is at the heart of a wide variety of practical problems. These problems can be cast as dynamic programs and the optimal value function can be computed by solving Bellman's equation. However, this approach is limited in its applicability. As the number of state variables increases, the state space size grows exponentially, a phenomenon known as the curse of dimensionality, rendering the standard dynamic programming approach impractical. An effective way of addressing curse of dimensionality is through parameterized value function approximation. Such an approximation is determined by relatively small number of parameters and serves as an estimate of the optimal value function. But in order for this approach to be effective, we need Approximate Dynamic Programming (ADP) algorithms that can deliver `good' approximation to the optimal value function and such an approximation can then be used to derive policies for effective decision-making. From a practical standpoint, in order to assess the effectiveness of such an approximation, there is also a need for methods that give a sense for the suboptimality of a policy. This thesis is an attempt to address both these issues. First, we introduce a new ADP algorithm based on linear programming, to compute value function approximations. LP approaches to approximate DP have typically relied on a natural `projection' of a well studied linear program for exact dynamic programming. Such programs restrict attention to approximations that are lower bounds to the optimal cost-to-go function. Our program -- the `smoothed approximate linear program' -- is distinct from such approaches and relaxes the restriction to lower bounding approximations in an appropriate fashion while remaining computationally tractable. The resulting program enjoys strong approximation guarantees and is shown to perform well in numerical experiments with the game of Tetris and queueing network control problem. Next, we consider optimal stopping problems with applications to pricing of high-dimensional American options. We introduce the pathwise optimization (PO) method: a new convex optimization procedure to produce upper and lower bounds on the optimal value (the `price') of high-dimensional optimal stopping problems. The PO method builds on a dual characterization of optimal stopping problems as optimization problems over the space of martingales, which we dub the martingale duality approach. We demonstrate via numerical experiments that the PO method produces upper bounds and lower bounds (via suboptimal exercise policies) of a quality comparable with state-of-the-art approaches. Further, we develop an approximation theory relevant to martingale duality approaches in general and the PO method in particular. Finally, we consider a broad class of MDPs and introduce a new tractable method for computing bounds by consider information relaxation and introducing penalty. The method delivers tight bounds by identifying the best penalty function among a parameterized class of penalty functions. We implement our method on a high-dimensional financial application, namely, optimal execution and demonstrate the practical value of the method vis-a-vis competing methods available in the literature. In addition, we provide theory to show that bounds generated by our method are provably tighter than some of the other available approaches.Operations research, Mathematicsvvd2101Operations Research, BusinessDissertations